/* $License: Copyright (C) 2011 InvenSense Corporation, All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . $ */ /** * @addtogroup MLDL * * @{ * @file mldl_cfg.c * @brief The Motion Library Driver Layer. */ /* -------------------------------------------------------------------------- */ #include #include #include "mldl_cfg.h" #include # include "mpu3050.h" #include "mlsl.h" #include "log.h" #undef MPL_LOG_TAG #define MPL_LOG_TAG "mldl_cfg:" /* -------------------------------------------------------------------------- */ #define SLEEP 1 #define WAKE_UP 0 #define RESET 1 #define STANDBY 1 /* -------------------------------------------------------------------------- */ /** * @brief Stop the DMP running * * @return INV_SUCCESS or non-zero error code */ static int dmp_stop(struct mldl_cfg *mldl_cfg, void *gyro_handle) { unsigned char user_ctrl_reg; int result; if (!mldl_cfg->dmp_is_running) return INV_SUCCESS; result = inv_serial_read(gyro_handle, mldl_cfg->addr, MPUREG_USER_CTRL, 1, &user_ctrl_reg); if (result) { LOG_RESULT_LOCATION(result); return result; } user_ctrl_reg = (user_ctrl_reg & (~BIT_FIFO_EN)) | BIT_FIFO_RST; user_ctrl_reg = (user_ctrl_reg & (~BIT_DMP_EN)) | BIT_DMP_RST; result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_USER_CTRL, user_ctrl_reg); if (result) { LOG_RESULT_LOCATION(result); return result; } mldl_cfg->dmp_is_running = FALSE; return result; } /** * @brief Starts the DMP running * * @return INV_SUCCESS or non-zero error code */ static int dmp_start(struct mldl_cfg *pdata, void *mlsl_handle) { unsigned char user_ctrl_reg; int result; if (pdata->dmp_is_running == pdata->dmp_enable) return INV_SUCCESS; result = inv_serial_read(mlsl_handle, pdata->addr, MPUREG_USER_CTRL, 1, &user_ctrl_reg); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_single_write(mlsl_handle, pdata->addr, MPUREG_USER_CTRL, ((user_ctrl_reg & (~BIT_FIFO_EN)) | BIT_FIFO_RST)); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_single_write(mlsl_handle, pdata->addr, MPUREG_USER_CTRL, user_ctrl_reg); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_read(mlsl_handle, pdata->addr, MPUREG_USER_CTRL, 1, &user_ctrl_reg); if (result) { LOG_RESULT_LOCATION(result); return result; } if (pdata->dmp_enable) user_ctrl_reg |= BIT_DMP_EN; else user_ctrl_reg &= ~BIT_DMP_EN; if (pdata->fifo_enable) user_ctrl_reg |= BIT_FIFO_EN; else user_ctrl_reg &= ~BIT_FIFO_EN; user_ctrl_reg |= BIT_DMP_RST; result = inv_serial_single_write(mlsl_handle, pdata->addr, MPUREG_USER_CTRL, user_ctrl_reg); if (result) { LOG_RESULT_LOCATION(result); return result; } pdata->dmp_is_running = pdata->dmp_enable; return result; } static int mpu3050_set_i2c_bypass(struct mldl_cfg *mldl_cfg, void *mlsl_handle, unsigned char enable) { unsigned char b; int result; if ((mldl_cfg->gyro_is_bypassed && enable) || (!mldl_cfg->gyro_is_bypassed && !enable)) return INV_SUCCESS; /*---- get current 'USER_CTRL' into b ----*/ result = inv_serial_read(mlsl_handle, mldl_cfg->addr, MPUREG_USER_CTRL, 1, &b); if (result) { LOG_RESULT_LOCATION(result); return result; } b &= ~BIT_AUX_IF_EN; if (!enable) { result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_USER_CTRL, (b | BIT_AUX_IF_EN)); if (result) { LOG_RESULT_LOCATION(result); return result; } } else { /* Coming out of I2C is tricky due to several erratta. Do not * modify this algorithm */ /* * 1) wait for the right time and send the command to change * the aux i2c slave address to an invalid address that will * get nack'ed * * 0x00 is broadcast. 0x7F is unlikely to be used by any aux. */ result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_AUX_SLV_ADDR, 0x7F); if (result) { LOG_RESULT_LOCATION(result); return result; } /* * 2) wait enough time for a nack to occur, then go into * bypass mode: */ msleep(2); result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_USER_CTRL, (b)); if (result) { LOG_RESULT_LOCATION(result); return result; } /* * 3) wait for up to one MPU cycle then restore the slave * address */ msleep(inv_mpu_get_sampling_period_us(mldl_cfg) / 1000); result = inv_serial_single_write( mlsl_handle, mldl_cfg->addr, MPUREG_AUX_SLV_ADDR, mldl_cfg->pdata->accel.address); if (result) { LOG_RESULT_LOCATION(result); return result; } /* * 4) reset the ime interface */ result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_USER_CTRL, (b | BIT_AUX_IF_RST)); if (result) { LOG_RESULT_LOCATION(result); return result; } msleep(2); } mldl_cfg->gyro_is_bypassed = enable; return result; } /** * @brief enables/disables the I2C bypass to an external device * connected to MPU's secondary I2C bus. * @param enable * Non-zero to enable pass through. * @return INV_SUCCESS if successful, a non-zero error code otherwise. */ static int mpu_set_i2c_bypass(struct mldl_cfg *mldl_cfg, void *mlsl_handle, unsigned char enable) { return mpu3050_set_i2c_bypass(mldl_cfg, mlsl_handle, enable); } #define NUM_OF_PROD_REVS (ARRAY_SIZE(prod_rev_map)) /* NOTE : when not indicated, product revision is considered an 'npp'; non production part */ struct prod_rev_map_t { unsigned char silicon_rev; unsigned short gyro_trim; }; #define OLDEST_PROD_REV_SUPPORTED 11 static struct prod_rev_map_t prod_rev_map[] = { {0, 0}, {MPU_SILICON_REV_A4, 131}, /* 1 A? OBSOLETED */ {MPU_SILICON_REV_A4, 131}, /* 2 | */ {MPU_SILICON_REV_A4, 131}, /* 3 | */ {MPU_SILICON_REV_A4, 131}, /* 4 | */ {MPU_SILICON_REV_A4, 131}, /* 5 | */ {MPU_SILICON_REV_A4, 131}, /* 6 | */ {MPU_SILICON_REV_A4, 131}, /* 7 | */ {MPU_SILICON_REV_A4, 131}, /* 8 | */ {MPU_SILICON_REV_A4, 131}, /* 9 | */ {MPU_SILICON_REV_A4, 131}, /* 10 V */ {MPU_SILICON_REV_B1, 131}, /* 11 B1 */ {MPU_SILICON_REV_B1, 131}, /* 12 | */ {MPU_SILICON_REV_B1, 131}, /* 13 | */ {MPU_SILICON_REV_B1, 131}, /* 14 V */ {MPU_SILICON_REV_B4, 131}, /* 15 B4 */ {MPU_SILICON_REV_B4, 131}, /* 16 | */ {MPU_SILICON_REV_B4, 131}, /* 17 | */ {MPU_SILICON_REV_B4, 131}, /* 18 | */ {MPU_SILICON_REV_B4, 115}, /* 19 | */ {MPU_SILICON_REV_B4, 115}, /* 20 V */ {MPU_SILICON_REV_B6, 131}, /* 21 B6 (B6/A9) */ {MPU_SILICON_REV_B4, 115}, /* 22 B4 (B7/A10) */ {MPU_SILICON_REV_B6, 0}, /* 23 B6 */ {MPU_SILICON_REV_B6, 0}, /* 24 | */ {MPU_SILICON_REV_B6, 0}, /* 25 | */ {MPU_SILICON_REV_B6, 131}, /* 26 V (B6/A11) */ }; /** * @internal * @brief Get the silicon revision ID from OTP for MPU3050. * The silicon revision number is in read from OTP bank 0, * ADDR6[7:2]. The corresponding ID is retrieved by lookup * in a map. * * @param mldl_cfg * a pointer to the mldl config data structure. * @param mlsl_handle * an file handle to the serial communication device the * device is connected to. * * @return 0 on success, a non-zero error code otherwise. */ static int inv_get_silicon_rev_mpu3050( struct mldl_cfg *mldl_cfg, void *mlsl_handle) { int result; unsigned char index = 0x00; unsigned char bank = (BIT_PRFTCH_EN | BIT_CFG_USER_BANK | MPU_MEM_OTP_BANK_0); unsigned short mem_addr = ((bank << 8) | 0x06); result = inv_serial_read(mlsl_handle, mldl_cfg->addr, MPUREG_PRODUCT_ID, 1, &mldl_cfg->product_id); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_read_mem(mlsl_handle, mldl_cfg->addr, mem_addr, 1, &index); if (result) { LOG_RESULT_LOCATION(result); return result; } index >>= 2; /* clean the prefetch and cfg user bank bits */ result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_BANK_SEL, 0); if (result) { LOG_RESULT_LOCATION(result); return result; } if (index < OLDEST_PROD_REV_SUPPORTED || index >= NUM_OF_PROD_REVS) { mldl_cfg->silicon_revision = 0; mldl_cfg->gyro_sens_trim = 0; MPL_LOGE("Unsupported Product Revision Detected : %d\n", index); return INV_ERROR_INVALID_MODULE; } mldl_cfg->product_revision = index; mldl_cfg->silicon_revision = prod_rev_map[index].silicon_rev; mldl_cfg->gyro_sens_trim = prod_rev_map[index].gyro_trim; if (mldl_cfg->gyro_sens_trim == 0) { MPL_LOGE("gyro sensitivity trim is 0" " - unsupported non production part.\n"); return INV_ERROR_INVALID_MODULE; } return result; } #define inv_get_silicon_rev inv_get_silicon_rev_mpu3050 /** * @brief Enable / Disable the use MPU's secondary I2C interface level * shifters. * When enabled the secondary I2C interface to which the external * device is connected runs at VDD voltage (main supply). * When disabled the 2nd interface runs at VDDIO voltage. * See the device specification for more details. * * @note using this API may produce unpredictable results, depending on how * the MPU and slave device are setup on the target platform. * Use of this API should entirely be restricted to system * integrators. Once the correct value is found, there should be no * need to change the level shifter at runtime. * * @pre Must be called after inv_serial_start(). * @note Typically called before inv_dmp_open(). * * @param[in] enable: * 0 to run at VDDIO (default), * 1 to run at VDD. * * @return INV_SUCCESS if successfull, a non-zero error code otherwise. */ static int inv_mpu_set_level_shifter_bit(struct mldl_cfg *pdata, void *mlsl_handle, unsigned char enable) { int result; unsigned char reg; unsigned char mask; unsigned char regval; if (0 == pdata->silicon_revision) return INV_ERROR_INVALID_PARAMETER; /*-- on parts before B6 the VDDIO bit is bit 7 of ACCEL_BURST_ADDR -- NOTE: this is incompatible with ST accelerometers where the VDDIO bit MUST be set to enable ST's internal logic to autoincrement the register address on burst reads --*/ if ((pdata->silicon_revision & 0xf) < MPU_SILICON_REV_B6) { reg = MPUREG_ACCEL_BURST_ADDR; mask = 0x80; } else { /*-- on B6 parts the VDDIO bit was moved to FIFO_EN2 => the mask is always 0x04 --*/ reg = MPUREG_FIFO_EN2; mask = 0x04; } result = inv_serial_read(mlsl_handle, pdata->addr, reg, 1, ®val); if (result) { LOG_RESULT_LOCATION(result); return result; } if (enable) regval |= mask; else regval &= ~mask; result = inv_serial_single_write(mlsl_handle, pdata->addr, reg, regval); if (result) { LOG_RESULT_LOCATION(result); return result; } return result; return INV_SUCCESS; } /** * @internal * @brief This function controls the power management on the MPU device. * The entire chip can be put to low power sleep mode, or individual * gyros can be turned on/off. * * Putting the device into sleep mode depending upon the changing needs * of the associated applications is a recommended method for reducing * power consuption. It is a safe opearation in that sleep/wake up of * gyros while running will not result in any interruption of data. * * Although it is entirely allowed to put the device into full sleep * while running the DMP, it is not recomended because it will disrupt * the ongoing calculations carried on inside the DMP and consequently * the sensor fusion algorithm. Furthermore, while in sleep mode * read & write operation from the app processor on both registers and * memory are disabled and can only regained by restoring the MPU in * normal power mode. * Disabling any of the gyro axis will reduce the associated power * consuption from the PLL but will not stop the DMP from running * state. * * @param reset * Non-zero to reset the device. Note that this setting * is volatile and the corresponding register bit will * clear itself right after being applied. * @param sleep * Non-zero to put device into full sleep. * @param disable_gx * Non-zero to disable gyro X. * @param disable_gy * Non-zero to disable gyro Y. * @param disable_gz * Non-zero to disable gyro Z. * * @return INV_SUCCESS if successfull; a non-zero error code otherwise. */ static int mpu3050_pwr_mgmt(struct mldl_cfg *mldl_cfg, void *mlsl_handle, unsigned char reset, unsigned char sleep, unsigned char disable_gx, unsigned char disable_gy, unsigned char disable_gz) { unsigned char b; int result; result = inv_serial_read(mlsl_handle, mldl_cfg->addr, MPUREG_PWR_MGM, 1, &b); if (result) { LOG_RESULT_LOCATION(result); return result; } /* If we are awake, we need to put it in bypass before resetting */ if ((!(b & BIT_SLEEP)) && reset) result = mpu_set_i2c_bypass(mldl_cfg, mlsl_handle, 1); /* Reset if requested */ if (reset) { MPL_LOGV("Reset MPU3050\n"); result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_PWR_MGM, b | BIT_H_RESET); if (result) { LOG_RESULT_LOCATION(result); return result; } msleep(5); mldl_cfg->gyro_needs_reset = FALSE; /* Some chips are awake after reset and some are asleep, * check the status */ result = inv_serial_read(mlsl_handle, mldl_cfg->addr, MPUREG_PWR_MGM, 1, &b); if (result) { LOG_RESULT_LOCATION(result); return result; } } /* Update the suspended state just in case we return early */ if (b & BIT_SLEEP) mldl_cfg->gyro_is_suspended = TRUE; else mldl_cfg->gyro_is_suspended = FALSE; /* if power status match requested, nothing else's left to do */ if ((b & (BIT_SLEEP | BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG)) == (((sleep != 0) * BIT_SLEEP) | ((disable_gx != 0) * BIT_STBY_XG) | ((disable_gy != 0) * BIT_STBY_YG) | ((disable_gz != 0) * BIT_STBY_ZG))) { return INV_SUCCESS; } /* * This specific transition between states needs to be reinterpreted: * (1,1,1,1) -> (0,1,1,1) has to become * (1,1,1,1) -> (1,0,0,0) -> (0,1,1,1) * where * (1,1,1,1) is (sleep=1,disable_gx=1,disable_gy=1,disable_gz=1) */ if ((b & (BIT_SLEEP | BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG)) == (BIT_SLEEP | BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG) && ((!sleep) && disable_gx && disable_gy && disable_gz)) { result = mpu3050_pwr_mgmt(mldl_cfg, mlsl_handle, 0, 1, 0, 0, 0); if (result) return result; b |= BIT_SLEEP; b &= ~(BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG); } if ((b & BIT_SLEEP) != ((sleep != 0) * BIT_SLEEP)) { if (sleep) { result = mpu_set_i2c_bypass(mldl_cfg, mlsl_handle, 1); if (result) { LOG_RESULT_LOCATION(result); return result; } b |= BIT_SLEEP; result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_PWR_MGM, b); if (result) { LOG_RESULT_LOCATION(result); return result; } mldl_cfg->gyro_is_suspended = TRUE; } else { b &= ~BIT_SLEEP; result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_PWR_MGM, b); if (result) { LOG_RESULT_LOCATION(result); return result; } mldl_cfg->gyro_is_suspended = FALSE; msleep(5); } } /*--- WORKAROUND FOR PUTTING GYRO AXIS in STAND-BY MODE 1) put one axis at a time in stand-by ---*/ if ((b & BIT_STBY_XG) != ((disable_gx != 0) * BIT_STBY_XG)) { b ^= BIT_STBY_XG; result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_PWR_MGM, b); if (result) { LOG_RESULT_LOCATION(result); return result; } } if ((b & BIT_STBY_YG) != ((disable_gy != 0) * BIT_STBY_YG)) { b ^= BIT_STBY_YG; result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_PWR_MGM, b); if (result) { LOG_RESULT_LOCATION(result); return result; } } if ((b & BIT_STBY_ZG) != ((disable_gz != 0) * BIT_STBY_ZG)) { b ^= BIT_STBY_ZG; result = inv_serial_single_write(mlsl_handle, mldl_cfg->addr, MPUREG_PWR_MGM, b); if (result) { LOG_RESULT_LOCATION(result); return result; } } return INV_SUCCESS; } /** * @brief sets the clock source for the gyros. * @param mldl_cfg * a pointer to the struct mldl_cfg data structure. * @param gyro_handle * an handle to the serial device the gyro is assigned to. * @return ML_SUCCESS if successful, a non-zero error code otherwise. */ static int mpu_set_clock_source(void *gyro_handle, struct mldl_cfg *mldl_cfg) { int result; unsigned char cur_clk_src; unsigned char reg; /* clock source selection */ result = inv_serial_read(gyro_handle, mldl_cfg->addr, MPUREG_PWR_MGM, 1, ®); if (result) { LOG_RESULT_LOCATION(result); return result; } cur_clk_src = reg & BITS_CLKSEL; reg &= ~BITS_CLKSEL; result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_PWR_MGM, mldl_cfg->clk_src | reg); if (result) { LOG_RESULT_LOCATION(result); return result; } /* TODO : workarounds to be determined and implemented */ return result; } void mpu_print_cfg(struct mldl_cfg *mldl_cfg) { struct mpu_platform_data *pdata = mldl_cfg->pdata; struct ext_slave_platform_data *accel = &mldl_cfg->pdata->accel; struct ext_slave_platform_data *compass = &mldl_cfg->pdata->compass; struct ext_slave_platform_data *pressure = &mldl_cfg->pdata->pressure; MPL_LOGD("mldl_cfg.addr = %02x\n", mldl_cfg->addr); MPL_LOGD("mldl_cfg.int_config = %02x\n", mldl_cfg->int_config); MPL_LOGD("mldl_cfg.ext_sync = %02x\n", mldl_cfg->ext_sync); MPL_LOGD("mldl_cfg.full_scale = %02x\n", mldl_cfg->full_scale); MPL_LOGD("mldl_cfg.lpf = %02x\n", mldl_cfg->lpf); MPL_LOGD("mldl_cfg.clk_src = %02x\n", mldl_cfg->clk_src); MPL_LOGD("mldl_cfg.divider = %02x\n", mldl_cfg->divider); MPL_LOGD("mldl_cfg.dmp_enable = %02x\n", mldl_cfg->dmp_enable); MPL_LOGD("mldl_cfg.fifo_enable = %02x\n", mldl_cfg->fifo_enable); MPL_LOGD("mldl_cfg.dmp_cfg1 = %02x\n", mldl_cfg->dmp_cfg1); MPL_LOGD("mldl_cfg.dmp_cfg2 = %02x\n", mldl_cfg->dmp_cfg2); MPL_LOGD("mldl_cfg.offset_tc[0] = %02x\n", mldl_cfg->offset_tc[0]); MPL_LOGD("mldl_cfg.offset_tc[1] = %02x\n", mldl_cfg->offset_tc[1]); MPL_LOGD("mldl_cfg.offset_tc[2] = %02x\n", mldl_cfg->offset_tc[2]); MPL_LOGD("mldl_cfg.silicon_revision = %02x\n", mldl_cfg->silicon_revision); MPL_LOGD("mldl_cfg.product_revision = %02x\n", mldl_cfg->product_revision); MPL_LOGD("mldl_cfg.product_id = %02x\n", mldl_cfg->product_id); MPL_LOGD("mldl_cfg.gyro_sens_trim = %02x\n", mldl_cfg->gyro_sens_trim); MPL_LOGD("mldl_cfg.requested_sensors= %04lx\n", mldl_cfg->requested_sensors); if (mldl_cfg->accel) { MPL_LOGD("slave_accel->suspend = %02x\n", (int)mldl_cfg->accel->suspend); MPL_LOGD("slave_accel->resume = %02x\n", (int)mldl_cfg->accel->resume); MPL_LOGD("slave_accel->read = %02x\n", (int)mldl_cfg->accel->read); MPL_LOGD("slave_accel->type = %02x\n", mldl_cfg->accel->type); MPL_LOGD("slave_accel->reg = %02x\n", mldl_cfg->accel->read_reg); MPL_LOGD("slave_accel->len = %02x\n", mldl_cfg->accel->read_len); MPL_LOGD("slave_accel->endian = %02x\n", mldl_cfg->accel->endian); MPL_LOGD("slave_accel->range.mantissa= %02lx\n", mldl_cfg->accel->range.mantissa); MPL_LOGD("slave_accel->range.fraction= %02lx\n", mldl_cfg->accel->range.fraction); } else { MPL_LOGD("slave_accel = NULL\n"); } if (mldl_cfg->compass) { MPL_LOGD("slave_compass->suspend = %02x\n", (int)mldl_cfg->compass->suspend); MPL_LOGD("slave_compass->resume = %02x\n", (int)mldl_cfg->compass->resume); MPL_LOGD("slave_compass->read = %02x\n", (int)mldl_cfg->compass->read); MPL_LOGD("slave_compass->type = %02x\n", mldl_cfg->compass->type); MPL_LOGD("slave_compass->reg = %02x\n", mldl_cfg->compass->read_reg); MPL_LOGD("slave_compass->len = %02x\n", mldl_cfg->compass->read_len); MPL_LOGD("slave_compass->endian = %02x\n", mldl_cfg->compass->endian); MPL_LOGD("slave_compass->range.mantissa= %02lx\n", mldl_cfg->compass->range.mantissa); MPL_LOGD("slave_compass->range.fraction= %02lx\n", mldl_cfg->compass->range.fraction); } else { MPL_LOGD("slave_compass = NULL\n"); } if (mldl_cfg->pressure) { MPL_LOGD("slave_pressure->suspend = %02x\n", (int)mldl_cfg->pressure->suspend); MPL_LOGD("slave_pressure->resume = %02x\n", (int)mldl_cfg->pressure->resume); MPL_LOGD("slave_pressure->read = %02x\n", (int)mldl_cfg->pressure->read); MPL_LOGD("slave_pressure->type = %02x\n", mldl_cfg->pressure->type); MPL_LOGD("slave_pressure->reg = %02x\n", mldl_cfg->pressure->read_reg); MPL_LOGD("slave_pressure->len = %02x\n", mldl_cfg->pressure->read_len); MPL_LOGD("slave_pressure->endian = %02x\n", mldl_cfg->pressure->endian); MPL_LOGD("slave_pressure->range.mantissa= %02lx\n", mldl_cfg->pressure->range.mantissa); MPL_LOGD("slave_pressure->range.fraction= %02lx\n", mldl_cfg->pressure->range.fraction); } else { MPL_LOGD("slave_pressure = NULL\n"); } MPL_LOGD("accel->get_slave_descr = %x\n", (unsigned int)accel->get_slave_descr); MPL_LOGD("accel->irq = %02x\n", accel->irq); MPL_LOGD("accel->adapt_num = %02x\n", accel->adapt_num); MPL_LOGD("accel->bus = %02x\n", accel->bus); MPL_LOGD("accel->address = %02x\n", accel->address); MPL_LOGD("accel->orientation =\n" " %2d %2d %2d\n" " %2d %2d %2d\n" " %2d %2d %2d\n", accel->orientation[0], accel->orientation[1], accel->orientation[2], accel->orientation[3], accel->orientation[4], accel->orientation[5], accel->orientation[6], accel->orientation[7], accel->orientation[8]); MPL_LOGD("compass->get_slave_descr = %x\n", (unsigned int)compass->get_slave_descr); MPL_LOGD("compass->irq = %02x\n", compass->irq); MPL_LOGD("compass->adapt_num = %02x\n", compass->adapt_num); MPL_LOGD("compass->bus = %02x\n", compass->bus); MPL_LOGD("compass->address = %02x\n", compass->address); MPL_LOGD("compass->orientation =\n" " %2d %2d %2d\n" " %2d %2d %2d\n" " %2d %2d %2d\n", compass->orientation[0], compass->orientation[1], compass->orientation[2], compass->orientation[3], compass->orientation[4], compass->orientation[5], compass->orientation[6], compass->orientation[7], compass->orientation[8]); MPL_LOGD("pressure->get_slave_descr = %x\n", (unsigned int)pressure->get_slave_descr); MPL_LOGD("pressure->irq = %02x\n", pressure->irq); MPL_LOGD("pressure->adapt_num = %02x\n", pressure->adapt_num); MPL_LOGD("pressure->bus = %02x\n", pressure->bus); MPL_LOGD("pressure->address = %02x\n", pressure->address); MPL_LOGD("pressure->orientation =\n" " %2d %2d %2d\n" " %2d %2d %2d\n" " %2d %2d %2d\n", pressure->orientation[0], pressure->orientation[1], pressure->orientation[2], pressure->orientation[3], pressure->orientation[4], pressure->orientation[5], pressure->orientation[6], pressure->orientation[7], pressure->orientation[8]); MPL_LOGD("pdata->int_config = %02x\n", pdata->int_config); MPL_LOGD("pdata->level_shifter = %02x\n", pdata->level_shifter); MPL_LOGD("pdata->orientation =\n" " %2d %2d %2d\n" " %2d %2d %2d\n" " %2d %2d %2d\n", pdata->orientation[0], pdata->orientation[1], pdata->orientation[2], pdata->orientation[3], pdata->orientation[4], pdata->orientation[5], pdata->orientation[6], pdata->orientation[7], pdata->orientation[8]); MPL_LOGD("Struct sizes: mldl_cfg: %d, " "ext_slave_descr:%d, " "mpu_platform_data:%d: RamOffset: %d\n", sizeof(struct mldl_cfg), sizeof(struct ext_slave_descr), sizeof(struct mpu_platform_data), offsetof(struct mldl_cfg, ram)); } /** * Configures the MPU I2C Master * * @mldl_cfg Handle to the configuration data * @gyro_handle handle to the gyro communictation interface * @slave Can be Null if turning off the slave * @slave_pdata Can be null if turning off the slave * @slave_id enum ext_slave_type to determine which index to use * * * This fucntion configures the slaves by: * 1) Setting up the read * a) Read Register * b) Read Length * 2) Set up the data trigger (MPU6050 only) * a) Set trigger write register * b) Set Trigger write value * 3) Set up the divider (MPU6050 only) * 4) Set the slave bypass mode depending on slave * * returns INV_SUCCESS or non-zero error code */ static int mpu_set_slave_mpu3050(struct mldl_cfg *mldl_cfg, void *gyro_handle, struct ext_slave_descr *slave, struct ext_slave_platform_data *slave_pdata, int slave_id) { int result; unsigned char reg; unsigned char slave_reg; unsigned char slave_len; unsigned char slave_endian; unsigned char slave_address; result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, TRUE); if (NULL == slave || NULL == slave_pdata) { slave_reg = 0; slave_len = 0; slave_endian = 0; slave_address = 0; mldl_cfg->i2c_slaves_enabled = 0; } else { slave_reg = slave->read_reg; slave_len = slave->read_len; slave_endian = slave->endian; slave_address = slave_pdata->address; mldl_cfg->i2c_slaves_enabled = 1; } /* Address */ result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_AUX_SLV_ADDR, slave_address); if (result) { LOG_RESULT_LOCATION(result); return result; } /* Register */ result = inv_serial_read(gyro_handle, mldl_cfg->addr, MPUREG_ACCEL_BURST_ADDR, 1, ®); if (result) { LOG_RESULT_LOCATION(result); return result; } reg = ((reg & 0x80) | slave_reg); result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_ACCEL_BURST_ADDR, reg); if (result) { LOG_RESULT_LOCATION(result); return result; } /* Length */ result = inv_serial_read(gyro_handle, mldl_cfg->addr, MPUREG_USER_CTRL, 1, ®); if (result) { LOG_RESULT_LOCATION(result); return result; } reg = (reg & ~BIT_AUX_RD_LENG); result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_USER_CTRL, reg); if (result) { LOG_RESULT_LOCATION(result); return result; } return result; } static int mpu_set_slave(struct mldl_cfg *mldl_cfg, void *gyro_handle, struct ext_slave_descr *slave, struct ext_slave_platform_data *slave_pdata, int slave_id) { return mpu_set_slave_mpu3050(mldl_cfg, gyro_handle, slave, slave_pdata, slave_id); } /** * Check to see if the gyro was reset by testing a couple of registers known * to change on reset. * * @mldl_cfg mldl configuration structure * @gyro_handle handle used to communicate with the gyro * * @return INV_SUCCESS or non-zero error code */ static int mpu_was_reset(struct mldl_cfg *mldl_cfg, void *gyro_handle) { int result = INV_SUCCESS; unsigned char reg; result = inv_serial_read(gyro_handle, mldl_cfg->addr, MPUREG_DMP_CFG_2, 1, ®); if (result) { LOG_RESULT_LOCATION(result); return result; } if (mldl_cfg->dmp_cfg2 != reg) return TRUE; if (0 != mldl_cfg->dmp_cfg1) return FALSE; result = inv_serial_read(gyro_handle, mldl_cfg->addr, MPUREG_SMPLRT_DIV, 1, ®); if (result) { LOG_RESULT_LOCATION(result); return result; } if (reg != mldl_cfg->divider) return TRUE; if (0 != mldl_cfg->divider) return FALSE; /* Inconclusive assume it was reset */ return TRUE; } static int gyro_resume(struct mldl_cfg *mldl_cfg, void *gyro_handle, unsigned long sensors) { int result; int ii; int jj; unsigned char reg; unsigned char regs[7]; /* Wake up the part */ result = mpu3050_pwr_mgmt(mldl_cfg, gyro_handle, FALSE, FALSE, !(sensors & INV_X_GYRO), !(sensors & INV_Y_GYRO), !(sensors & INV_Z_GYRO)); if (!mldl_cfg->gyro_needs_reset && !mpu_was_reset(mldl_cfg, gyro_handle)) { return INV_SUCCESS; } result = mpu3050_pwr_mgmt(mldl_cfg, gyro_handle, TRUE, FALSE, !(sensors & INV_X_GYRO), !(sensors & INV_Y_GYRO), !(sensors & INV_Z_GYRO)); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_INT_CFG, (mldl_cfg->int_config | mldl_cfg->pdata->int_config)); if (result) { LOG_RESULT_LOCATION(result); return result; } result = mpu_set_clock_source(gyro_handle, mldl_cfg); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_SMPLRT_DIV, mldl_cfg->divider); if (result) { LOG_RESULT_LOCATION(result); return result; } reg = DLPF_FS_SYNC_VALUE(mldl_cfg->ext_sync, mldl_cfg->full_scale, mldl_cfg->lpf); result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_DLPF_FS_SYNC, reg); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_DMP_CFG_1, mldl_cfg->dmp_cfg1); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_DMP_CFG_2, mldl_cfg->dmp_cfg2); if (result) { LOG_RESULT_LOCATION(result); return result; } /* Write and verify memory */ for (ii = 0; ii < MPU_MEM_NUM_RAM_BANKS; ii++) { unsigned char read[MPU_MEM_BANK_SIZE]; result = inv_serial_write_mem(gyro_handle, mldl_cfg->addr, ((ii << 8) | 0x00), MPU_MEM_BANK_SIZE, mldl_cfg->ram[ii]); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_read_mem(gyro_handle, mldl_cfg->addr, ((ii << 8) | 0x00), MPU_MEM_BANK_SIZE, read); if (result) { LOG_RESULT_LOCATION(result); return result; } #define ML_SKIP_CHECK 20 for (jj = 0; jj < MPU_MEM_BANK_SIZE; jj++) { /* skip the register memory locations */ if (ii == 0 && jj < ML_SKIP_CHECK) continue; if (mldl_cfg->ram[ii][jj] != read[jj]) { result = INV_ERROR_SERIAL_WRITE; break; } } if (result) { LOG_RESULT_LOCATION(result); return result; } } result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_XG_OFFS_TC, mldl_cfg->offset_tc[0]); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_YG_OFFS_TC, mldl_cfg->offset_tc[1]); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_single_write(gyro_handle, mldl_cfg->addr, MPUREG_ZG_OFFS_TC, mldl_cfg->offset_tc[2]); if (result) { LOG_RESULT_LOCATION(result); return result; } regs[0] = MPUREG_X_OFFS_USRH; for (ii = 0; ii < ARRAY_SIZE(mldl_cfg->offset); ii++) { regs[1 + ii * 2] = (unsigned char)(mldl_cfg->offset[ii] >> 8) & 0xff; regs[1 + ii * 2 + 1] = (unsigned char)(mldl_cfg->offset[ii] & 0xff); } result = inv_serial_write(gyro_handle, mldl_cfg->addr, 7, regs); if (result) { LOG_RESULT_LOCATION(result); return result; } /* Configure slaves */ result = inv_mpu_set_level_shifter_bit(mldl_cfg, gyro_handle, mldl_cfg->pdata->level_shifter); if (result) { LOG_RESULT_LOCATION(result); return result; } return result; } /******************************************************************************* ******************************************************************************* * Exported functions ******************************************************************************* ******************************************************************************/ /** * Initializes the pdata structure to defaults. * * Opens the device to read silicon revision, product id and whoami. * * @mldl_cfg * The internal device configuration data structure. * @mlsl_handle * The serial communication handle. * * @return INV_SUCCESS if silicon revision, product id and woami are supported * by this software. */ int inv_mpu_open(struct mldl_cfg *mldl_cfg, void *mlsl_handle, void *accel_handle, void *compass_handle, void *pressure_handle) { int result; /* Default is Logic HIGH, pushpull, latch disabled, anyread to clear */ mldl_cfg->ignore_system_suspend = FALSE; mldl_cfg->int_config = BIT_DMP_INT_EN; mldl_cfg->clk_src = MPU_CLK_SEL_PLLGYROZ; mldl_cfg->lpf = MPU_FILTER_42HZ; mldl_cfg->full_scale = MPU_FS_2000DPS; mldl_cfg->divider = 4; mldl_cfg->dmp_enable = 1; mldl_cfg->fifo_enable = 1; mldl_cfg->ext_sync = 0; mldl_cfg->dmp_cfg1 = 0; mldl_cfg->dmp_cfg2 = 0; mldl_cfg->i2c_slaves_enabled = 0; mldl_cfg->dmp_is_running = FALSE; mldl_cfg->gyro_is_suspended = TRUE; mldl_cfg->accel_is_suspended = TRUE; mldl_cfg->compass_is_suspended = TRUE; mldl_cfg->pressure_is_suspended = TRUE; mldl_cfg->gyro_needs_reset = FALSE; if (mldl_cfg->addr == 0) return INV_ERROR_INVALID_PARAMETER; /* * Reset, * Take the DMP out of sleep, and * read the product_id, sillicon rev and whoami */ mldl_cfg->gyro_is_bypassed = TRUE; result = mpu3050_pwr_mgmt(mldl_cfg, mlsl_handle, RESET, 0, 0, 0, 0); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_get_silicon_rev(mldl_cfg, mlsl_handle); if (result) { LOG_RESULT_LOCATION(result); return result; } /* Get the factory temperature compensation offsets */ result = inv_serial_read(mlsl_handle, mldl_cfg->addr, MPUREG_XG_OFFS_TC, 1, &mldl_cfg->offset_tc[0]); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_read(mlsl_handle, mldl_cfg->addr, MPUREG_YG_OFFS_TC, 1, &mldl_cfg->offset_tc[1]); if (result) { LOG_RESULT_LOCATION(result); return result; } result = inv_serial_read(mlsl_handle, mldl_cfg->addr, MPUREG_ZG_OFFS_TC, 1, &mldl_cfg->offset_tc[2]); if (result) { LOG_RESULT_LOCATION(result); return result; } /* Into bypass mode before sleeping and calling the slaves init */ result = mpu_set_i2c_bypass(mldl_cfg, mlsl_handle, TRUE); if (result) { LOG_RESULT_LOCATION(result); return result; } result = mpu3050_pwr_mgmt(mldl_cfg, mlsl_handle, 0, SLEEP, 0, 0, 0); if (result) { LOG_RESULT_LOCATION(result); return result; } if (mldl_cfg->accel && mldl_cfg->accel->init) { result = mldl_cfg->accel->init(accel_handle, mldl_cfg->accel, &mldl_cfg->pdata->accel); if (result) { LOG_RESULT_LOCATION(result); return result; } } if (mldl_cfg->compass && mldl_cfg->compass->init) { result = mldl_cfg->compass->init(compass_handle, mldl_cfg->compass, &mldl_cfg->pdata->compass); if (INV_SUCCESS != result) { MPL_LOGE("mldl_cfg->compass->init returned %d\n", result); goto out_accel; } } if (mldl_cfg->pressure && mldl_cfg->pressure->init) { result = mldl_cfg->pressure->init(pressure_handle, mldl_cfg->pressure, &mldl_cfg->pdata->pressure); if (INV_SUCCESS != result) { MPL_LOGE("mldl_cfg->pressure->init returned %d\n", result); goto out_compass; } } mldl_cfg->requested_sensors = INV_THREE_AXIS_GYRO; if (mldl_cfg->accel && mldl_cfg->accel->resume) mldl_cfg->requested_sensors |= INV_THREE_AXIS_ACCEL; if (mldl_cfg->compass && mldl_cfg->compass->resume) mldl_cfg->requested_sensors |= INV_THREE_AXIS_COMPASS; if (mldl_cfg->pressure && mldl_cfg->pressure->resume) mldl_cfg->requested_sensors |= INV_THREE_AXIS_PRESSURE; return result; out_compass: if (mldl_cfg->compass->init) mldl_cfg->compass->exit(compass_handle, mldl_cfg->compass, &mldl_cfg->pdata->compass); out_accel: if (mldl_cfg->accel->init) mldl_cfg->accel->exit(accel_handle, mldl_cfg->accel, &mldl_cfg->pdata->accel); return result; } /** * Close the mpu interface * * @mldl_cfg pointer to the configuration structure * @mlsl_handle pointer to the serial layer handle * * @return INV_SUCCESS or non-zero error code */ int inv_mpu_close(struct mldl_cfg *mldl_cfg, void *mlsl_handle, void *accel_handle, void *compass_handle, void *pressure_handle) { int result = INV_SUCCESS; int ret_result = INV_SUCCESS; if (mldl_cfg->accel && mldl_cfg->accel->exit) { result = mldl_cfg->accel->exit(accel_handle, mldl_cfg->accel, &mldl_cfg->pdata->accel); if (INV_SUCCESS != result) MPL_LOGE("Accel exit failed %d\n", result); ret_result = result; } if (INV_SUCCESS == ret_result) ret_result = result; if (mldl_cfg->compass && mldl_cfg->compass->exit) { result = mldl_cfg->compass->exit(compass_handle, mldl_cfg->compass, &mldl_cfg->pdata->compass); if (INV_SUCCESS != result) MPL_LOGE("Compass exit failed %d\n", result); } if (INV_SUCCESS == ret_result) ret_result = result; if (mldl_cfg->pressure && mldl_cfg->pressure->exit) { result = mldl_cfg->pressure->exit(pressure_handle, mldl_cfg->pressure, &mldl_cfg->pdata->pressure); if (INV_SUCCESS != result) MPL_LOGE("Pressure exit failed %d\n", result); } if (INV_SUCCESS == ret_result) ret_result = result; return ret_result; } /** * @brief resume the MPU device and all the other sensor * devices from their low power state. * * @mldl_cfg * pointer to the configuration structure * @gyro_handle * the main file handle to the MPU device. * @accel_handle * an handle to the accelerometer device, if sitting * onto a separate bus. Can match mlsl_handle if * the accelerometer device operates on the same * primary bus of MPU. * @compass_handle * an handle to the compass device, if sitting * onto a separate bus. Can match mlsl_handle if * the compass device operates on the same * primary bus of MPU. * @pressure_handle * an handle to the pressure sensor device, if sitting * onto a separate bus. Can match mlsl_handle if * the pressure sensor device operates on the same * primary bus of MPU. * @resume_gyro * whether resuming the gyroscope device is * actually needed (if the device supports low power * mode of some sort). * @resume_accel * whether resuming the accelerometer device is * actually needed (if the device supports low power * mode of some sort). * @resume_compass * whether resuming the compass device is * actually needed (if the device supports low power * mode of some sort). * @resume_pressure * whether resuming the pressure sensor device is * actually needed (if the device supports low power * mode of some sort). * @return INV_SUCCESS or a non-zero error code. */ int inv_mpu_resume(struct mldl_cfg *mldl_cfg, void *gyro_handle, void *accel_handle, void *compass_handle, void *pressure_handle, unsigned long sensors) { bool resume_dmp = sensors & INV_DMP_PROCESSOR; bool resume_gyro = sensors & INV_THREE_AXIS_GYRO; bool resume_accel = sensors & INV_THREE_AXIS_ACCEL; bool resume_compass = sensors & INV_THREE_AXIS_COMPASS; bool resume_pressure = sensors & INV_THREE_AXIS_PRESSURE; int result = INV_SUCCESS; #ifdef CONFIG_MPU_SENSORS_DEBUG mpu_print_cfg(mldl_cfg); #endif if (resume_accel && ((!mldl_cfg->accel) || (!mldl_cfg->accel->resume))) return INV_ERROR_INVALID_PARAMETER; if (resume_compass && ((!mldl_cfg->compass) || (!mldl_cfg->compass->resume))) return INV_ERROR_INVALID_PARAMETER; if (resume_pressure && ((!mldl_cfg->pressure) || (!mldl_cfg->pressure->resume))) return INV_ERROR_INVALID_PARAMETER; if (resume_gyro && mldl_cfg->gyro_is_suspended) { result = gyro_resume(mldl_cfg, gyro_handle, sensors); if (result) { LOG_RESULT_LOCATION(result); return result; } } if (resume_accel && mldl_cfg->accel_is_suspended) { if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->accel.bus) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, TRUE); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = mldl_cfg->accel->resume(accel_handle, mldl_cfg->accel, &mldl_cfg->pdata->accel); if (result) { LOG_RESULT_LOCATION(result); return result; } mldl_cfg->accel_is_suspended = FALSE; } if (resume_dmp && !mldl_cfg->accel_is_suspended && EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->accel.bus) { result = mpu_set_slave(mldl_cfg, gyro_handle, mldl_cfg->accel, &mldl_cfg->pdata->accel, mldl_cfg->accel->type); if (result) { LOG_RESULT_LOCATION(result); return result; } } if (resume_compass && mldl_cfg->compass_is_suspended) { if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->compass.bus) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, TRUE); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = mldl_cfg->compass->resume(compass_handle, mldl_cfg->compass, &mldl_cfg->pdata->compass); if (result) { LOG_RESULT_LOCATION(result); return result; } mldl_cfg->compass_is_suspended = FALSE; } if (resume_dmp && !mldl_cfg->compass_is_suspended && EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->compass.bus) { result = mpu_set_slave(mldl_cfg, gyro_handle, mldl_cfg->compass, &mldl_cfg->pdata->compass, mldl_cfg->compass->type); if (result) { LOG_RESULT_LOCATION(result); return result; } } if (resume_pressure && mldl_cfg->pressure_is_suspended) { if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->pressure.bus) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, TRUE); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = mldl_cfg->pressure->resume(pressure_handle, mldl_cfg->pressure, &mldl_cfg->pdata->pressure); if (result) { LOG_RESULT_LOCATION(result); return result; } mldl_cfg->pressure_is_suspended = FALSE; } if (resume_dmp && !mldl_cfg->pressure_is_suspended && EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->pressure.bus) { result = mpu_set_slave(mldl_cfg, gyro_handle, mldl_cfg->pressure, &mldl_cfg->pdata->pressure, mldl_cfg->pressure->type); if (result) { LOG_RESULT_LOCATION(result); return result; } } /* Turn on the master i2c iterface if necessary */ if (resume_dmp) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, !(mldl_cfg->i2c_slaves_enabled)); if (result) { LOG_RESULT_LOCATION(result); return result; } } /* Now start */ if (resume_dmp) { result = dmp_start(mldl_cfg, gyro_handle); if (result) { LOG_RESULT_LOCATION(result); return result; } } return result; } /** * @brief suspend the MPU device and all the other sensor * devices into their low power state. * @gyro_handle * the main file handle to the MPU device. * @accel_handle * an handle to the accelerometer device, if sitting * onto a separate bus. Can match gyro_handle if * the accelerometer device operates on the same * primary bus of MPU. * @compass_handle * an handle to the compass device, if sitting * onto a separate bus. Can match gyro_handle if * the compass device operates on the same * primary bus of MPU. * @pressure_handle * an handle to the pressure sensor device, if sitting * onto a separate bus. Can match gyro_handle if * the pressure sensor device operates on the same * primary bus of MPU. * @accel * whether suspending the accelerometer device is * actually needed (if the device supports low power * mode of some sort). * @compass * whether suspending the compass device is * actually needed (if the device supports low power * mode of some sort). * @pressure * whether suspending the pressure sensor device is * actually needed (if the device supports low power * mode of some sort). * @return INV_SUCCESS or a non-zero error code. */ int inv_mpu_suspend(struct mldl_cfg *mldl_cfg, void *gyro_handle, void *accel_handle, void *compass_handle, void *pressure_handle, unsigned long sensors) { int result = INV_SUCCESS; bool suspend_dmp = ((sensors & INV_DMP_PROCESSOR) == INV_DMP_PROCESSOR); bool suspend_gyro = ((sensors & (INV_X_GYRO | INV_Y_GYRO | INV_Z_GYRO)) == (INV_X_GYRO | INV_Y_GYRO | INV_Z_GYRO)); bool suspend_accel = ((sensors & INV_THREE_AXIS_ACCEL) == INV_THREE_AXIS_ACCEL); bool suspend_compass = ((sensors & INV_THREE_AXIS_COMPASS) == INV_THREE_AXIS_COMPASS); bool suspend_pressure = ((sensors & INV_THREE_AXIS_PRESSURE) == INV_THREE_AXIS_PRESSURE); if (suspend_dmp) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1); if (result) { LOG_RESULT_LOCATION(result); return result; } result = dmp_stop(mldl_cfg, gyro_handle); if (result) { LOG_RESULT_LOCATION(result); return result; } } /* Gyro */ if (suspend_gyro && !mldl_cfg->gyro_is_suspended) { result = mpu3050_pwr_mgmt(mldl_cfg, gyro_handle, 0, suspend_dmp && suspend_gyro, (sensors & INV_X_GYRO), (sensors & INV_Y_GYRO), (sensors & INV_Z_GYRO)); if (result) { LOG_RESULT_LOCATION(result); return result; } } /* Accel */ if (!mldl_cfg->accel_is_suspended && suspend_accel && mldl_cfg->accel && mldl_cfg->accel->suspend) { if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->accel.bus) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = mldl_cfg->accel->suspend(accel_handle, mldl_cfg->accel, &mldl_cfg->pdata->accel); if (result) { LOG_RESULT_LOCATION(result); return result; } if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->accel.bus) { result = mpu_set_slave(mldl_cfg, gyro_handle, NULL, NULL, mldl_cfg->accel->type); if (result) { LOG_RESULT_LOCATION(result); return result; } } mldl_cfg->accel_is_suspended = TRUE; } /* Compass */ if (!mldl_cfg->compass_is_suspended && suspend_compass && mldl_cfg->compass && mldl_cfg->compass->suspend) { if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->compass.bus) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = mldl_cfg->compass->suspend(compass_handle, mldl_cfg->compass, &mldl_cfg->pdata->compass); if (result) { LOG_RESULT_LOCATION(result); return result; } if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->compass.bus) { result = mpu_set_slave(mldl_cfg, gyro_handle, NULL, NULL, mldl_cfg->compass->type); if (result) { LOG_RESULT_LOCATION(result); return result; } } mldl_cfg->compass_is_suspended = TRUE; } /* Pressure */ if (!mldl_cfg->pressure_is_suspended && suspend_pressure && mldl_cfg->pressure && mldl_cfg->pressure->suspend) { if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->pressure.bus) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = mldl_cfg->pressure->suspend( pressure_handle, mldl_cfg->pressure, &mldl_cfg->pdata->pressure); if (result) { LOG_RESULT_LOCATION(result); return result; } if (EXT_SLAVE_BUS_SECONDARY == mldl_cfg->pdata->pressure.bus) { result = mpu_set_slave(mldl_cfg, gyro_handle, NULL, NULL, mldl_cfg->pressure->type); if (result) { LOG_RESULT_LOCATION(result); return result; } } mldl_cfg->pressure_is_suspended = TRUE; } /* Re-enable the i2c master if there are configured slaves and DMP */ if (!suspend_dmp) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, !(mldl_cfg->i2c_slaves_enabled)); if (result) { LOG_RESULT_LOCATION(result); return result; } } return result; } int inv_mpu_slave_read(struct mldl_cfg *mldl_cfg, void *gyro_handle, void *slave_handle, struct ext_slave_descr *slave, struct ext_slave_platform_data *pdata, unsigned char *data) { int result; int bypass_result; int remain_bypassed = TRUE; if (NULL == slave || NULL == slave->read) { LOG_RESULT_LOCATION(INV_ERROR_INVALID_CONFIGURATION); return INV_ERROR_INVALID_CONFIGURATION; } if ((EXT_SLAVE_BUS_SECONDARY == pdata->bus) && (!mldl_cfg->gyro_is_bypassed)) { remain_bypassed = FALSE; result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = slave->read(slave_handle, slave, pdata, data); if (!remain_bypassed) { bypass_result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 0); if (bypass_result) { LOG_RESULT_LOCATION(bypass_result); return bypass_result; } } return result; } int inv_mpu_slave_config(struct mldl_cfg *mldl_cfg, void *gyro_handle, void *slave_handle, struct ext_slave_config *data, struct ext_slave_descr *slave, struct ext_slave_platform_data *pdata) { int result; int remain_bypassed = TRUE; if (NULL == slave || NULL == slave->config) { LOG_RESULT_LOCATION(INV_ERROR_INVALID_CONFIGURATION); return INV_ERROR_INVALID_CONFIGURATION; } if (data->apply && (EXT_SLAVE_BUS_SECONDARY == pdata->bus) && (!mldl_cfg->gyro_is_bypassed)) { remain_bypassed = FALSE; result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = slave->config(slave_handle, slave, pdata, data); if (result) { LOG_RESULT_LOCATION(result); return result; } if (!remain_bypassed) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 0); if (result) { LOG_RESULT_LOCATION(result); return result; } } return result; } int inv_mpu_get_slave_config(struct mldl_cfg *mldl_cfg, void *gyro_handle, void *slave_handle, struct ext_slave_config *data, struct ext_slave_descr *slave, struct ext_slave_platform_data *pdata) { int result; int remain_bypassed = TRUE; if (NULL == slave || NULL == slave->get_config) { LOG_RESULT_LOCATION(INV_ERROR_INVALID_CONFIGURATION); return INV_ERROR_INVALID_CONFIGURATION; } if (data->apply && (EXT_SLAVE_BUS_SECONDARY == pdata->bus) && (!mldl_cfg->gyro_is_bypassed)) { remain_bypassed = FALSE; result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 1); if (result) { LOG_RESULT_LOCATION(result); return result; } } result = slave->get_config(slave_handle, slave, pdata, data); if (result) { LOG_RESULT_LOCATION(result); return result; } if (!remain_bypassed) { result = mpu_set_i2c_bypass(mldl_cfg, gyro_handle, 0); if (result) { LOG_RESULT_LOCATION(result); return result; } } return result; } /** * @} */