/* * Sonics Silicon Backplane PCI-Hostbus related functions. * * Copyright (C) 2005-2006 Michael Buesch <mb@bu3sch.de> * Copyright (C) 2005 Martin Langer <martin-langer@gmx.de> * Copyright (C) 2005 Stefano Brivio <st3@riseup.net> * Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org> * Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch> * * Derived from the Broadcom 4400 device driver. * Copyright (C) 2002 David S. Miller (davem@redhat.com) * Fixed by Pekka Pietikainen (pp@ee.oulu.fi) * Copyright (C) 2006 Broadcom Corporation. * * Licensed under the GNU/GPL. See COPYING for details. */ #include <linux/ssb/ssb.h> #include <linux/ssb/ssb_regs.h> #include <linux/pci.h> #include <linux/delay.h> #include "ssb_private.h" /* Define the following to 1 to enable a printk on each coreswitch. */ #define SSB_VERBOSE_PCICORESWITCH_DEBUG 0 /* Lowlevel coreswitching */ int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx) { int err; int attempts = 0; u32 cur_core; while (1) { err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN, (coreidx * SSB_CORE_SIZE) + SSB_ENUM_BASE); if (err) goto error; err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN, &cur_core); if (err) goto error; cur_core = (cur_core - SSB_ENUM_BASE) / SSB_CORE_SIZE; if (cur_core == coreidx) break; if (attempts++ > SSB_BAR0_MAX_RETRIES) goto error; udelay(10); } return 0; error: ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx); return -ENODEV; } int ssb_pci_switch_core(struct ssb_bus *bus, struct ssb_device *dev) { int err; unsigned long flags; #if SSB_VERBOSE_PCICORESWITCH_DEBUG ssb_printk(KERN_INFO PFX "Switching to %s core, index %d\n", ssb_core_name(dev->id.coreid), dev->core_index); #endif spin_lock_irqsave(&bus->bar_lock, flags); err = ssb_pci_switch_coreidx(bus, dev->core_index); if (!err) bus->mapped_device = dev; spin_unlock_irqrestore(&bus->bar_lock, flags); return err; } /* Enable/disable the on board crystal oscillator and/or PLL. */ int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on) { int err; u32 in, out, outenable; u16 pci_status; if (bus->bustype != SSB_BUSTYPE_PCI) return 0; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in); if (err) goto err_pci; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out); if (err) goto err_pci; err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable); if (err) goto err_pci; outenable |= what; if (turn_on) { /* Avoid glitching the clock if GPRS is already using it. * We can't actually read the state of the PLLPD so we infer it * by the value of XTAL_PU which *is* readable via gpioin. */ if (!(in & SSB_GPIO_XTAL)) { if (what & SSB_GPIO_XTAL) { /* Turn the crystal on */ out |= SSB_GPIO_XTAL; if (what & SSB_GPIO_PLL) out |= SSB_GPIO_PLL; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable); if (err) goto err_pci; msleep(1); } if (what & SSB_GPIO_PLL) { /* Turn the PLL on */ out &= ~SSB_GPIO_PLL; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; msleep(5); } } err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status); if (err) goto err_pci; pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT; err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status); if (err) goto err_pci; } else { if (what & SSB_GPIO_XTAL) { /* Turn the crystal off */ out &= ~SSB_GPIO_XTAL; } if (what & SSB_GPIO_PLL) { /* Turn the PLL off */ out |= SSB_GPIO_PLL; } err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out); if (err) goto err_pci; err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable); if (err) goto err_pci; } out: return err; err_pci: printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n"); err = -EBUSY; goto out; } /* Get the word-offset for a SSB_SPROM_XXX define. */ #define SPOFF(offset) (((offset) - SSB_SPROM_BASE) / sizeof(u16)) /* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */ #define SPEX16(_outvar, _offset, _mask, _shift) \ out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift)) #define SPEX32(_outvar, _offset, _mask, _shift) \ out->_outvar = ((((u32)in[SPOFF((_offset)+2)] << 16 | \ in[SPOFF(_offset)]) & (_mask)) >> (_shift)) #define SPEX(_outvar, _offset, _mask, _shift) \ SPEX16(_outvar, _offset, _mask, _shift) static inline u8 ssb_crc8(u8 crc, u8 data) { /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */ static const u8 t[] = { 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B, 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21, 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF, 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5, 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14, 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E, 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80, 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA, 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95, 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF, 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01, 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B, 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA, 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0, 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E, 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34, 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0, 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A, 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54, 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E, 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF, 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5, 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B, 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61, 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E, 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74, 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA, 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0, 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41, 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B, 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5, 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F, }; return t[crc ^ data]; } static u8 ssb_sprom_crc(const u16 *sprom, u16 size) { int word; u8 crc = 0xFF; for (word = 0; word < size - 1; word++) { crc = ssb_crc8(crc, sprom[word] & 0x00FF); crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8); } crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF); crc ^= 0xFF; return crc; } static int sprom_check_crc(const u16 *sprom, size_t size) { u8 crc; u8 expected_crc; u16 tmp; crc = ssb_sprom_crc(sprom, size); tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC; expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT; if (crc != expected_crc) return -EPROTO; return 0; } static int sprom_do_read(struct ssb_bus *bus, u16 *sprom) { int i; for (i = 0; i < bus->sprom_size; i++) sprom[i] = ioread16(bus->mmio + SSB_SPROM_BASE + (i * 2)); return 0; } static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom) { struct pci_dev *pdev = bus->host_pci; int i, err; u32 spromctl; u16 size = bus->sprom_size; ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n"); err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl); if (err) goto err_ctlreg; spromctl |= SSB_SPROMCTL_WE; err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl); if (err) goto err_ctlreg; ssb_printk(KERN_NOTICE PFX "[ 0%%"); msleep(500); for (i = 0; i < size; i++) { if (i == size / 4) ssb_printk("25%%"); else if (i == size / 2) ssb_printk("50%%"); else if (i == (size * 3) / 4) ssb_printk("75%%"); else if (i % 2) ssb_printk("."); writew(sprom[i], bus->mmio + SSB_SPROM_BASE + (i * 2)); mmiowb(); msleep(20); } err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl); if (err) goto err_ctlreg; spromctl &= ~SSB_SPROMCTL_WE; err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl); if (err) goto err_ctlreg; msleep(500); ssb_printk("100%% ]\n"); ssb_printk(KERN_NOTICE PFX "SPROM written.\n"); return 0; err_ctlreg: ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n"); return err; } static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in, u16 mask, u16 shift) { u16 v; u8 gain; v = in[SPOFF(SSB_SPROM1_AGAIN)]; gain = (v & mask) >> shift; if (gain == 0xFF) gain = 2; /* If unset use 2dBm */ if (sprom_revision == 1) { /* Convert to Q5.2 */ gain <<= 2; } else { /* Q5.2 Fractional part is stored in 0xC0 */ gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2); } return (s8)gain; } static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in) { int i; u16 v; s8 gain; u16 loc[3]; if (out->revision == 3) /* rev 3 moved MAC */ loc[0] = SSB_SPROM3_IL0MAC; else { loc[0] = SSB_SPROM1_IL0MAC; loc[1] = SSB_SPROM1_ET0MAC; loc[2] = SSB_SPROM1_ET1MAC; } for (i = 0; i < 3; i++) { v = in[SPOFF(loc[0]) + i]; *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v); } if (out->revision < 3) { /* only rev 1-2 have et0, et1 */ for (i = 0; i < 3; i++) { v = in[SPOFF(loc[1]) + i]; *(((__be16 *)out->et0mac) + i) = cpu_to_be16(v); } for (i = 0; i < 3; i++) { v = in[SPOFF(loc[2]) + i]; *(((__be16 *)out->et1mac) + i) = cpu_to_be16(v); } } SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0); SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A, SSB_SPROM1_ETHPHY_ET1A_SHIFT); SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14); SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15); SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0); SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE, SSB_SPROM1_BINF_CCODE_SHIFT); SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA, SSB_SPROM1_BINF_ANTA_SHIFT); SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG, SSB_SPROM1_BINF_ANTBG_SHIFT); SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0); SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0); SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0); SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0); SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0); SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0); SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1, SSB_SPROM1_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3, SSB_SPROM1_GPIOB_P3_SHIFT); SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A, SSB_SPROM1_MAXPWR_A_SHIFT); SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0); SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A, SSB_SPROM1_ITSSI_A_SHIFT); SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0); SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0); if (out->revision >= 2) SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0); /* Extract the antenna gain values. */ gain = r123_extract_antgain(out->revision, in, SSB_SPROM1_AGAIN_BG, SSB_SPROM1_AGAIN_BG_SHIFT); out->antenna_gain.ghz24.a0 = gain; out->antenna_gain.ghz24.a1 = gain; out->antenna_gain.ghz24.a2 = gain; out->antenna_gain.ghz24.a3 = gain; gain = r123_extract_antgain(out->revision, in, SSB_SPROM1_AGAIN_A, SSB_SPROM1_AGAIN_A_SHIFT); out->antenna_gain.ghz5.a0 = gain; out->antenna_gain.ghz5.a1 = gain; out->antenna_gain.ghz5.a2 = gain; out->antenna_gain.ghz5.a3 = gain; } static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in) { int i; u16 v; u16 il0mac_offset; if (out->revision == 4) il0mac_offset = SSB_SPROM4_IL0MAC; else il0mac_offset = SSB_SPROM5_IL0MAC; /* extract the MAC address */ for (i = 0; i < 3; i++) { v = in[SPOFF(il0mac_offset) + i]; *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v); } SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0); SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A, SSB_SPROM4_ETHPHY_ET1A_SHIFT); if (out->revision == 4) { SPEX(country_code, SSB_SPROM4_CCODE, 0xFFFF, 0); SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0); SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0); } else { SPEX(country_code, SSB_SPROM5_CCODE, 0xFFFF, 0); SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0); SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0); } SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A, SSB_SPROM4_ANTAVAIL_A_SHIFT); SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG, SSB_SPROM4_ANTAVAIL_BG_SHIFT); SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0); SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG, SSB_SPROM4_ITSSI_BG_SHIFT); SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0); SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A, SSB_SPROM4_ITSSI_A_SHIFT); if (out->revision == 4) { SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1, SSB_SPROM4_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3, SSB_SPROM4_GPIOB_P3_SHIFT); } else { SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1, SSB_SPROM5_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3, SSB_SPROM5_GPIOB_P3_SHIFT); } /* Extract the antenna gain values. */ SPEX(antenna_gain.ghz24.a0, SSB_SPROM4_AGAIN01, SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT); SPEX(antenna_gain.ghz24.a1, SSB_SPROM4_AGAIN01, SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT); SPEX(antenna_gain.ghz24.a2, SSB_SPROM4_AGAIN23, SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT); SPEX(antenna_gain.ghz24.a3, SSB_SPROM4_AGAIN23, SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT); memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24, sizeof(out->antenna_gain.ghz5)); /* TODO - get remaining rev 4 stuff needed */ } static void sprom_extract_r8(struct ssb_sprom *out, const u16 *in) { int i; u16 v; /* extract the MAC address */ for (i = 0; i < 3; i++) { v = in[SPOFF(SSB_SPROM8_IL0MAC) + i]; *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v); } SPEX(country_code, SSB_SPROM8_CCODE, 0xFFFF, 0); SPEX(boardflags_lo, SSB_SPROM8_BFLLO, 0xFFFF, 0); SPEX(boardflags_hi, SSB_SPROM8_BFLHI, 0xFFFF, 0); SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, 0xFFFF, 0); SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, 0xFFFF, 0); SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A, SSB_SPROM8_ANTAVAIL_A_SHIFT); SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG, SSB_SPROM8_ANTAVAIL_BG_SHIFT); SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0); SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG, SSB_SPROM8_ITSSI_BG_SHIFT); SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0); SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A, SSB_SPROM8_ITSSI_A_SHIFT); SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0); SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK, SSB_SPROM8_MAXP_AL_SHIFT); SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0); SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1, SSB_SPROM8_GPIOA_P1_SHIFT); SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0); SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3, SSB_SPROM8_GPIOB_P3_SHIFT); SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0); SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G, SSB_SPROM8_TRI5G_SHIFT); SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0); SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH, SSB_SPROM8_TRI5GH_SHIFT); SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G, 0); SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G, SSB_SPROM8_RXPO5G_SHIFT); SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0); SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G, SSB_SPROM8_RSSISMC2G_SHIFT); SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G, SSB_SPROM8_RSSISAV2G_SHIFT); SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G, SSB_SPROM8_BXA2G_SHIFT); SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0); SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G, SSB_SPROM8_RSSISMC5G_SHIFT); SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G, SSB_SPROM8_RSSISAV5G_SHIFT); SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G, SSB_SPROM8_BXA5G_SHIFT); SPEX(pa0b0, SSB_SPROM8_PA0B0, 0xFFFF, 0); SPEX(pa0b1, SSB_SPROM8_PA0B1, 0xFFFF, 0); SPEX(pa0b2, SSB_SPROM8_PA0B2, 0xFFFF, 0); SPEX(pa1b0, SSB_SPROM8_PA1B0, 0xFFFF, 0); SPEX(pa1b1, SSB_SPROM8_PA1B1, 0xFFFF, 0); SPEX(pa1b2, SSB_SPROM8_PA1B2, 0xFFFF, 0); SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, 0xFFFF, 0); SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, 0xFFFF, 0); SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, 0xFFFF, 0); SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, 0xFFFF, 0); SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, 0xFFFF, 0); SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, 0xFFFF, 0); SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, 0xFFFF, 0); SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, 0xFFFFFFFF, 0); SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, 0xFFFFFFFF, 0); SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, 0xFFFFFFFF, 0); SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, 0xFFFFFFFF, 0); /* Extract the antenna gain values. */ SPEX(antenna_gain.ghz24.a0, SSB_SPROM8_AGAIN01, SSB_SPROM8_AGAIN0, SSB_SPROM8_AGAIN0_SHIFT); SPEX(antenna_gain.ghz24.a1, SSB_SPROM8_AGAIN01, SSB_SPROM8_AGAIN1, SSB_SPROM8_AGAIN1_SHIFT); SPEX(antenna_gain.ghz24.a2, SSB_SPROM8_AGAIN23, SSB_SPROM8_AGAIN2, SSB_SPROM8_AGAIN2_SHIFT); SPEX(antenna_gain.ghz24.a3, SSB_SPROM8_AGAIN23, SSB_SPROM8_AGAIN3, SSB_SPROM8_AGAIN3_SHIFT); memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24, sizeof(out->antenna_gain.ghz5)); /* TODO - get remaining rev 8 stuff needed */ } static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out, const u16 *in, u16 size) { memset(out, 0, sizeof(*out)); out->revision = in[size - 1] & 0x00FF; ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision); memset(out->et0mac, 0xFF, 6); /* preset et0 and et1 mac */ memset(out->et1mac, 0xFF, 6); if ((bus->chip_id & 0xFF00) == 0x4400) { /* Workaround: The BCM44XX chip has a stupid revision * number stored in the SPROM. * Always extract r1. */ out->revision = 1; sprom_extract_r123(out, in); } else if (bus->chip_id == 0x4321) { /* the BCM4328 has a chipid == 0x4321 and a rev 4 SPROM */ out->revision = 4; sprom_extract_r45(out, in); } else { switch (out->revision) { case 1: case 2: case 3: sprom_extract_r123(out, in); break; case 4: case 5: sprom_extract_r45(out, in); break; case 8: sprom_extract_r8(out, in); break; default: ssb_printk(KERN_WARNING PFX "Unsupported SPROM" " revision %d detected. Will extract" " v1\n", out->revision); out->revision = 1; sprom_extract_r123(out, in); } } if (out->boardflags_lo == 0xFFFF) out->boardflags_lo = 0; /* per specs */ if (out->boardflags_hi == 0xFFFF) out->boardflags_hi = 0; /* per specs */ return 0; } static int ssb_pci_sprom_get(struct ssb_bus *bus, struct ssb_sprom *sprom) { const struct ssb_sprom *fallback; int err = -ENOMEM; u16 *buf; buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL); if (!buf) goto out; bus->sprom_size = SSB_SPROMSIZE_WORDS_R123; sprom_do_read(bus, buf); err = sprom_check_crc(buf, bus->sprom_size); if (err) { /* try for a 440 byte SPROM - revision 4 and higher */ kfree(buf); buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16), GFP_KERNEL); if (!buf) goto out; bus->sprom_size = SSB_SPROMSIZE_WORDS_R4; sprom_do_read(bus, buf); err = sprom_check_crc(buf, bus->sprom_size); if (err) { /* All CRC attempts failed. * Maybe there is no SPROM on the device? * If we have a fallback, use that. */ fallback = ssb_get_fallback_sprom(); if (fallback) { memcpy(sprom, fallback, sizeof(*sprom)); err = 0; goto out_free; } ssb_printk(KERN_WARNING PFX "WARNING: Invalid" " SPROM CRC (corrupt SPROM)\n"); } } err = sprom_extract(bus, sprom, buf, bus->sprom_size); out_free: kfree(buf); out: return err; } static void ssb_pci_get_boardinfo(struct ssb_bus *bus, struct ssb_boardinfo *bi) { pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID, &bi->vendor); pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID, &bi->type); pci_read_config_word(bus->host_pci, PCI_REVISION_ID, &bi->rev); } int ssb_pci_get_invariants(struct ssb_bus *bus, struct ssb_init_invariants *iv) { int err; err = ssb_pci_sprom_get(bus, &iv->sprom); if (err) goto out; ssb_pci_get_boardinfo(bus, &iv->boardinfo); out: return err; } #ifdef CONFIG_SSB_DEBUG static int ssb_pci_assert_buspower(struct ssb_bus *bus) { if (likely(bus->powered_up)) return 0; printk(KERN_ERR PFX "FATAL ERROR: Bus powered down " "while accessing PCI MMIO space\n"); if (bus->power_warn_count <= 10) { bus->power_warn_count++; dump_stack(); } return -ENODEV; } #else /* DEBUG */ static inline int ssb_pci_assert_buspower(struct ssb_bus *bus) { return 0; } #endif /* DEBUG */ static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return 0xFF; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return 0xFF; } return ioread8(bus->mmio + offset); } static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return 0xFFFF; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return 0xFFFF; } return ioread16(bus->mmio + offset); } static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return 0xFFFFFFFF; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return 0xFFFFFFFF; } return ioread32(bus->mmio + offset); } #ifdef CONFIG_SSB_BLOCKIO static void ssb_pci_block_read(struct ssb_device *dev, void *buffer, size_t count, u16 offset, u8 reg_width) { struct ssb_bus *bus = dev->bus; void __iomem *addr = bus->mmio + offset; if (unlikely(ssb_pci_assert_buspower(bus))) goto error; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) goto error; } switch (reg_width) { case sizeof(u8): ioread8_rep(addr, buffer, count); break; case sizeof(u16): SSB_WARN_ON(count & 1); ioread16_rep(addr, buffer, count >> 1); break; case sizeof(u32): SSB_WARN_ON(count & 3); ioread32_rep(addr, buffer, count >> 2); break; default: SSB_WARN_ON(1); } return; error: memset(buffer, 0xFF, count); } #endif /* CONFIG_SSB_BLOCKIO */ static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } iowrite8(value, bus->mmio + offset); } static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } iowrite16(value, bus->mmio + offset); } static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value) { struct ssb_bus *bus = dev->bus; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } iowrite32(value, bus->mmio + offset); } #ifdef CONFIG_SSB_BLOCKIO static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer, size_t count, u16 offset, u8 reg_width) { struct ssb_bus *bus = dev->bus; void __iomem *addr = bus->mmio + offset; if (unlikely(ssb_pci_assert_buspower(bus))) return; if (unlikely(bus->mapped_device != dev)) { if (unlikely(ssb_pci_switch_core(bus, dev))) return; } switch (reg_width) { case sizeof(u8): iowrite8_rep(addr, buffer, count); break; case sizeof(u16): SSB_WARN_ON(count & 1); iowrite16_rep(addr, buffer, count >> 1); break; case sizeof(u32): SSB_WARN_ON(count & 3); iowrite32_rep(addr, buffer, count >> 2); break; default: SSB_WARN_ON(1); } } #endif /* CONFIG_SSB_BLOCKIO */ /* Not "static", as it's used in main.c */ const struct ssb_bus_ops ssb_pci_ops = { .read8 = ssb_pci_read8, .read16 = ssb_pci_read16, .read32 = ssb_pci_read32, .write8 = ssb_pci_write8, .write16 = ssb_pci_write16, .write32 = ssb_pci_write32, #ifdef CONFIG_SSB_BLOCKIO .block_read = ssb_pci_block_read, .block_write = ssb_pci_block_write, #endif }; static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev); struct ssb_bus *bus; bus = ssb_pci_dev_to_bus(pdev); if (!bus) return -ENODEV; return ssb_attr_sprom_show(bus, buf, sprom_do_read); } static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev, struct device_attribute *attr, const char *buf, size_t count) { struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev); struct ssb_bus *bus; bus = ssb_pci_dev_to_bus(pdev); if (!bus) return -ENODEV; return ssb_attr_sprom_store(bus, buf, count, sprom_check_crc, sprom_do_write); } static DEVICE_ATTR(ssb_sprom, 0600, ssb_pci_attr_sprom_show, ssb_pci_attr_sprom_store); void ssb_pci_exit(struct ssb_bus *bus) { struct pci_dev *pdev; if (bus->bustype != SSB_BUSTYPE_PCI) return; pdev = bus->host_pci; device_remove_file(&pdev->dev, &dev_attr_ssb_sprom); } int ssb_pci_init(struct ssb_bus *bus) { struct pci_dev *pdev; int err; if (bus->bustype != SSB_BUSTYPE_PCI) return 0; pdev = bus->host_pci; mutex_init(&bus->sprom_mutex); err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom); if (err) goto out; out: return err; }