/* drivers/net/ks8851.c * * Copyright 2009 Simtec Electronics * http://www.simtec.co.uk/ * Ben Dooks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define DEBUG #include #include #include #include #include #include #include #include #include #include "ks8851.h" /** * struct ks8851_rxctrl - KS8851 driver rx control * @mchash: Multicast hash-table data. * @rxcr1: KS_RXCR1 register setting * @rxcr2: KS_RXCR2 register setting * * Representation of the settings needs to control the receive filtering * such as the multicast hash-filter and the receive register settings. This * is used to make the job of working out if the receive settings change and * then issuing the new settings to the worker that will send the necessary * commands. */ struct ks8851_rxctrl { u16 mchash[4]; u16 rxcr1; u16 rxcr2; }; /** * union ks8851_tx_hdr - tx header data * @txb: The header as bytes * @txw: The header as 16bit, little-endian words * * A dual representation of the tx header data to allow * access to individual bytes, and to allow 16bit accesses * with 16bit alignment. */ union ks8851_tx_hdr { u8 txb[6]; __le16 txw[3]; }; /** * struct ks8851_net - KS8851 driver private data * @netdev: The network device we're bound to * @spidev: The spi device we're bound to. * @lock: Lock to ensure that the device is not accessed when busy. * @statelock: Lock on this structure for tx list. * @mii: The MII state information for the mii calls. * @rxctrl: RX settings for @rxctrl_work. * @tx_work: Work queue for tx packets * @irq_work: Work queue for servicing interrupts * @rxctrl_work: Work queue for updating RX mode and multicast lists * @txq: Queue of packets for transmission. * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1. * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2. * @txh: Space for generating packet TX header in DMA-able data * @rxd: Space for receiving SPI data, in DMA-able space. * @txd: Space for transmitting SPI data, in DMA-able space. * @msg_enable: The message flags controlling driver output (see ethtool). * @fid: Incrementing frame id tag. * @rc_ier: Cached copy of KS_IER. * @rc_ccr: Cached copy of KS_CCR. * @rc_rxqcr: Cached copy of KS_RXQCR. * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom * * The @lock ensures that the chip is protected when certain operations are * in progress. When the read or write packet transfer is in progress, most * of the chip registers are not ccessible until the transfer is finished and * the DMA has been de-asserted. * * The @statelock is used to protect information in the structure which may * need to be accessed via several sources, such as the network driver layer * or one of the work queues. * * We align the buffers we may use for rx/tx to ensure that if the SPI driver * wants to DMA map them, it will not have any problems with data the driver * modifies. */ struct ks8851_net { struct net_device *netdev; struct spi_device *spidev; struct mutex lock; spinlock_t statelock; union ks8851_tx_hdr txh ____cacheline_aligned; u8 rxd[8]; u8 txd[8]; u32 msg_enable ____cacheline_aligned; u16 tx_space; u8 fid; u16 rc_ier; u16 rc_rxqcr; u16 rc_ccr; u16 eeprom_size; struct mii_if_info mii; struct ks8851_rxctrl rxctrl; struct work_struct tx_work; struct work_struct irq_work; struct work_struct rxctrl_work; struct sk_buff_head txq; struct spi_message spi_msg1; struct spi_message spi_msg2; struct spi_transfer spi_xfer1; struct spi_transfer spi_xfer2[2]; }; static int msg_enable; /* shift for byte-enable data */ #define BYTE_EN(_x) ((_x) << 2) /* turn register number and byte-enable mask into data for start of packet */ #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6) /* SPI register read/write calls. * * All these calls issue SPI transactions to access the chip's registers. They * all require that the necessary lock is held to prevent accesses when the * chip is busy transferring packet data (RX/TX FIFO accesses). */ /** * ks8851_wrreg16 - write 16bit register value to chip * @ks: The chip state * @reg: The register address * @val: The value to write * * Issue a write to put the value @val into the register specified in @reg. */ static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val) { struct spi_transfer *xfer = &ks->spi_xfer1; struct spi_message *msg = &ks->spi_msg1; __le16 txb[2]; int ret; txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR); txb[1] = cpu_to_le16(val); xfer->tx_buf = txb; xfer->rx_buf = NULL; xfer->len = 4; ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "spi_sync() failed\n"); } /** * ks8851_wrreg8 - write 8bit register value to chip * @ks: The chip state * @reg: The register address * @val: The value to write * * Issue a write to put the value @val into the register specified in @reg. */ static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val) { struct spi_transfer *xfer = &ks->spi_xfer1; struct spi_message *msg = &ks->spi_msg1; __le16 txb[2]; int ret; int bit; bit = 1 << (reg & 3); txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR); txb[1] = val; xfer->tx_buf = txb; xfer->rx_buf = NULL; xfer->len = 3; ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "spi_sync() failed\n"); } /** * ks8851_rx_1msg - select whether to use one or two messages for spi read * @ks: The device structure * * Return whether to generate a single message with a tx and rx buffer * supplied to spi_sync(), or alternatively send the tx and rx buffers * as separate messages. * * Depending on the hardware in use, a single message may be more efficient * on interrupts or work done by the driver. * * This currently always returns true until we add some per-device data passed * from the platform code to specify which mode is better. */ static inline bool ks8851_rx_1msg(struct ks8851_net *ks) { return true; } /** * ks8851_rdreg - issue read register command and return the data * @ks: The device state * @op: The register address and byte enables in message format. * @rxb: The RX buffer to return the result into * @rxl: The length of data expected. * * This is the low level read call that issues the necessary spi message(s) * to read data from the register specified in @op. */ static void ks8851_rdreg(struct ks8851_net *ks, unsigned op, u8 *rxb, unsigned rxl) { struct spi_transfer *xfer; struct spi_message *msg; __le16 *txb = (__le16 *)ks->txd; u8 *trx = ks->rxd; int ret; txb[0] = cpu_to_le16(op | KS_SPIOP_RD); if (ks8851_rx_1msg(ks)) { msg = &ks->spi_msg1; xfer = &ks->spi_xfer1; xfer->tx_buf = txb; xfer->rx_buf = trx; xfer->len = rxl + 2; } else { msg = &ks->spi_msg2; xfer = ks->spi_xfer2; xfer->tx_buf = txb; xfer->rx_buf = NULL; xfer->len = 2; xfer++; xfer->tx_buf = NULL; xfer->rx_buf = trx; xfer->len = rxl; } ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "read: spi_sync() failed\n"); else if (ks8851_rx_1msg(ks)) memcpy(rxb, trx + 2, rxl); else memcpy(rxb, trx, rxl); } /** * ks8851_rdreg8 - read 8 bit register from device * @ks: The chip information * @reg: The register address * * Read a 8bit register from the chip, returning the result */ static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg) { u8 rxb[1]; ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1); return rxb[0]; } /** * ks8851_rdreg16 - read 16 bit register from device * @ks: The chip information * @reg: The register address * * Read a 16bit register from the chip, returning the result */ static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg) { __le16 rx = 0; ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2); return le16_to_cpu(rx); } /** * ks8851_rdreg32 - read 32 bit register from device * @ks: The chip information * @reg: The register address * * Read a 32bit register from the chip. * * Note, this read requires the address be aligned to 4 bytes. */ static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg) { __le32 rx = 0; WARN_ON(reg & 3); ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4); return le32_to_cpu(rx); } /** * ks8851_soft_reset - issue one of the soft reset to the device * @ks: The device state. * @op: The bit(s) to set in the GRR * * Issue the relevant soft-reset command to the device's GRR register * specified by @op. * * Note, the delays are in there as a caution to ensure that the reset * has time to take effect and then complete. Since the datasheet does * not currently specify the exact sequence, we have chosen something * that seems to work with our device. */ static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op) { ks8851_wrreg16(ks, KS_GRR, op); mdelay(1); /* wait a short time to effect reset */ ks8851_wrreg16(ks, KS_GRR, 0); mdelay(1); /* wait for condition to clear */ } /** * ks8851_write_mac_addr - write mac address to device registers * @dev: The network device * * Update the KS8851 MAC address registers from the address in @dev. * * This call assumes that the chip is not running, so there is no need to * shutdown the RXQ process whilst setting this. */ static int ks8851_write_mac_addr(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); int i; mutex_lock(&ks->lock); for (i = 0; i < ETH_ALEN; i++) ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]); mutex_unlock(&ks->lock); return 0; } /** * ks8851_init_mac - initialise the mac address * @ks: The device structure * * Get or create the initial mac address for the device and then set that * into the station address register. Currently we assume that the device * does not have a valid mac address in it, and so we use random_ether_addr() * to create a new one. * * In future, the driver should check to see if the device has an EEPROM * attached and whether that has a valid ethernet address in it. */ static void ks8851_init_mac(struct ks8851_net *ks) { struct net_device *dev = ks->netdev; random_ether_addr(dev->dev_addr); ks8851_write_mac_addr(dev); } /** * ks8851_irq - device interrupt handler * @irq: Interrupt number passed from the IRQ hnalder. * @pw: The private word passed to register_irq(), our struct ks8851_net. * * Disable the interrupt from happening again until we've processed the * current status by scheduling ks8851_irq_work(). */ static irqreturn_t ks8851_irq(int irq, void *pw) { struct ks8851_net *ks = pw; disable_irq_nosync(irq); schedule_work(&ks->irq_work); return IRQ_HANDLED; } /** * ks8851_rdfifo - read data from the receive fifo * @ks: The device state. * @buff: The buffer address * @len: The length of the data to read * * Issue an RXQ FIFO read command and read the @len amount of data from * the FIFO into the buffer specified by @buff. */ static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len) { struct spi_transfer *xfer = ks->spi_xfer2; struct spi_message *msg = &ks->spi_msg2; u8 txb[1]; int ret; netif_dbg(ks, rx_status, ks->netdev, "%s: %d@%p\n", __func__, len, buff); /* set the operation we're issuing */ txb[0] = KS_SPIOP_RXFIFO; xfer->tx_buf = txb; xfer->rx_buf = NULL; xfer->len = 1; xfer++; xfer->rx_buf = buff; xfer->tx_buf = NULL; xfer->len = len; ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); } /** * ks8851_dbg_dumpkkt - dump initial packet contents to debug * @ks: The device state * @rxpkt: The data for the received packet * * Dump the initial data from the packet to dev_dbg(). */ static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) { netdev_dbg(ks->netdev, "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7], rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11], rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); } /** * ks8851_rx_pkts - receive packets from the host * @ks: The device information. * * This is called from the IRQ work queue when the system detects that there * are packets in the receive queue. Find out how many packets there are and * read them from the FIFO. */ static void ks8851_rx_pkts(struct ks8851_net *ks) { struct sk_buff *skb; unsigned rxfc; unsigned rxlen; unsigned rxstat; u32 rxh; u8 *rxpkt; rxfc = ks8851_rdreg8(ks, KS_RXFC); netif_dbg(ks, rx_status, ks->netdev, "%s: %d packets\n", __func__, rxfc); /* Currently we're issuing a read per packet, but we could possibly * improve the code by issuing a single read, getting the receive * header, allocating the packet and then reading the packet data * out in one go. * * This form of operation would require us to hold the SPI bus' * chipselect low during the entie transaction to avoid any * reset to the data stream coming from the chip. */ for (; rxfc != 0; rxfc--) { rxh = ks8851_rdreg32(ks, KS_RXFHSR); rxstat = rxh & 0xffff; rxlen = (rxh >> 16) & 0xfff; netif_dbg(ks, rx_status, ks->netdev, "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen); /* the length of the packet includes the 32bit CRC */ /* set dma read address */ ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00); /* start the packet dma process, and set auto-dequeue rx */ ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE); if (rxlen > 4) { unsigned int rxalign; rxlen -= 4; rxalign = ALIGN(rxlen, 4); skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign); if (skb) { /* 4 bytes of status header + 4 bytes of * garbage: we put them before ethernet * header, so that they are copied, * but ignored. */ rxpkt = skb_put(skb, rxlen) - 8; ks8851_rdfifo(ks, rxpkt, rxalign + 8); if (netif_msg_pktdata(ks)) ks8851_dbg_dumpkkt(ks, rxpkt); skb->protocol = eth_type_trans(skb, ks->netdev); netif_rx(skb); ks->netdev->stats.rx_packets++; ks->netdev->stats.rx_bytes += rxlen; } } ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); } } /** * ks8851_irq_work - work queue handler for dealing with interrupt requests * @work: The work structure that was scheduled by schedule_work() * * This is the handler invoked when the ks8851_irq() is called to find out * what happened, as we cannot allow ourselves to sleep whilst waiting for * anything other process has the chip's lock. * * Read the interrupt status, work out what needs to be done and then clear * any of the interrupts that are not needed. */ static void ks8851_irq_work(struct work_struct *work) { struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work); unsigned status; unsigned handled = 0; mutex_lock(&ks->lock); status = ks8851_rdreg16(ks, KS_ISR); netif_dbg(ks, intr, ks->netdev, "%s: status 0x%04x\n", __func__, status); if (status & IRQ_LCI) { /* should do something about checking link status */ handled |= IRQ_LCI; } if (status & IRQ_LDI) { u16 pmecr = ks8851_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_WKEVT_MASK; ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); handled |= IRQ_LDI; } if (status & IRQ_RXPSI) handled |= IRQ_RXPSI; if (status & IRQ_TXI) { handled |= IRQ_TXI; /* no lock here, tx queue should have been stopped */ /* update our idea of how much tx space is available to the * system */ ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR); netif_dbg(ks, intr, ks->netdev, "%s: txspace %d\n", __func__, ks->tx_space); } if (status & IRQ_RXI) handled |= IRQ_RXI; if (status & IRQ_SPIBEI) { dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__); handled |= IRQ_SPIBEI; } ks8851_wrreg16(ks, KS_ISR, handled); if (status & IRQ_RXI) { /* the datasheet says to disable the rx interrupt during * packet read-out, however we're masking the interrupt * from the device so do not bother masking just the RX * from the device. */ ks8851_rx_pkts(ks); } /* if something stopped the rx process, probably due to wanting * to change the rx settings, then do something about restarting * it. */ if (status & IRQ_RXPSI) { struct ks8851_rxctrl *rxc = &ks->rxctrl; /* update the multicast hash table */ ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]); ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]); ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]); ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]); ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2); ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); } mutex_unlock(&ks->lock); if (status & IRQ_LCI) mii_check_link(&ks->mii); if (status & IRQ_TXI) netif_wake_queue(ks->netdev); enable_irq(ks->netdev->irq); } /** * calc_txlen - calculate size of message to send packet * @len: Length of data * * Returns the size of the TXFIFO message needed to send * this packet. */ static inline unsigned calc_txlen(unsigned len) { return ALIGN(len + 4, 4); } /** * ks8851_wrpkt - write packet to TX FIFO * @ks: The device state. * @txp: The sk_buff to transmit. * @irq: IRQ on completion of the packet. * * Send the @txp to the chip. This means creating the relevant packet header * specifying the length of the packet and the other information the chip * needs, such as IRQ on completion. Send the header and the packet data to * the device. */ static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq) { struct spi_transfer *xfer = ks->spi_xfer2; struct spi_message *msg = &ks->spi_msg2; unsigned fid = 0; int ret; netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n", __func__, txp, txp->len, txp->data, irq); fid = ks->fid++; fid &= TXFR_TXFID_MASK; if (irq) fid |= TXFR_TXIC; /* irq on completion */ /* start header at txb[1] to align txw entries */ ks->txh.txb[1] = KS_SPIOP_TXFIFO; ks->txh.txw[1] = cpu_to_le16(fid); ks->txh.txw[2] = cpu_to_le16(txp->len); xfer->tx_buf = &ks->txh.txb[1]; xfer->rx_buf = NULL; xfer->len = 5; xfer++; xfer->tx_buf = txp->data; xfer->rx_buf = NULL; xfer->len = ALIGN(txp->len, 4); ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); } /** * ks8851_done_tx - update and then free skbuff after transmitting * @ks: The device state * @txb: The buffer transmitted */ static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb) { struct net_device *dev = ks->netdev; dev->stats.tx_bytes += txb->len; dev->stats.tx_packets++; dev_kfree_skb(txb); } /** * ks8851_tx_work - process tx packet(s) * @work: The work strucutre what was scheduled. * * This is called when a number of packets have been scheduled for * transmission and need to be sent to the device. */ static void ks8851_tx_work(struct work_struct *work) { struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work); struct sk_buff *txb; bool last = skb_queue_empty(&ks->txq); mutex_lock(&ks->lock); while (!last) { txb = skb_dequeue(&ks->txq); last = skb_queue_empty(&ks->txq); if (txb != NULL) { ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); ks8851_wrpkt(ks, txb, last); ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE); ks8851_done_tx(ks, txb); } } mutex_unlock(&ks->lock); } /** * ks8851_set_powermode - set power mode of the device * @ks: The device state * @pwrmode: The power mode value to write to KS_PMECR. * * Change the power mode of the chip. */ static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) { unsigned pmecr; netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode); pmecr = ks8851_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_PM_MASK; pmecr |= pwrmode; ks8851_wrreg16(ks, KS_PMECR, pmecr); } /** * ks8851_net_open - open network device * @dev: The network device being opened. * * Called when the network device is marked active, such as a user executing * 'ifconfig up' on the device. */ static int ks8851_net_open(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); /* lock the card, even if we may not actually be doing anything * else at the moment */ mutex_lock(&ks->lock); netif_dbg(ks, ifup, ks->netdev, "opening\n"); /* bring chip out of any power saving mode it was in */ ks8851_set_powermode(ks, PMECR_PM_NORMAL); /* issue a soft reset to the RX/TX QMU to put it into a known * state. */ ks8851_soft_reset(ks, GRR_QMU); /* setup transmission parameters */ ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */ TXCR_TXPE | /* pad to min length */ TXCR_TXCRC | /* add CRC */ TXCR_TXFCE)); /* enable flow control */ /* auto-increment tx data, reset tx pointer */ ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); /* setup receiver control */ ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */ RXCR1_RXFCE | /* enable flow control */ RXCR1_RXBE | /* broadcast enable */ RXCR1_RXUE | /* unicast enable */ RXCR1_RXE)); /* enable rx block */ /* transfer entire frames out in one go */ ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME); /* set receive counter timeouts */ ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */ ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */ ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */ ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */ RXQCR_RXDBCTE | /* IRQ on byte count exceeded */ RXQCR_RXDTTE); /* IRQ on time exceeded */ ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); /* clear then enable interrupts */ #define STD_IRQ (IRQ_LCI | /* Link Change */ \ IRQ_TXI | /* TX done */ \ IRQ_RXI | /* RX done */ \ IRQ_SPIBEI | /* SPI bus error */ \ IRQ_TXPSI | /* TX process stop */ \ IRQ_RXPSI) /* RX process stop */ ks->rc_ier = STD_IRQ; ks8851_wrreg16(ks, KS_ISR, STD_IRQ); ks8851_wrreg16(ks, KS_IER, STD_IRQ); netif_start_queue(ks->netdev); netif_dbg(ks, ifup, ks->netdev, "network device up\n"); mutex_unlock(&ks->lock); return 0; } /** * ks8851_net_stop - close network device * @dev: The device being closed. * * Called to close down a network device which has been active. Cancell any * work, shutdown the RX and TX process and then place the chip into a low * power state whilst it is not being used. */ static int ks8851_net_stop(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); netif_info(ks, ifdown, dev, "shutting down\n"); netif_stop_queue(dev); mutex_lock(&ks->lock); /* stop any outstanding work */ flush_work(&ks->irq_work); flush_work(&ks->tx_work); flush_work(&ks->rxctrl_work); /* turn off the IRQs and ack any outstanding */ ks8851_wrreg16(ks, KS_IER, 0x0000); ks8851_wrreg16(ks, KS_ISR, 0xffff); /* shutdown RX process */ ks8851_wrreg16(ks, KS_RXCR1, 0x0000); /* shutdown TX process */ ks8851_wrreg16(ks, KS_TXCR, 0x0000); /* set powermode to soft power down to save power */ ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); /* ensure any queued tx buffers are dumped */ while (!skb_queue_empty(&ks->txq)) { struct sk_buff *txb = skb_dequeue(&ks->txq); netif_dbg(ks, ifdown, ks->netdev, "%s: freeing txb %p\n", __func__, txb); dev_kfree_skb(txb); } mutex_unlock(&ks->lock); return 0; } /** * ks8851_start_xmit - transmit packet * @skb: The buffer to transmit * @dev: The device used to transmit the packet. * * Called by the network layer to transmit the @skb. Queue the packet for * the device and schedule the necessary work to transmit the packet when * it is free. * * We do this to firstly avoid sleeping with the network device locked, * and secondly so we can round up more than one packet to transmit which * means we can try and avoid generating too many transmit done interrupts. */ static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); unsigned needed = calc_txlen(skb->len); netdev_tx_t ret = NETDEV_TX_OK; netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data); spin_lock(&ks->statelock); if (needed > ks->tx_space) { netif_stop_queue(dev); ret = NETDEV_TX_BUSY; } else { ks->tx_space -= needed; skb_queue_tail(&ks->txq, skb); } spin_unlock(&ks->statelock); schedule_work(&ks->tx_work); return ret; } /** * ks8851_rxctrl_work - work handler to change rx mode * @work: The work structure this belongs to. * * Lock the device and issue the necessary changes to the receive mode from * the network device layer. This is done so that we can do this without * having to sleep whilst holding the network device lock. * * Since the recommendation from Micrel is that the RXQ is shutdown whilst the * receive parameters are programmed, we issue a write to disable the RXQ and * then wait for the interrupt handler to be triggered once the RXQ shutdown is * complete. The interrupt handler then writes the new values into the chip. */ static void ks8851_rxctrl_work(struct work_struct *work) { struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); mutex_lock(&ks->lock); /* need to shutdown RXQ before modifying filter parameters */ ks8851_wrreg16(ks, KS_RXCR1, 0x00); mutex_unlock(&ks->lock); } static void ks8851_set_rx_mode(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); struct ks8851_rxctrl rxctrl; memset(&rxctrl, 0, sizeof(rxctrl)); if (dev->flags & IFF_PROMISC) { /* interface to receive everything */ rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF; } else if (dev->flags & IFF_ALLMULTI) { /* accept all multicast packets */ rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE | RXCR1_RXPAFMA | RXCR1_RXMAFMA); } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) { struct netdev_hw_addr *ha; u32 crc; /* accept some multicast */ netdev_for_each_mc_addr(ha, dev) { crc = ether_crc(ETH_ALEN, ha->addr); crc >>= (32 - 6); /* get top six bits */ rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf)); } rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA; } else { /* just accept broadcast / unicast */ rxctrl.rxcr1 = RXCR1_RXPAFMA; } rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */ RXCR1_RXBE | /* broadcast enable */ RXCR1_RXE | /* RX process enable */ RXCR1_RXFCE); /* enable flow control */ rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME; /* schedule work to do the actual set of the data if needed */ spin_lock(&ks->statelock); if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) { memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl)); schedule_work(&ks->rxctrl_work); } spin_unlock(&ks->statelock); } static int ks8851_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sa = addr; if (netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(sa->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); return ks8851_write_mac_addr(dev); } static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct ks8851_net *ks = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); } static const struct net_device_ops ks8851_netdev_ops = { .ndo_open = ks8851_net_open, .ndo_stop = ks8851_net_stop, .ndo_do_ioctl = ks8851_net_ioctl, .ndo_start_xmit = ks8851_start_xmit, .ndo_set_mac_address = ks8851_set_mac_address, .ndo_set_rx_mode = ks8851_set_rx_mode, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, }; /* Companion eeprom access */ enum { /* EEPROM programming states */ EEPROM_CONTROL, EEPROM_ADDRESS, EEPROM_DATA, EEPROM_COMPLETE }; /** * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM * @dev: The network device the PHY is on. * @addr: EEPROM address to read * * eeprom_size: used to define the data coding length. Can be changed * through debug-fs. * * Programs a read on the EEPROM using ks8851 EEPROM SW access feature. * Warning: The READ feature is not supported on ks8851 revision 0. * * Rough programming model: * - on period start: set clock high and read value on bus * - on period / 2: set clock low and program value on bus * - start on period / 2 */ unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr) { struct ks8851_net *ks = netdev_priv(dev); int eepcr; int ctrl = EEPROM_OP_READ; int state = EEPROM_CONTROL; int bit_count = EEPROM_OP_LEN - 1; unsigned int data = 0; int dummy; unsigned int addr_len; addr_len = (ks->eeprom_size == 128) ? 6 : 8; /* start transaction: chip select high, authorize write */ mutex_lock(&ks->lock); eepcr = EEPCR_EESA | EEPCR_EESRWA; ks8851_wrreg16(ks, KS_EEPCR, eepcr); eepcr |= EEPCR_EECS; ks8851_wrreg16(ks, KS_EEPCR, eepcr); mutex_unlock(&ks->lock); while (state != EEPROM_COMPLETE) { /* falling clock period starts... */ /* set EED_IO pin for control and address */ eepcr &= ~EEPCR_EEDO; switch (state) { case EEPROM_CONTROL: eepcr |= ((ctrl >> bit_count) & 1) << 2; if (bit_count-- <= 0) { bit_count = addr_len - 1; state = EEPROM_ADDRESS; } break; case EEPROM_ADDRESS: eepcr |= ((addr >> bit_count) & 1) << 2; bit_count--; break; case EEPROM_DATA: /* Change to receive mode */ eepcr &= ~EEPCR_EESRWA; break; } /* lower clock */ eepcr &= ~EEPCR_EESCK; mutex_lock(&ks->lock); ks8851_wrreg16(ks, KS_EEPCR, eepcr); mutex_unlock(&ks->lock); /* waitread period / 2 */ udelay(EEPROM_SK_PERIOD / 2); /* rising clock period starts... */ /* raise clock */ mutex_lock(&ks->lock); eepcr |= EEPCR_EESCK; ks8851_wrreg16(ks, KS_EEPCR, eepcr); mutex_unlock(&ks->lock); /* Manage read */ switch (state) { case EEPROM_ADDRESS: if (bit_count < 0) { bit_count = EEPROM_DATA_LEN - 1; state = EEPROM_DATA; } break; case EEPROM_DATA: mutex_lock(&ks->lock); dummy = ks8851_rdreg16(ks, KS_EEPCR); mutex_unlock(&ks->lock); data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count; if (bit_count-- <= 0) state = EEPROM_COMPLETE; break; } /* wait period / 2 */ udelay(EEPROM_SK_PERIOD / 2); } /* close transaction */ mutex_lock(&ks->lock); eepcr &= ~EEPCR_EECS; ks8851_wrreg16(ks, KS_EEPCR, eepcr); eepcr = 0; ks8851_wrreg16(ks, KS_EEPCR, eepcr); mutex_unlock(&ks->lock); return data; } /** * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM * @dev: The network device the PHY is on. * @op: operand (can be WRITE, EWEN, EWDS) * @addr: EEPROM address to write * @data: data to write * * eeprom_size: used to define the data coding length. Can be changed * through debug-fs. * * Programs a write on the EEPROM using ks8851 EEPROM SW access feature. * * Note that a write enable is required before writing data. * * Rough programming model: * - on period start: set clock high * - on period / 2: set clock low and program value on bus * - start on period / 2 */ void ks8851_eeprom_write(struct net_device *dev, unsigned int op, unsigned int addr, unsigned int data) { struct ks8851_net *ks = netdev_priv(dev); int eepcr; int state = EEPROM_CONTROL; int bit_count = EEPROM_OP_LEN - 1; unsigned int addr_len; addr_len = (ks->eeprom_size == 128) ? 6 : 8; switch (op) { case EEPROM_OP_EWEN: addr = 0x30; break; case EEPROM_OP_EWDS: addr = 0; break; } /* start transaction: chip select high, authorize write */ mutex_lock(&ks->lock); eepcr = EEPCR_EESA | EEPCR_EESRWA; ks8851_wrreg16(ks, KS_EEPCR, eepcr); eepcr |= EEPCR_EECS; ks8851_wrreg16(ks, KS_EEPCR, eepcr); mutex_unlock(&ks->lock); while (state != EEPROM_COMPLETE) { /* falling clock period starts... */ /* set EED_IO pin for control and address */ eepcr &= ~EEPCR_EEDO; switch (state) { case EEPROM_CONTROL: eepcr |= ((op >> bit_count) & 1) << 2; if (bit_count-- <= 0) { bit_count = addr_len - 1; state = EEPROM_ADDRESS; } break; case EEPROM_ADDRESS: eepcr |= ((addr >> bit_count) & 1) << 2; if (bit_count-- <= 0) { if (op == EEPROM_OP_WRITE) { bit_count = EEPROM_DATA_LEN - 1; state = EEPROM_DATA; } else { state = EEPROM_COMPLETE; } } break; case EEPROM_DATA: eepcr |= ((data >> bit_count) & 1) << 2; if (bit_count-- <= 0) state = EEPROM_COMPLETE; break; } /* lower clock */ eepcr &= ~EEPCR_EESCK; mutex_lock(&ks->lock); ks8851_wrreg16(ks, KS_EEPCR, eepcr); mutex_unlock(&ks->lock); /* wait period / 2 */ udelay(EEPROM_SK_PERIOD / 2); /* rising clock period starts... */ /* raise clock */ eepcr |= EEPCR_EESCK; mutex_lock(&ks->lock); ks8851_wrreg16(ks, KS_EEPCR, eepcr); mutex_unlock(&ks->lock); /* wait period / 2 */ udelay(EEPROM_SK_PERIOD / 2); } /* close transaction */ mutex_lock(&ks->lock); eepcr &= ~EEPCR_EECS; ks8851_wrreg16(ks, KS_EEPCR, eepcr); eepcr = 0; ks8851_wrreg16(ks, KS_EEPCR, eepcr); mutex_unlock(&ks->lock); } /* ethtool support */ static void ks8851_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *di) { strlcpy(di->driver, "KS8851", sizeof(di->driver)); strlcpy(di->version, "1.00", sizeof(di->version)); strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info)); } static u32 ks8851_get_msglevel(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return ks->msg_enable; } static void ks8851_set_msglevel(struct net_device *dev, u32 to) { struct ks8851_net *ks = netdev_priv(dev); ks->msg_enable = to; } static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct ks8851_net *ks = netdev_priv(dev); return mii_ethtool_gset(&ks->mii, cmd); } static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct ks8851_net *ks = netdev_priv(dev); return mii_ethtool_sset(&ks->mii, cmd); } static u32 ks8851_get_link(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return mii_link_ok(&ks->mii); } static int ks8851_nway_reset(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return mii_nway_restart(&ks->mii); } static int ks8851_get_eeprom_len(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return ks->eeprom_size; } static int ks8851_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct ks8851_net *ks = netdev_priv(dev); u16 *eeprom_buff; int first_word; int last_word; int ret_val = 0; u16 i; if (eeprom->len == 0) return -EINVAL; if (eeprom->len > ks->eeprom_size) return -EINVAL; eeprom->magic = ks8851_rdreg16(ks, KS_CIDER); first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; for (i = 0; i < last_word - first_word + 1; i++) eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1); /* Device's eeprom is little-endian, word addressable */ for (i = 0; i < last_word - first_word + 1; i++) le16_to_cpus(&eeprom_buff[i]); memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); kfree(eeprom_buff); return ret_val; } static int ks8851_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct ks8851_net *ks = netdev_priv(dev); u16 *eeprom_buff; void *ptr; int max_len; int first_word; int last_word; int ret_val = 0; u16 i; if (eeprom->len == 0) return -EOPNOTSUPP; if (eeprom->len > ks->eeprom_size) return -EINVAL; if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER)) return -EFAULT; first_word = eeprom->offset >> 1; last_word = (eeprom->offset + eeprom->len - 1) >> 1; max_len = (last_word - first_word + 1) * 2; eeprom_buff = kmalloc(max_len, GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; ptr = (void *)eeprom_buff; if (eeprom->offset & 1) { /* need read/modify/write of first changed EEPROM word */ /* only the second byte of the word is being modified */ eeprom_buff[0] = ks8851_eeprom_read(dev, first_word); ptr++; } if ((eeprom->offset + eeprom->len) & 1) /* need read/modify/write of last changed EEPROM word */ /* only the first byte of the word is being modified */ eeprom_buff[last_word - first_word] = ks8851_eeprom_read(dev, last_word); /* Device's eeprom is little-endian, word addressable */ le16_to_cpus(&eeprom_buff[0]); le16_to_cpus(&eeprom_buff[last_word - first_word]); memcpy(ptr, bytes, eeprom->len); for (i = 0; i < last_word - first_word + 1; i++) eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0); for (i = 0; i < last_word - first_word + 1; i++) { ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i, eeprom_buff[i]); mdelay(EEPROM_WRITE_TIME); } ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0); kfree(eeprom_buff); return ret_val; } static const struct ethtool_ops ks8851_ethtool_ops = { .get_drvinfo = ks8851_get_drvinfo, .get_msglevel = ks8851_get_msglevel, .set_msglevel = ks8851_set_msglevel, .get_settings = ks8851_get_settings, .set_settings = ks8851_set_settings, .get_link = ks8851_get_link, .nway_reset = ks8851_nway_reset, .get_eeprom_len = ks8851_get_eeprom_len, .get_eeprom = ks8851_get_eeprom, .set_eeprom = ks8851_set_eeprom, }; /* MII interface controls */ /** * ks8851_phy_reg - convert MII register into a KS8851 register * @reg: MII register number. * * Return the KS8851 register number for the corresponding MII PHY register * if possible. Return zero if the MII register has no direct mapping to the * KS8851 register set. */ static int ks8851_phy_reg(int reg) { switch (reg) { case MII_BMCR: return KS_P1MBCR; case MII_BMSR: return KS_P1MBSR; case MII_PHYSID1: return KS_PHY1ILR; case MII_PHYSID2: return KS_PHY1IHR; case MII_ADVERTISE: return KS_P1ANAR; case MII_LPA: return KS_P1ANLPR; } return 0x0; } /** * ks8851_phy_read - MII interface PHY register read. * @dev: The network device the PHY is on. * @phy_addr: Address of PHY (ignored as we only have one) * @reg: The register to read. * * This call reads data from the PHY register specified in @reg. Since the * device does not support all the MII registers, the non-existent values * are always returned as zero. * * We return zero for unsupported registers as the MII code does not check * the value returned for any error status, and simply returns it to the * caller. The mii-tool that the driver was tested with takes any -ve error * as real PHY capabilities, thus displaying incorrect data to the user. */ static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) { struct ks8851_net *ks = netdev_priv(dev); int ksreg; int result; ksreg = ks8851_phy_reg(reg); if (!ksreg) return 0x0; /* no error return allowed, so use zero */ mutex_lock(&ks->lock); result = ks8851_rdreg16(ks, ksreg); mutex_unlock(&ks->lock); return result; } static void ks8851_phy_write(struct net_device *dev, int phy, int reg, int value) { struct ks8851_net *ks = netdev_priv(dev); int ksreg; ksreg = ks8851_phy_reg(reg); if (ksreg) { mutex_lock(&ks->lock); ks8851_wrreg16(ks, ksreg, value); mutex_unlock(&ks->lock); } } /** * ks8851_read_selftest - read the selftest memory info. * @ks: The device state * * Read and check the TX/RX memory selftest information. */ static int ks8851_read_selftest(struct ks8851_net *ks) { unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; int ret = 0; unsigned rd; rd = ks8851_rdreg16(ks, KS_MBIR); if ((rd & both_done) != both_done) { netdev_warn(ks->netdev, "Memory selftest not finished\n"); return 0; } if (rd & MBIR_TXMBFA) { netdev_err(ks->netdev, "TX memory selftest fail\n"); ret |= 1; } if (rd & MBIR_RXMBFA) { netdev_err(ks->netdev, "RX memory selftest fail\n"); ret |= 2; } return 0; } /* driver bus management functions */ #ifdef CONFIG_PM static int ks8851_suspend(struct spi_device *spi, pm_message_t state) { struct ks8851_net *ks = dev_get_drvdata(&spi->dev); struct net_device *dev = ks->netdev; if (netif_running(dev)) { netif_device_detach(dev); ks8851_net_stop(dev); } return 0; } static int ks8851_resume(struct spi_device *spi) { struct ks8851_net *ks = dev_get_drvdata(&spi->dev); struct net_device *dev = ks->netdev; if (netif_running(dev)) { ks8851_net_open(dev); netif_device_attach(dev); } return 0; } #else #define ks8851_suspend NULL #define ks8851_resume NULL #endif static int __devinit ks8851_probe(struct spi_device *spi) { struct net_device *ndev; struct ks8851_net *ks; int ret; ndev = alloc_etherdev(sizeof(struct ks8851_net)); if (!ndev) { dev_err(&spi->dev, "failed to alloc ethernet device\n"); return -ENOMEM; } spi->bits_per_word = 8; ks = netdev_priv(ndev); ks->netdev = ndev; ks->spidev = spi; ks->tx_space = 6144; mutex_init(&ks->lock); spin_lock_init(&ks->statelock); INIT_WORK(&ks->tx_work, ks8851_tx_work); INIT_WORK(&ks->irq_work, ks8851_irq_work); INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); /* initialise pre-made spi transfer messages */ spi_message_init(&ks->spi_msg1); spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1); spi_message_init(&ks->spi_msg2); spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2); spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2); /* setup mii state */ ks->mii.dev = ndev; ks->mii.phy_id = 1, ks->mii.phy_id_mask = 1; ks->mii.reg_num_mask = 0xf; ks->mii.mdio_read = ks8851_phy_read; ks->mii.mdio_write = ks8851_phy_write; dev_info(&spi->dev, "message enable is %d\n", msg_enable); /* set the default message enable */ ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); skb_queue_head_init(&ks->txq); SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops); SET_NETDEV_DEV(ndev, &spi->dev); dev_set_drvdata(&spi->dev, ks); ndev->if_port = IF_PORT_100BASET; ndev->netdev_ops = &ks8851_netdev_ops; ndev->irq = spi->irq; /* issue a global soft reset to reset the device. */ ks8851_soft_reset(ks, GRR_GSR); /* simple check for a valid chip being connected to the bus */ if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) { dev_err(&spi->dev, "failed to read device ID\n"); ret = -ENODEV; goto err_id; } /* cache the contents of the CCR register for EEPROM, etc. */ ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR); if (ks->rc_ccr & CCR_EEPROM) ks->eeprom_size = 128; else ks->eeprom_size = 0; ks8851_read_selftest(ks); ks8851_init_mac(ks); ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW, ndev->name, ks); if (ret < 0) { dev_err(&spi->dev, "failed to get irq\n"); goto err_irq; } ret = register_netdev(ndev); if (ret) { dev_err(&spi->dev, "failed to register network device\n"); goto err_netdev; } netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n", CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)), ndev->dev_addr, ndev->irq); return 0; err_netdev: free_irq(ndev->irq, ndev); err_id: err_irq: free_netdev(ndev); return ret; } static int __devexit ks8851_remove(struct spi_device *spi) { struct ks8851_net *priv = dev_get_drvdata(&spi->dev); if (netif_msg_drv(priv)) dev_info(&spi->dev, "remove\n"); unregister_netdev(priv->netdev); free_irq(spi->irq, priv); free_netdev(priv->netdev); return 0; } static struct spi_driver ks8851_driver = { .driver = { .name = "ks8851", .owner = THIS_MODULE, }, .probe = ks8851_probe, .remove = __devexit_p(ks8851_remove), .suspend = ks8851_suspend, .resume = ks8851_resume, }; static int __init ks8851_init(void) { return spi_register_driver(&ks8851_driver); } static void __exit ks8851_exit(void) { spi_unregister_driver(&ks8851_driver); } module_init(ks8851_init); module_exit(ks8851_exit); MODULE_DESCRIPTION("KS8851 Network driver"); MODULE_AUTHOR("Ben Dooks "); MODULE_LICENSE("GPL"); module_param_named(message, msg_enable, int, 0); MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); MODULE_ALIAS("spi:ks8851");