/* * linux/drivers/video/sa1100fb.c * * Copyright (C) 1999 Eric A. Thomas * Based on acornfb.c Copyright (C) Russell King. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. * * StrongARM 1100 LCD Controller Frame Buffer Driver * * Please direct your questions and comments on this driver to the following * email address: * * linux-arm-kernel@lists.arm.linux.org.uk * * Clean patches should be sent to the ARM Linux Patch System. Please see the * following web page for more information: * * http://www.arm.linux.org.uk/developer/patches/info.shtml * * Thank you. * * Known problems: * - With the Neponset plugged into an Assabet, LCD powerdown * doesn't work (LCD stays powered up). Therefore we shouldn't * blank the screen. * - We don't limit the CPU clock rate nor the mode selection * according to the available SDRAM bandwidth. * * Other notes: * - Linear grayscale palettes and the kernel. * Such code does not belong in the kernel. The kernel frame buffer * drivers do not expect a linear colourmap, but a colourmap based on * the VT100 standard mapping. * * If your _userspace_ requires a linear colourmap, then the setup of * such a colourmap belongs _in userspace_, not in the kernel. Code * to set the colourmap correctly from user space has been sent to * David Neuer. It's around 8 lines of C code, plus another 4 to * detect if we are using grayscale. * * - The following must never be specified in a panel definition: * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL * * - The following should be specified: * either LCCR0_Color or LCCR0_Mono * either LCCR0_Sngl or LCCR0_Dual * either LCCR0_Act or LCCR0_Pas * either LCCR3_OutEnH or LCCD3_OutEnL * either LCCR3_PixRsEdg or LCCR3_PixFlEdg * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff * * Code Status: * 1999/04/01: * - Driver appears to be working for Brutus 320x200x8bpp mode. Other * resolutions are working, but only the 8bpp mode is supported. * Changes need to be made to the palette encode and decode routines * to support 4 and 16 bpp modes. * Driver is not designed to be a module. The FrameBuffer is statically * allocated since dynamic allocation of a 300k buffer cannot be * guaranteed. * * 1999/06/17: * - FrameBuffer memory is now allocated at run-time when the * driver is initialized. * * 2000/04/10: Nicolas Pitre <nico@cam.org> * - Big cleanup for dynamic selection of machine type at run time. * * 2000/07/19: Jamey Hicks <jamey@crl.dec.com> * - Support for Bitsy aka Compaq iPAQ H3600 added. * * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com> * Jeff Sutherland <jsutherland@accelent.com> * - Resolved an issue caused by a change made to the Assabet's PLD * earlier this year which broke the framebuffer driver for newer * Phase 4 Assabets. Some other parameters were changed to optimize * for the Sharp display. * * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp> * - XP860 support added * * 2000/08/19: Mark Huang <mhuang@livetoy.com> * - Allows standard options to be passed on the kernel command line * for most common passive displays. * * 2000/08/29: * - s/save_flags_cli/local_irq_save/ * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller * * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> * - Updated LART stuff. Fixed some minor bugs. * * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw> * - Pangolin support added * * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de> * - Huw Webpanel support added * * 2000/11/23: Eric Peng <ericpeng@coventive.com> * - Freebird add * * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> * Cliff Brake <cbrake@accelent.com> * - Added PM callback * * 2001/05/26: <rmk@arm.linux.org.uk> * - Fix 16bpp so that (a) we use the right colours rather than some * totally random colour depending on what was in page 0, and (b) * we don't de-reference a NULL pointer. * - remove duplicated implementation of consistent_alloc() * - convert dma address types to dma_addr_t * - remove unused 'montype' stuff * - remove redundant zero inits of init_var after the initial * memzero. * - remove allow_modeset (acornfb idea does not belong here) * * 2001/05/28: <rmk@arm.linux.org.uk> * - massive cleanup - move machine dependent data into structures * - I've left various #warnings in - if you see one, and know * the hardware concerned, please get in contact with me. * * 2001/05/31: <rmk@arm.linux.org.uk> * - Fix LCCR1 HSW value, fix all machine type specifications to * keep values in line. (Please check your machine type specs) * * 2001/06/10: <rmk@arm.linux.org.uk> * - Fiddle with the LCD controller from task context only; mainly * so that we can run with interrupts on, and sleep. * - Convert #warnings into #errors. No pain, no gain. ;) * * 2001/06/14: <rmk@arm.linux.org.uk> * - Make the palette BPS value for 12bpp come out correctly. * - Take notice of "greyscale" on any colour depth. * - Make truecolor visuals use the RGB channel encoding information. * * 2001/07/02: <rmk@arm.linux.org.uk> * - Fix colourmap problems. * * 2001/07/13: <abraham@2d3d.co.za> * - Added support for the ICP LCD-Kit01 on LART. This LCD is * manufactured by Prime View, model no V16C6448AB * * 2001/07/23: <rmk@arm.linux.org.uk> * - Hand merge version from handhelds.org CVS tree. See patch * notes for 595/1 for more information. * - Drop 12bpp (it's 16bpp with different colour register mappings). * - This hardware can not do direct colour. Therefore we don't * support it. * * 2001/07/27: <rmk@arm.linux.org.uk> * - Halve YRES on dual scan LCDs. * * 2001/08/22: <rmk@arm.linux.org.uk> * - Add b/w iPAQ pixclock value. * * 2001/10/12: <rmk@arm.linux.org.uk> * - Add patch 681/1 and clean up stork definitions. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/fb.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/cpufreq.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/mutex.h> #include <asm/hardware.h> #include <asm/io.h> #include <asm/mach-types.h> #include <asm/arch/assabet.h> #include <asm/arch/shannon.h> /* * debugging? */ #define DEBUG 0 /* * Complain if VAR is out of range. */ #define DEBUG_VAR 1 #undef ASSABET_PAL_VIDEO #include "sa1100fb.h" extern void (*sa1100fb_backlight_power)(int on); extern void (*sa1100fb_lcd_power)(int on); /* * IMHO this looks wrong. In 8BPP, length should be 8. */ static struct sa1100fb_rgb rgb_8 = { .red = { .offset = 0, .length = 4, }, .green = { .offset = 0, .length = 4, }, .blue = { .offset = 0, .length = 4, }, .transp = { .offset = 0, .length = 0, }, }; static struct sa1100fb_rgb def_rgb_16 = { .red = { .offset = 11, .length = 5, }, .green = { .offset = 5, .length = 6, }, .blue = { .offset = 0, .length = 5, }, .transp = { .offset = 0, .length = 0, }, }; #ifdef CONFIG_SA1100_ASSABET #ifndef ASSABET_PAL_VIDEO /* * The assabet uses a sharp LQ039Q2DS54 LCD module. It is actually * takes an RGB666 signal, but we provide it with an RGB565 signal * instead (def_rgb_16). */ static struct sa1100fb_mach_info lq039q2ds54_info __initdata = { .pixclock = 171521, .bpp = 16, .xres = 320, .yres = 240, .hsync_len = 5, .vsync_len = 1, .left_margin = 61, .upper_margin = 3, .right_margin = 9, .lower_margin = 0, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act, .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2), }; #else static struct sa1100fb_mach_info pal_info __initdata = { .pixclock = 67797, .bpp = 16, .xres = 640, .yres = 512, .hsync_len = 64, .vsync_len = 6, .left_margin = 125, .upper_margin = 70, .right_margin = 115, .lower_margin = 36, .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act, .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512), }; #endif #endif #ifdef CONFIG_SA1100_H3800 static struct sa1100fb_mach_info h3800_info __initdata = { .pixclock = 174757, .bpp = 16, .xres = 320, .yres = 240, .hsync_len = 3, .vsync_len = 3, .left_margin = 12, .upper_margin = 10, .right_margin = 17, .lower_margin = 1, .cmap_static = 1, .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act, .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2), }; #endif #ifdef CONFIG_SA1100_H3600 static struct sa1100fb_mach_info h3600_info __initdata = { .pixclock = 174757, .bpp = 16, .xres = 320, .yres = 240, .hsync_len = 3, .vsync_len = 3, .left_margin = 12, .upper_margin = 10, .right_margin = 17, .lower_margin = 1, .cmap_static = 1, .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act, .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2), }; static struct sa1100fb_rgb h3600_rgb_16 = { .red = { .offset = 12, .length = 4, }, .green = { .offset = 7, .length = 4, }, .blue = { .offset = 1, .length = 4, }, .transp = { .offset = 0, .length = 0, }, }; #endif #ifdef CONFIG_SA1100_H3100 static struct sa1100fb_mach_info h3100_info __initdata = { .pixclock = 406977, .bpp = 4, .xres = 320, .yres = 240, .hsync_len = 26, .vsync_len = 41, .left_margin = 4, .upper_margin = 0, .right_margin = 4, .lower_margin = 0, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .cmap_greyscale = 1, .cmap_inverse = 1, .lccr0 = LCCR0_Mono | LCCR0_4PixMono | LCCR0_Sngl | LCCR0_Pas, .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2), }; #endif #ifdef CONFIG_SA1100_COLLIE static struct sa1100fb_mach_info collie_info __initdata = { .pixclock = 171521, .bpp = 16, .xres = 320, .yres = 240, .hsync_len = 5, .vsync_len = 1, .left_margin = 11, .upper_margin = 2, .right_margin = 30, .lower_margin = 0, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act, .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2), }; #endif #ifdef LART_GREY_LCD static struct sa1100fb_mach_info lart_grey_info __initdata = { .pixclock = 150000, .bpp = 4, .xres = 320, .yres = 240, .hsync_len = 1, .vsync_len = 1, .left_margin = 4, .upper_margin = 0, .right_margin = 2, .lower_margin = 0, .cmap_greyscale = 1, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .lccr0 = LCCR0_Mono | LCCR0_Sngl | LCCR0_Pas | LCCR0_4PixMono, .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512), }; #endif #ifdef LART_COLOR_LCD static struct sa1100fb_mach_info lart_color_info __initdata = { .pixclock = 150000, .bpp = 16, .xres = 320, .yres = 240, .hsync_len = 2, .vsync_len = 3, .left_margin = 69, .upper_margin = 14, .right_margin = 8, .lower_margin = 4, .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act, .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512), }; #endif #ifdef LART_VIDEO_OUT static struct sa1100fb_mach_info lart_video_info __initdata = { .pixclock = 39721, .bpp = 16, .xres = 640, .yres = 480, .hsync_len = 95, .vsync_len = 2, .left_margin = 40, .upper_margin = 32, .right_margin = 24, .lower_margin = 11, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act, .lccr3 = LCCR3_OutEnL | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512), }; #endif #ifdef LART_KIT01_LCD static struct sa1100fb_mach_info lart_kit01_info __initdata = { .pixclock = 63291, .bpp = 16, .xres = 640, .yres = 480, .hsync_len = 64, .vsync_len = 3, .left_margin = 122, .upper_margin = 45, .right_margin = 10, .lower_margin = 10, .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act, .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg }; #endif #ifdef CONFIG_SA1100_SHANNON static struct sa1100fb_mach_info shannon_info __initdata = { .pixclock = 152500, .bpp = 8, .xres = 640, .yres = 480, .hsync_len = 4, .vsync_len = 3, .left_margin = 2, .upper_margin = 0, .right_margin = 1, .lower_margin = 0, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .lccr0 = LCCR0_Color | LCCR0_Dual | LCCR0_Pas, .lccr3 = LCCR3_ACBsDiv(512), }; #endif static struct sa1100fb_mach_info * __init sa1100fb_get_machine_info(struct sa1100fb_info *fbi) { struct sa1100fb_mach_info *inf = NULL; /* * R G B T * default {11,5}, { 5,6}, { 0,5}, { 0,0} * h3600 {12,4}, { 7,4}, { 1,4}, { 0,0} * freebird { 8,4}, { 4,4}, { 0,4}, {12,4} */ #ifdef CONFIG_SA1100_ASSABET if (machine_is_assabet()) { #ifndef ASSABET_PAL_VIDEO inf = &lq039q2ds54_info; #else inf = &pal_info; #endif } #endif #ifdef CONFIG_SA1100_H3100 if (machine_is_h3100()) { inf = &h3100_info; } #endif #ifdef CONFIG_SA1100_H3600 if (machine_is_h3600()) { inf = &h3600_info; fbi->rgb[RGB_16] = &h3600_rgb_16; } #endif #ifdef CONFIG_SA1100_H3800 if (machine_is_h3800()) { inf = &h3800_info; } #endif #ifdef CONFIG_SA1100_COLLIE if (machine_is_collie()) { inf = &collie_info; } #endif #ifdef CONFIG_SA1100_LART if (machine_is_lart()) { #ifdef LART_GREY_LCD inf = &lart_grey_info; #endif #ifdef LART_COLOR_LCD inf = &lart_color_info; #endif #ifdef LART_VIDEO_OUT inf = &lart_video_info; #endif #ifdef LART_KIT01_LCD inf = &lart_kit01_info; #endif } #endif #ifdef CONFIG_SA1100_SHANNON if (machine_is_shannon()) { inf = &shannon_info; } #endif return inf; } static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *); static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state); static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state) { unsigned long flags; local_irq_save(flags); /* * We need to handle two requests being made at the same time. * There are two important cases: * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) * We must perform the unblanking, which will do our REENABLE for us. * 2. When we are blanking, but immediately unblank before we have * blanked. We do the "REENABLE" thing here as well, just to be sure. */ if (fbi->task_state == C_ENABLE && state == C_REENABLE) state = (u_int) -1; if (fbi->task_state == C_DISABLE && state == C_ENABLE) state = C_REENABLE; if (state != (u_int)-1) { fbi->task_state = state; schedule_work(&fbi->task); } local_irq_restore(flags); } static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) { chan &= 0xffff; chan >>= 16 - bf->length; return chan << bf->offset; } /* * Convert bits-per-pixel to a hardware palette PBS value. */ static inline u_int palette_pbs(struct fb_var_screeninfo *var) { int ret = 0; switch (var->bits_per_pixel) { case 4: ret = 0 << 12; break; case 8: ret = 1 << 12; break; case 16: ret = 2 << 12; break; } return ret; } static int sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; u_int val, ret = 1; if (regno < fbi->palette_size) { val = ((red >> 4) & 0xf00); val |= ((green >> 8) & 0x0f0); val |= ((blue >> 12) & 0x00f); if (regno == 0) val |= palette_pbs(&fbi->fb.var); fbi->palette_cpu[regno] = val; ret = 0; } return ret; } static int sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int trans, struct fb_info *info) { struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; unsigned int val; int ret = 1; /* * If inverse mode was selected, invert all the colours * rather than the register number. The register number * is what you poke into the framebuffer to produce the * colour you requested. */ if (fbi->cmap_inverse) { red = 0xffff - red; green = 0xffff - green; blue = 0xffff - blue; } /* * If greyscale is true, then we convert the RGB value * to greyscale no mater what visual we are using. */ if (fbi->fb.var.grayscale) red = green = blue = (19595 * red + 38470 * green + 7471 * blue) >> 16; switch (fbi->fb.fix.visual) { case FB_VISUAL_TRUECOLOR: /* * 12 or 16-bit True Colour. We encode the RGB value * according to the RGB bitfield information. */ if (regno < 16) { u32 *pal = fbi->fb.pseudo_palette; val = chan_to_field(red, &fbi->fb.var.red); val |= chan_to_field(green, &fbi->fb.var.green); val |= chan_to_field(blue, &fbi->fb.var.blue); pal[regno] = val; ret = 0; } break; case FB_VISUAL_STATIC_PSEUDOCOLOR: case FB_VISUAL_PSEUDOCOLOR: ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info); break; } return ret; } #ifdef CONFIG_CPU_FREQ /* * sa1100fb_display_dma_period() * Calculate the minimum period (in picoseconds) between two DMA * requests for the LCD controller. If we hit this, it means we're * doing nothing but LCD DMA. */ static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var) { /* * Period = pixclock * bits_per_byte * bytes_per_transfer * / memory_bits_per_pixel; */ return var->pixclock * 8 * 16 / var->bits_per_pixel; } #endif /* * sa1100fb_check_var(): * Round up in the following order: bits_per_pixel, xres, * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, * bitfields, horizontal timing, vertical timing. */ static int sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; int rgbidx; if (var->xres < MIN_XRES) var->xres = MIN_XRES; if (var->yres < MIN_YRES) var->yres = MIN_YRES; if (var->xres > fbi->max_xres) var->xres = fbi->max_xres; if (var->yres > fbi->max_yres) var->yres = fbi->max_yres; var->xres_virtual = max(var->xres_virtual, var->xres); var->yres_virtual = max(var->yres_virtual, var->yres); DPRINTK("var->bits_per_pixel=%d\n", var->bits_per_pixel); switch (var->bits_per_pixel) { case 4: rgbidx = RGB_8; break; case 8: rgbidx = RGB_8; break; case 16: rgbidx = RGB_16; break; default: return -EINVAL; } /* * Copy the RGB parameters for this display * from the machine specific parameters. */ var->red = fbi->rgb[rgbidx]->red; var->green = fbi->rgb[rgbidx]->green; var->blue = fbi->rgb[rgbidx]->blue; var->transp = fbi->rgb[rgbidx]->transp; DPRINTK("RGBT length = %d:%d:%d:%d\n", var->red.length, var->green.length, var->blue.length, var->transp.length); DPRINTK("RGBT offset = %d:%d:%d:%d\n", var->red.offset, var->green.offset, var->blue.offset, var->transp.offset); #ifdef CONFIG_CPU_FREQ printk(KERN_DEBUG "dma period = %d ps, clock = %d kHz\n", sa1100fb_display_dma_period(var), cpufreq_get(smp_processor_id())); #endif return 0; } static inline void sa1100fb_set_truecolor(u_int is_true_color) { if (machine_is_assabet()) { #if 1 // phase 4 or newer Assabet's if (is_true_color) ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB); else ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB); #else // older Assabet's if (is_true_color) ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB); else ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB); #endif } } /* * sa1100fb_set_par(): * Set the user defined part of the display for the specified console */ static int sa1100fb_set_par(struct fb_info *info) { struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; struct fb_var_screeninfo *var = &info->var; unsigned long palette_mem_size; DPRINTK("set_par\n"); if (var->bits_per_pixel == 16) fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; else if (!fbi->cmap_static) fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; else { /* * Some people have weird ideas about wanting static * pseudocolor maps. I suspect their user space * applications are broken. */ fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; } fbi->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16; palette_mem_size = fbi->palette_size * sizeof(u16); DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size); fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; /* * Set (any) board control register to handle new color depth */ sa1100fb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR); sa1100fb_activate_var(var, fbi); return 0; } #if 0 static int sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con, struct fb_info *info) { struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; /* * Make sure the user isn't doing something stupid. */ if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->cmap_static)) return -EINVAL; return gen_set_cmap(cmap, kspc, con, info); } #endif /* * Formal definition of the VESA spec: * On * This refers to the state of the display when it is in full operation * Stand-By * This defines an optional operating state of minimal power reduction with * the shortest recovery time * Suspend * This refers to a level of power management in which substantial power * reduction is achieved by the display. The display can have a longer * recovery time from this state than from the Stand-by state * Off * This indicates that the display is consuming the lowest level of power * and is non-operational. Recovery from this state may optionally require * the user to manually power on the monitor * * Now, the fbdev driver adds an additional state, (blank), where they * turn off the video (maybe by colormap tricks), but don't mess with the * video itself: think of it semantically between on and Stand-By. * * So here's what we should do in our fbdev blank routine: * * VESA_NO_BLANKING (mode 0) Video on, front/back light on * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off * VESA_POWERDOWN (mode 3) Video off, front/back light off * * This will match the matrox implementation. */ /* * sa1100fb_blank(): * Blank the display by setting all palette values to zero. Note, the * 12 and 16 bpp modes don't really use the palette, so this will not * blank the display in all modes. */ static int sa1100fb_blank(int blank, struct fb_info *info) { struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; int i; DPRINTK("sa1100fb_blank: blank=%d\n", blank); switch (blank) { case FB_BLANK_POWERDOWN: case FB_BLANK_VSYNC_SUSPEND: case FB_BLANK_HSYNC_SUSPEND: case FB_BLANK_NORMAL: if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) for (i = 0; i < fbi->palette_size; i++) sa1100fb_setpalettereg(i, 0, 0, 0, 0, info); sa1100fb_schedule_work(fbi, C_DISABLE); break; case FB_BLANK_UNBLANK: if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) fb_set_cmap(&fbi->fb.cmap, info); sa1100fb_schedule_work(fbi, C_ENABLE); } return 0; } static int sa1100fb_mmap(struct fb_info *info, struct vm_area_struct *vma) { struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT; if (off < info->fix.smem_len) { vma->vm_pgoff += 1; /* skip over the palette */ return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu, fbi->map_dma, fbi->map_size); } start = info->fix.mmio_start; len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len); if ((vma->vm_end - vma->vm_start + off) > len) return -EINVAL; off += start & PAGE_MASK; vma->vm_pgoff = off >> PAGE_SHIFT; vma->vm_flags |= VM_IO; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot); } static struct fb_ops sa1100fb_ops = { .owner = THIS_MODULE, .fb_check_var = sa1100fb_check_var, .fb_set_par = sa1100fb_set_par, // .fb_set_cmap = sa1100fb_set_cmap, .fb_setcolreg = sa1100fb_setcolreg, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_blank = sa1100fb_blank, .fb_mmap = sa1100fb_mmap, }; /* * Calculate the PCD value from the clock rate (in picoseconds). * We take account of the PPCR clock setting. */ static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock) { unsigned int pcd = cpuclock / 100; pcd *= pixclock; pcd /= 10000000; return pcd + 1; /* make up for integer math truncations */ } /* * sa1100fb_activate_var(): * Configures LCD Controller based on entries in var parameter. Settings are * only written to the controller if changes were made. */ static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi) { struct sa1100fb_lcd_reg new_regs; u_int half_screen_size, yres, pcd; u_long flags; DPRINTK("Configuring SA1100 LCD\n"); DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n", var->xres, var->hsync_len, var->left_margin, var->right_margin); DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n", var->yres, var->vsync_len, var->upper_margin, var->lower_margin); #if DEBUG_VAR if (var->xres < 16 || var->xres > 1024) printk(KERN_ERR "%s: invalid xres %d\n", fbi->fb.fix.id, var->xres); if (var->hsync_len < 1 || var->hsync_len > 64) printk(KERN_ERR "%s: invalid hsync_len %d\n", fbi->fb.fix.id, var->hsync_len); if (var->left_margin < 1 || var->left_margin > 255) printk(KERN_ERR "%s: invalid left_margin %d\n", fbi->fb.fix.id, var->left_margin); if (var->right_margin < 1 || var->right_margin > 255) printk(KERN_ERR "%s: invalid right_margin %d\n", fbi->fb.fix.id, var->right_margin); if (var->yres < 1 || var->yres > 1024) printk(KERN_ERR "%s: invalid yres %d\n", fbi->fb.fix.id, var->yres); if (var->vsync_len < 1 || var->vsync_len > 64) printk(KERN_ERR "%s: invalid vsync_len %d\n", fbi->fb.fix.id, var->vsync_len); if (var->upper_margin < 0 || var->upper_margin > 255) printk(KERN_ERR "%s: invalid upper_margin %d\n", fbi->fb.fix.id, var->upper_margin); if (var->lower_margin < 0 || var->lower_margin > 255) printk(KERN_ERR "%s: invalid lower_margin %d\n", fbi->fb.fix.id, var->lower_margin); #endif new_regs.lccr0 = fbi->lccr0 | LCCR0_LEN | LCCR0_LDM | LCCR0_BAM | LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0); new_regs.lccr1 = LCCR1_DisWdth(var->xres) + LCCR1_HorSnchWdth(var->hsync_len) + LCCR1_BegLnDel(var->left_margin) + LCCR1_EndLnDel(var->right_margin); /* * If we have a dual scan LCD, then we need to halve * the YRES parameter. */ yres = var->yres; if (fbi->lccr0 & LCCR0_Dual) yres /= 2; new_regs.lccr2 = LCCR2_DisHght(yres) + LCCR2_VrtSnchWdth(var->vsync_len) + LCCR2_BegFrmDel(var->upper_margin) + LCCR2_EndFrmDel(var->lower_margin); pcd = get_pcd(var->pixclock, cpufreq_get(0)); new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->lccr3 | (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); DPRINTK("nlccr0 = 0x%08lx\n", new_regs.lccr0); DPRINTK("nlccr1 = 0x%08lx\n", new_regs.lccr1); DPRINTK("nlccr2 = 0x%08lx\n", new_regs.lccr2); DPRINTK("nlccr3 = 0x%08lx\n", new_regs.lccr3); half_screen_size = var->bits_per_pixel; half_screen_size = half_screen_size * var->xres * var->yres / 16; /* Update shadow copy atomically */ local_irq_save(flags); fbi->dbar1 = fbi->palette_dma; fbi->dbar2 = fbi->screen_dma + half_screen_size; fbi->reg_lccr0 = new_regs.lccr0; fbi->reg_lccr1 = new_regs.lccr1; fbi->reg_lccr2 = new_regs.lccr2; fbi->reg_lccr3 = new_regs.lccr3; local_irq_restore(flags); /* * Only update the registers if the controller is enabled * and something has changed. */ if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) || (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) || (DBAR1 != fbi->dbar1) || (DBAR2 != fbi->dbar2)) sa1100fb_schedule_work(fbi, C_REENABLE); return 0; } /* * NOTE! The following functions are purely helpers for set_ctrlr_state. * Do not call them directly; set_ctrlr_state does the correct serialisation * to ensure that things happen in the right way 100% of time time. * -- rmk */ static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on) { DPRINTK("backlight o%s\n", on ? "n" : "ff"); if (sa1100fb_backlight_power) sa1100fb_backlight_power(on); } static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on) { DPRINTK("LCD power o%s\n", on ? "n" : "ff"); if (sa1100fb_lcd_power) sa1100fb_lcd_power(on); } static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi) { u_int mask = 0; /* * Enable GPIO<9:2> for LCD use if: * 1. Active display, or * 2. Color Dual Passive display * * see table 11.8 on page 11-27 in the SA1100 manual * -- Erik. * * SA1110 spec update nr. 25 says we can and should * clear LDD15 to 12 for 4 or 8bpp modes with active * panels. */ if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color && (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) { mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8; if (fbi->fb.var.bits_per_pixel > 8 || (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual) mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12; } if (mask) { GPDR |= mask; GAFR |= mask; } } static void sa1100fb_enable_controller(struct sa1100fb_info *fbi) { DPRINTK("Enabling LCD controller\n"); /* * Make sure the mode bits are present in the first palette entry */ fbi->palette_cpu[0] &= 0xcfff; fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var); /* Sequence from 11.7.10 */ LCCR3 = fbi->reg_lccr3; LCCR2 = fbi->reg_lccr2; LCCR1 = fbi->reg_lccr1; LCCR0 = fbi->reg_lccr0 & ~LCCR0_LEN; DBAR1 = fbi->dbar1; DBAR2 = fbi->dbar2; LCCR0 |= LCCR0_LEN; if (machine_is_shannon()) { GPDR |= SHANNON_GPIO_DISP_EN; GPSR |= SHANNON_GPIO_DISP_EN; } DPRINTK("DBAR1 = 0x%08x\n", DBAR1); DPRINTK("DBAR2 = 0x%08x\n", DBAR2); DPRINTK("LCCR0 = 0x%08x\n", LCCR0); DPRINTK("LCCR1 = 0x%08x\n", LCCR1); DPRINTK("LCCR2 = 0x%08x\n", LCCR2); DPRINTK("LCCR3 = 0x%08x\n", LCCR3); } static void sa1100fb_disable_controller(struct sa1100fb_info *fbi) { DECLARE_WAITQUEUE(wait, current); DPRINTK("Disabling LCD controller\n"); if (machine_is_shannon()) { GPCR |= SHANNON_GPIO_DISP_EN; } set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&fbi->ctrlr_wait, &wait); LCSR = 0xffffffff; /* Clear LCD Status Register */ LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */ LCCR0 &= ~LCCR0_LEN; /* Disable LCD Controller */ schedule_timeout(20 * HZ / 1000); remove_wait_queue(&fbi->ctrlr_wait, &wait); } /* * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts. */ static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id) { struct sa1100fb_info *fbi = dev_id; unsigned int lcsr = LCSR; if (lcsr & LCSR_LDD) { LCCR0 |= LCCR0_LDM; wake_up(&fbi->ctrlr_wait); } LCSR = lcsr; return IRQ_HANDLED; } /* * This function must be called from task context only, since it will * sleep when disabling the LCD controller, or if we get two contending * processes trying to alter state. */ static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state) { u_int old_state; mutex_lock(&fbi->ctrlr_lock); old_state = fbi->state; /* * Hack around fbcon initialisation. */ if (old_state == C_STARTUP && state == C_REENABLE) state = C_ENABLE; switch (state) { case C_DISABLE_CLKCHANGE: /* * Disable controller for clock change. If the * controller is already disabled, then do nothing. */ if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { fbi->state = state; sa1100fb_disable_controller(fbi); } break; case C_DISABLE_PM: case C_DISABLE: /* * Disable controller */ if (old_state != C_DISABLE) { fbi->state = state; __sa1100fb_backlight_power(fbi, 0); if (old_state != C_DISABLE_CLKCHANGE) sa1100fb_disable_controller(fbi); __sa1100fb_lcd_power(fbi, 0); } break; case C_ENABLE_CLKCHANGE: /* * Enable the controller after clock change. Only * do this if we were disabled for the clock change. */ if (old_state == C_DISABLE_CLKCHANGE) { fbi->state = C_ENABLE; sa1100fb_enable_controller(fbi); } break; case C_REENABLE: /* * Re-enable the controller only if it was already * enabled. This is so we reprogram the control * registers. */ if (old_state == C_ENABLE) { sa1100fb_disable_controller(fbi); sa1100fb_setup_gpio(fbi); sa1100fb_enable_controller(fbi); } break; case C_ENABLE_PM: /* * Re-enable the controller after PM. This is not * perfect - think about the case where we were doing * a clock change, and we suspended half-way through. */ if (old_state != C_DISABLE_PM) break; /* fall through */ case C_ENABLE: /* * Power up the LCD screen, enable controller, and * turn on the backlight. */ if (old_state != C_ENABLE) { fbi->state = C_ENABLE; sa1100fb_setup_gpio(fbi); __sa1100fb_lcd_power(fbi, 1); sa1100fb_enable_controller(fbi); __sa1100fb_backlight_power(fbi, 1); } break; } mutex_unlock(&fbi->ctrlr_lock); } /* * Our LCD controller task (which is called when we blank or unblank) * via keventd. */ static void sa1100fb_task(struct work_struct *w) { struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task); u_int state = xchg(&fbi->task_state, -1); set_ctrlr_state(fbi, state); } #ifdef CONFIG_CPU_FREQ /* * Calculate the minimum DMA period over all displays that we own. * This, together with the SDRAM bandwidth defines the slowest CPU * frequency that can be selected. */ static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi) { #if 0 unsigned int min_period = (unsigned int)-1; int i; for (i = 0; i < MAX_NR_CONSOLES; i++) { struct display *disp = &fb_display[i]; unsigned int period; /* * Do we own this display? */ if (disp->fb_info != &fbi->fb) continue; /* * Ok, calculate its DMA period */ period = sa1100fb_display_dma_period(&disp->var); if (period < min_period) min_period = period; } return min_period; #else /* * FIXME: we need to verify _all_ consoles. */ return sa1100fb_display_dma_period(&fbi->fb.var); #endif } /* * CPU clock speed change handler. We need to adjust the LCD timing * parameters when the CPU clock is adjusted by the power management * subsystem. */ static int sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) { struct sa1100fb_info *fbi = TO_INF(nb, freq_transition); struct cpufreq_freqs *f = data; u_int pcd; switch (val) { case CPUFREQ_PRECHANGE: set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); break; case CPUFREQ_POSTCHANGE: pcd = get_pcd(fbi->fb.var.pixclock, f->new); fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); break; } return 0; } static int sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) { struct sa1100fb_info *fbi = TO_INF(nb, freq_policy); struct cpufreq_policy *policy = data; switch (val) { case CPUFREQ_ADJUST: case CPUFREQ_INCOMPATIBLE: printk(KERN_DEBUG "min dma period: %d ps, " "new clock %d kHz\n", sa1100fb_min_dma_period(fbi), policy->max); /* todo: fill in min/max values */ break; case CPUFREQ_NOTIFY: do {} while(0); /* todo: panic if min/max values aren't fulfilled * [can't really happen unless there's a bug in the * CPU policy verififcation process * */ break; } return 0; } #endif #ifdef CONFIG_PM /* * Power management hooks. Note that we won't be called from IRQ context, * unlike the blank functions above, so we may sleep. */ static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state) { struct sa1100fb_info *fbi = platform_get_drvdata(dev); set_ctrlr_state(fbi, C_DISABLE_PM); return 0; } static int sa1100fb_resume(struct platform_device *dev) { struct sa1100fb_info *fbi = platform_get_drvdata(dev); set_ctrlr_state(fbi, C_ENABLE_PM); return 0; } #else #define sa1100fb_suspend NULL #define sa1100fb_resume NULL #endif /* * sa1100fb_map_video_memory(): * Allocates the DRAM memory for the frame buffer. This buffer is * remapped into a non-cached, non-buffered, memory region to * allow palette and pixel writes to occur without flushing the * cache. Once this area is remapped, all virtual memory * access to the video memory should occur at the new region. */ static int __init sa1100fb_map_video_memory(struct sa1100fb_info *fbi) { /* * We reserve one page for the palette, plus the size * of the framebuffer. */ fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size, &fbi->map_dma, GFP_KERNEL); if (fbi->map_cpu) { fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; fbi->screen_dma = fbi->map_dma + PAGE_SIZE; /* * FIXME: this is actually the wrong thing to place in * smem_start. But fbdev suffers from the problem that * it needs an API which doesn't exist (in this case, * dma_writecombine_mmap) */ fbi->fb.fix.smem_start = fbi->screen_dma; } return fbi->map_cpu ? 0 : -ENOMEM; } /* Fake monspecs to fill in fbinfo structure */ static struct fb_monspecs monspecs __initdata = { .hfmin = 30000, .hfmax = 70000, .vfmin = 50, .vfmax = 65, }; static struct sa1100fb_info * __init sa1100fb_init_fbinfo(struct device *dev) { struct sa1100fb_mach_info *inf; struct sa1100fb_info *fbi; fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16, GFP_KERNEL); if (!fbi) return NULL; memset(fbi, 0, sizeof(struct sa1100fb_info)); fbi->dev = dev; strcpy(fbi->fb.fix.id, SA1100_NAME); fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; fbi->fb.fix.type_aux = 0; fbi->fb.fix.xpanstep = 0; fbi->fb.fix.ypanstep = 0; fbi->fb.fix.ywrapstep = 0; fbi->fb.fix.accel = FB_ACCEL_NONE; fbi->fb.var.nonstd = 0; fbi->fb.var.activate = FB_ACTIVATE_NOW; fbi->fb.var.height = -1; fbi->fb.var.width = -1; fbi->fb.var.accel_flags = 0; fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; fbi->fb.fbops = &sa1100fb_ops; fbi->fb.flags = FBINFO_DEFAULT; fbi->fb.monspecs = monspecs; fbi->fb.pseudo_palette = (fbi + 1); fbi->rgb[RGB_8] = &rgb_8; fbi->rgb[RGB_16] = &def_rgb_16; inf = sa1100fb_get_machine_info(fbi); /* * People just don't seem to get this. We don't support * anything but correct entries now, so panic if someone * does something stupid. */ if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) || inf->pixclock == 0) panic("sa1100fb error: invalid LCCR3 fields set or zero " "pixclock."); fbi->max_xres = inf->xres; fbi->fb.var.xres = inf->xres; fbi->fb.var.xres_virtual = inf->xres; fbi->max_yres = inf->yres; fbi->fb.var.yres = inf->yres; fbi->fb.var.yres_virtual = inf->yres; fbi->max_bpp = inf->bpp; fbi->fb.var.bits_per_pixel = inf->bpp; fbi->fb.var.pixclock = inf->pixclock; fbi->fb.var.hsync_len = inf->hsync_len; fbi->fb.var.left_margin = inf->left_margin; fbi->fb.var.right_margin = inf->right_margin; fbi->fb.var.vsync_len = inf->vsync_len; fbi->fb.var.upper_margin = inf->upper_margin; fbi->fb.var.lower_margin = inf->lower_margin; fbi->fb.var.sync = inf->sync; fbi->fb.var.grayscale = inf->cmap_greyscale; fbi->cmap_inverse = inf->cmap_inverse; fbi->cmap_static = inf->cmap_static; fbi->lccr0 = inf->lccr0; fbi->lccr3 = inf->lccr3; fbi->state = C_STARTUP; fbi->task_state = (u_char)-1; fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres * fbi->max_bpp / 8; init_waitqueue_head(&fbi->ctrlr_wait); INIT_WORK(&fbi->task, sa1100fb_task); mutex_init(&fbi->ctrlr_lock); return fbi; } static int __init sa1100fb_probe(struct platform_device *pdev) { struct sa1100fb_info *fbi; int ret, irq; irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; if (!request_mem_region(0xb0100000, 0x10000, "LCD")) return -EBUSY; fbi = sa1100fb_init_fbinfo(&pdev->dev); ret = -ENOMEM; if (!fbi) goto failed; /* Initialize video memory */ ret = sa1100fb_map_video_memory(fbi); if (ret) goto failed; ret = request_irq(irq, sa1100fb_handle_irq, IRQF_DISABLED, "LCD", fbi); if (ret) { printk(KERN_ERR "sa1100fb: request_irq failed: %d\n", ret); goto failed; } #ifdef ASSABET_PAL_VIDEO if (machine_is_assabet()) ASSABET_BCR_clear(ASSABET_BCR_LCD_ON); #endif /* * This makes sure that our colour bitfield * descriptors are correctly initialised. */ sa1100fb_check_var(&fbi->fb.var, &fbi->fb); platform_set_drvdata(pdev, fbi); ret = register_framebuffer(&fbi->fb); if (ret < 0) goto err_free_irq; #ifdef CONFIG_CPU_FREQ fbi->freq_transition.notifier_call = sa1100fb_freq_transition; fbi->freq_policy.notifier_call = sa1100fb_freq_policy; cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER); #endif /* This driver cannot be unloaded at the moment */ return 0; err_free_irq: free_irq(irq, fbi); failed: platform_set_drvdata(pdev, NULL); kfree(fbi); release_mem_region(0xb0100000, 0x10000); return ret; } static struct platform_driver sa1100fb_driver = { .probe = sa1100fb_probe, .suspend = sa1100fb_suspend, .resume = sa1100fb_resume, .driver = { .name = "sa11x0-fb", }, }; int __init sa1100fb_init(void) { if (fb_get_options("sa1100fb", NULL)) return -ENODEV; return platform_driver_register(&sa1100fb_driver); } int __init sa1100fb_setup(char *options) { #if 0 char *this_opt; if (!options || !*options) return 0; while ((this_opt = strsep(&options, ",")) != NULL) { if (!strncmp(this_opt, "bpp:", 4)) current_par.max_bpp = simple_strtoul(this_opt + 4, NULL, 0); if (!strncmp(this_opt, "lccr0:", 6)) lcd_shadow.lccr0 = simple_strtoul(this_opt + 6, NULL, 0); if (!strncmp(this_opt, "lccr1:", 6)) { lcd_shadow.lccr1 = simple_strtoul(this_opt + 6, NULL, 0); current_par.max_xres = (lcd_shadow.lccr1 & 0x3ff) + 16; } if (!strncmp(this_opt, "lccr2:", 6)) { lcd_shadow.lccr2 = simple_strtoul(this_opt + 6, NULL, 0); current_par.max_yres = (lcd_shadow. lccr0 & LCCR0_SDS) ? ((lcd_shadow. lccr2 & 0x3ff) + 1) * 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1); } if (!strncmp(this_opt, "lccr3:", 6)) lcd_shadow.lccr3 = simple_strtoul(this_opt + 6, NULL, 0); } #endif return 0; } module_init(sa1100fb_init); MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver"); MODULE_LICENSE("GPL");