#ifndef _LINUX_MM_H #define _LINUX_MM_H #include #ifdef __KERNEL__ #include #include #include #include #include #include #include #include #include #include struct mempolicy; struct anon_vma; struct file_ra_state; struct user_struct; struct writeback_control; #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ extern unsigned long max_mapnr; #endif extern unsigned long num_physpages; extern unsigned long totalram_pages; extern void * high_memory; extern int page_cluster; #ifdef CONFIG_SYSCTL extern int sysctl_legacy_va_layout; #else #define sysctl_legacy_va_layout 0 #endif #include #include #include #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) /* to align the pointer to the (next) page boundary */ #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) /* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). */ extern struct kmem_cache *vm_area_cachep; #ifndef CONFIG_MMU extern struct rb_root nommu_region_tree; extern struct rw_semaphore nommu_region_sem; extern unsigned int kobjsize(const void *objp); #endif /* * vm_flags in vm_area_struct, see mm_types.h. */ #define VM_READ 0x00000001 /* currently active flags */ #define VM_WRITE 0x00000002 #define VM_EXEC 0x00000004 #define VM_SHARED 0x00000008 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ #define VM_MAYWRITE 0x00000020 #define VM_MAYEXEC 0x00000040 #define VM_MAYSHARE 0x00000080 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) #define VM_GROWSUP 0x00000200 #else #define VM_GROWSUP 0x00000000 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ #endif #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ #define VM_EXECUTABLE 0x00001000 #define VM_LOCKED 0x00002000 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ /* Used by sys_madvise() */ #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ #ifndef CONFIG_TRANSPARENT_HUGEPAGE #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ #else #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ #endif #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ /* Bits set in the VMA until the stack is in its final location */ #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS #endif #ifdef CONFIG_STACK_GROWSUP #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) #else #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) #endif #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) /* * Special vmas that are non-mergable, non-mlock()able. * Note: mm/huge_memory.c VM_NO_THP depends on this definition. */ #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) /* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */ extern pgprot_t protection_map[16]; #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ /* * This interface is used by x86 PAT code to identify a pfn mapping that is * linear over entire vma. This is to optimize PAT code that deals with * marking the physical region with a particular prot. This is not for generic * mm use. Note also that this check will not work if the pfn mapping is * linear for a vma starting at physical address 0. In which case PAT code * falls back to slow path of reserving physical range page by page. */ static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) { return !!(vma->vm_flags & VM_PFN_AT_MMAP); } static inline int is_pfn_mapping(struct vm_area_struct *vma) { return !!(vma->vm_flags & VM_PFNMAP); } /* * vm_fault is filled by the the pagefault handler and passed to the vma's * ->fault function. The vma's ->fault is responsible for returning a bitmask * of VM_FAULT_xxx flags that give details about how the fault was handled. * * pgoff should be used in favour of virtual_address, if possible. If pgoff * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear * mapping support. */ struct vm_fault { unsigned int flags; /* FAULT_FLAG_xxx flags */ pgoff_t pgoff; /* Logical page offset based on vma */ void __user *virtual_address; /* Faulting virtual address */ struct page *page; /* ->fault handlers should return a * page here, unless VM_FAULT_NOPAGE * is set (which is also implied by * VM_FAULT_ERROR). */ }; /* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs. */ struct vm_operations_struct { void (*open)(struct vm_area_struct * area); void (*close)(struct vm_area_struct * area); int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); /* notification that a previously read-only page is about to become * writable, if an error is returned it will cause a SIGBUS */ int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); /* called by access_process_vm when get_user_pages() fails, typically * for use by special VMAs that can switch between memory and hardware */ int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); #ifdef CONFIG_NUMA /* * set_policy() op must add a reference to any non-NULL @new mempolicy * to hold the policy upon return. Caller should pass NULL @new to * remove a policy and fall back to surrounding context--i.e. do not * install a MPOL_DEFAULT policy, nor the task or system default * mempolicy. */ int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); /* * get_policy() op must add reference [mpol_get()] to any policy at * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure * in mm/mempolicy.c will do this automatically. * get_policy() must NOT add a ref if the policy at (vma,addr) is not * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. * If no [shared/vma] mempolicy exists at the addr, get_policy() op * must return NULL--i.e., do not "fallback" to task or system default * policy. */ struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr); int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, const nodemask_t *to, unsigned long flags); #endif }; struct mmu_gather; struct inode; #define page_private(page) ((page)->private) #define set_page_private(page, v) ((page)->private = (v)) /* * FIXME: take this include out, include page-flags.h in * files which need it (119 of them) */ #include #include /* * Methods to modify the page usage count. * * What counts for a page usage: * - cache mapping (page->mapping) * - private data (page->private) * - page mapped in a task's page tables, each mapping * is counted separately * * Also, many kernel routines increase the page count before a critical * routine so they can be sure the page doesn't go away from under them. */ /* * Drop a ref, return true if the refcount fell to zero (the page has no users) */ static inline int put_page_testzero(struct page *page) { VM_BUG_ON(atomic_read(&page->_count) == 0); return atomic_dec_and_test(&page->_count); } /* * Try to grab a ref unless the page has a refcount of zero, return false if * that is the case. */ static inline int get_page_unless_zero(struct page *page) { return atomic_inc_not_zero(&page->_count); } extern int page_is_ram(unsigned long pfn); /* Support for virtually mapped pages */ struct page *vmalloc_to_page(const void *addr); unsigned long vmalloc_to_pfn(const void *addr); /* * Determine if an address is within the vmalloc range * * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there * is no special casing required. */ static inline int is_vmalloc_addr(const void *x) { #ifdef CONFIG_MMU unsigned long addr = (unsigned long)x; return addr >= VMALLOC_START && addr < VMALLOC_END; #else return 0; #endif } #ifdef CONFIG_MMU extern int is_vmalloc_or_module_addr(const void *x); #else static inline int is_vmalloc_or_module_addr(const void *x) { return 0; } #endif static inline void compound_lock(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE bit_spin_lock(PG_compound_lock, &page->flags); #endif } static inline void compound_unlock(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE bit_spin_unlock(PG_compound_lock, &page->flags); #endif } static inline unsigned long compound_lock_irqsave(struct page *page) { unsigned long uninitialized_var(flags); #ifdef CONFIG_TRANSPARENT_HUGEPAGE local_irq_save(flags); compound_lock(page); #endif return flags; } static inline void compound_unlock_irqrestore(struct page *page, unsigned long flags) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE compound_unlock(page); local_irq_restore(flags); #endif } static inline struct page *compound_head(struct page *page) { if (unlikely(PageTail(page))) return page->first_page; return page; } /* * The atomic page->_mapcount, starts from -1: so that transitions * both from it and to it can be tracked, using atomic_inc_and_test * and atomic_add_negative(-1). */ static inline void reset_page_mapcount(struct page *page) { atomic_set(&(page)->_mapcount, -1); } static inline int page_mapcount(struct page *page) { return atomic_read(&(page)->_mapcount) + 1; } static inline int page_count(struct page *page) { return atomic_read(&compound_head(page)->_count); } static inline void get_huge_page_tail(struct page *page) { /* * __split_huge_page_refcount() cannot run * from under us. */ VM_BUG_ON(page_mapcount(page) < 0); VM_BUG_ON(atomic_read(&page->_count) != 0); atomic_inc(&page->_mapcount); } extern bool __get_page_tail(struct page *page); static inline void get_page(struct page *page) { if (unlikely(PageTail(page))) if (likely(__get_page_tail(page))) return; /* * Getting a normal page or the head of a compound page * requires to already have an elevated page->_count. */ VM_BUG_ON(atomic_read(&page->_count) <= 0); atomic_inc(&page->_count); } static inline struct page *virt_to_head_page(const void *x) { struct page *page = virt_to_page(x); return compound_head(page); } /* * Setup the page count before being freed into the page allocator for * the first time (boot or memory hotplug) */ static inline void init_page_count(struct page *page) { atomic_set(&page->_count, 1); } /* * PageBuddy() indicate that the page is free and in the buddy system * (see mm/page_alloc.c). * * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to * -2 so that an underflow of the page_mapcount() won't be mistaken * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very * efficiently by most CPU architectures. */ #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) static inline int PageBuddy(struct page *page) { return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; } static inline void __SetPageBuddy(struct page *page) { VM_BUG_ON(atomic_read(&page->_mapcount) != -1); atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); } static inline void __ClearPageBuddy(struct page *page) { VM_BUG_ON(!PageBuddy(page)); atomic_set(&page->_mapcount, -1); } void put_page(struct page *page); void put_pages_list(struct list_head *pages); void split_page(struct page *page, unsigned int order); int split_free_page(struct page *page); /* * Compound pages have a destructor function. Provide a * prototype for that function and accessor functions. * These are _only_ valid on the head of a PG_compound page. */ typedef void compound_page_dtor(struct page *); static inline void set_compound_page_dtor(struct page *page, compound_page_dtor *dtor) { page[1].lru.next = (void *)dtor; } static inline compound_page_dtor *get_compound_page_dtor(struct page *page) { return (compound_page_dtor *)page[1].lru.next; } static inline int compound_order(struct page *page) { if (!PageHead(page)) return 0; return (unsigned long)page[1].lru.prev; } static inline int compound_trans_order(struct page *page) { int order; unsigned long flags; if (!PageHead(page)) return 0; flags = compound_lock_irqsave(page); order = compound_order(page); compound_unlock_irqrestore(page, flags); return order; } static inline void set_compound_order(struct page *page, unsigned long order) { page[1].lru.prev = (void *)order; } #ifdef CONFIG_MMU /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when * servicing faults for write access. In the normal case, do always want * pte_mkwrite. But get_user_pages can cause write faults for mappings * that do not have writing enabled, when used by access_process_vm. */ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pte = pte_mkwrite(pte); return pte; } #endif /* * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page_count(page) denotes a reference count. * page_count() == 0 means the page is free. page->lru is then used for * freelist management in the buddy allocator. * page_count() > 0 means the page has been allocated. * * Pages are allocated by the slab allocator in order to provide memory * to kmalloc and kmem_cache_alloc. In this case, the management of the * page, and the fields in 'struct page' are the responsibility of mm/slab.c * unless a particular usage is carefully commented. (the responsibility of * freeing the kmalloc memory is the caller's, of course). * * A page may be used by anyone else who does a __get_free_page(). * In this case, page_count still tracks the references, and should only * be used through the normal accessor functions. The top bits of page->flags * and page->virtual store page management information, but all other fields * are unused and could be used privately, carefully. The management of this * page is the responsibility of the one who allocated it, and those who have * subsequently been given references to it. * * The other pages (we may call them "pagecache pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A pagecache page contains an opaque `private' member, which belongs to the * page's address_space. Usually, this is the address of a circular list of * the page's disk buffers. PG_private must be set to tell the VM to call * into the filesystem to release these pages. * * A page may belong to an inode's memory mapping. In this case, page->mapping * is the pointer to the inode, and page->index is the file offset of the page, * in units of PAGE_CACHE_SIZE. * * If pagecache pages are not associated with an inode, they are said to be * anonymous pages. These may become associated with the swapcache, and in that * case PG_swapcache is set, and page->private is an offset into the swapcache. * * In either case (swapcache or inode backed), the pagecache itself holds one * reference to the page. Setting PG_private should also increment the * refcount. The each user mapping also has a reference to the page. * * The pagecache pages are stored in a per-mapping radix tree, which is * rooted at mapping->page_tree, and indexed by offset. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space * lists, we instead now tag pages as dirty/writeback in the radix tree. * * All pagecache pages may be subject to I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need * to be written back to the inode on disk, * - anonymous pages (including MAP_PRIVATE file mappings) which have been * modified may need to be swapped out to swap space and (later) to be read * back into memory. */ /* * The zone field is never updated after free_area_init_core() * sets it, so none of the operations on it need to be atomic. */ /* * page->flags layout: * * There are three possibilities for how page->flags get * laid out. The first is for the normal case, without * sparsemem. The second is for sparsemem when there is * plenty of space for node and section. The last is when * we have run out of space and have to fall back to an * alternate (slower) way of determining the node. * * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | */ #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) #define SECTIONS_WIDTH SECTIONS_SHIFT #else #define SECTIONS_WIDTH 0 #endif #define ZONES_WIDTH ZONES_SHIFT #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS #define NODES_WIDTH NODES_SHIFT #else #ifdef CONFIG_SPARSEMEM_VMEMMAP #error "Vmemmap: No space for nodes field in page flags" #endif #define NODES_WIDTH 0 #endif /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) /* * We are going to use the flags for the page to node mapping if its in * there. This includes the case where there is no node, so it is implicit. */ #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) #define NODE_NOT_IN_PAGE_FLAGS #endif /* * Define the bit shifts to access each section. For non-existent * sections we define the shift as 0; that plus a 0 mask ensures * the compiler will optimise away reference to them. */ #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ #ifdef NODE_NOT_IN_PAGE_FLAGS #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ SECTIONS_PGOFF : ZONES_PGOFF) #else #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ NODES_PGOFF : ZONES_PGOFF) #endif #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS #endif #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) #define NODES_MASK ((1UL << NODES_WIDTH) - 1) #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) static inline enum zone_type page_zonenum(struct page *page) { return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; } /* * The identification function is only used by the buddy allocator for * determining if two pages could be buddies. We are not really * identifying a zone since we could be using a the section number * id if we have not node id available in page flags. * We guarantee only that it will return the same value for two * combinable pages in a zone. */ static inline int page_zone_id(struct page *page) { return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; } static inline int zone_to_nid(struct zone *zone) { #ifdef CONFIG_NUMA return zone->node; #else return 0; #endif } #ifdef NODE_NOT_IN_PAGE_FLAGS extern int page_to_nid(struct page *page); #else static inline int page_to_nid(struct page *page) { return (page->flags >> NODES_PGSHIFT) & NODES_MASK; } #endif static inline struct zone *page_zone(struct page *page) { return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; } #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) static inline void set_page_section(struct page *page, unsigned long section) { page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; } static inline unsigned long page_to_section(struct page *page) { return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; } #endif static inline void set_page_zone(struct page *page, enum zone_type zone) { page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; } static inline void set_page_node(struct page *page, unsigned long node) { page->flags &= ~(NODES_MASK << NODES_PGSHIFT); page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; } static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn) { set_page_zone(page, zone); set_page_node(page, node); #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) set_page_section(page, pfn_to_section_nr(pfn)); #endif } /* * Some inline functions in vmstat.h depend on page_zone() */ #include static __always_inline void *lowmem_page_address(struct page *page) { return __va(PFN_PHYS(page_to_pfn(page))); } #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) #define HASHED_PAGE_VIRTUAL #endif #if defined(WANT_PAGE_VIRTUAL) #define page_address(page) ((page)->virtual) #define set_page_address(page, address) \ do { \ (page)->virtual = (address); \ } while(0) #define page_address_init() do { } while(0) #endif #if defined(HASHED_PAGE_VIRTUAL) void *page_address(struct page *page); void set_page_address(struct page *page, void *virtual); void page_address_init(void); #endif #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) #define page_address(page) lowmem_page_address(page) #define set_page_address(page, address) do { } while(0) #define page_address_init() do { } while(0) #endif /* * On an anonymous page mapped into a user virtual memory area, * page->mapping points to its anon_vma, not to a struct address_space; * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. * * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; * and then page->mapping points, not to an anon_vma, but to a private * structure which KSM associates with that merged page. See ksm.h. * * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. * * Please note that, confusingly, "page_mapping" refers to the inode * address_space which maps the page from disk; whereas "page_mapped" * refers to user virtual address space into which the page is mapped. */ #define PAGE_MAPPING_ANON 1 #define PAGE_MAPPING_KSM 2 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) extern struct address_space swapper_space; static inline struct address_space *page_mapping(struct page *page) { struct address_space *mapping = page->mapping; VM_BUG_ON(PageSlab(page)); if (unlikely(PageSwapCache(page))) mapping = &swapper_space; else if ((unsigned long)mapping & PAGE_MAPPING_ANON) mapping = NULL; return mapping; } /* Neutral page->mapping pointer to address_space or anon_vma or other */ static inline void *page_rmapping(struct page *page) { return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); } static inline int PageAnon(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; } /* * Return the pagecache index of the passed page. Regular pagecache pages * use ->index whereas swapcache pages use ->private */ static inline pgoff_t page_index(struct page *page) { if (unlikely(PageSwapCache(page))) return page_private(page); return page->index; } /* * Return true if this page is mapped into pagetables. */ static inline int page_mapped(struct page *page) { return atomic_read(&(page)->_mapcount) >= 0; } /* * Different kinds of faults, as returned by handle_mm_fault(). * Used to decide whether a process gets delivered SIGBUS or * just gets major/minor fault counters bumped up. */ #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ #define VM_FAULT_OOM 0x0001 #define VM_FAULT_SIGBUS 0x0002 #define VM_FAULT_MAJOR 0x0004 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ VM_FAULT_HWPOISON_LARGE) /* Encode hstate index for a hwpoisoned large page */ #define VM_FAULT_SET_HINDEX(x) ((x) << 12) #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) /* * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. */ extern void pagefault_out_of_memory(void); #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) /* * Flags passed to show_mem() and show_free_areas() to suppress output in * various contexts. */ #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ extern void show_free_areas(unsigned int flags); extern bool skip_free_areas_node(unsigned int flags, int nid); int shmem_lock(struct file *file, int lock, struct user_struct *user); struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); void shmem_set_file(struct vm_area_struct *vma, struct file *file); int shmem_zero_setup(struct vm_area_struct *); extern int can_do_mlock(void); extern int user_shm_lock(size_t, struct user_struct *); extern void user_shm_unlock(size_t, struct user_struct *); /* * Parameter block passed down to zap_pte_range in exceptional cases. */ struct zap_details { struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ struct address_space *check_mapping; /* Check page->mapping if set */ pgoff_t first_index; /* Lowest page->index to unmap */ pgoff_t last_index; /* Highest page->index to unmap */ }; struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte); int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size); unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *); unsigned long unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, unsigned long start_addr, unsigned long end_addr, unsigned long *nr_accounted, struct zap_details *); /** * mm_walk - callbacks for walk_page_range * @pgd_entry: if set, called for each non-empty PGD (top-level) entry * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry * this handler is required to be able to handle * pmd_trans_huge() pmds. They may simply choose to * split_huge_page() instead of handling it explicitly. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry * @pte_hole: if set, called for each hole at all levels * @hugetlb_entry: if set, called for each hugetlb entry * * (see walk_page_range for more details) */ struct mm_walk { int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); int (*hugetlb_entry)(pte_t *, unsigned long, unsigned long, unsigned long, struct mm_walk *); struct mm_struct *mm; void *private; }; int walk_page_range(unsigned long addr, unsigned long end, struct mm_walk *walk); void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling); int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma); void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows); int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn); int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys); int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unmap_mapping_range(mapping, holebegin, holelen, 0); } extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); extern void truncate_setsize(struct inode *inode, loff_t newsize); extern int vmtruncate(struct inode *inode, loff_t offset); extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); int truncate_inode_page(struct address_space *mapping, struct page *page); int generic_error_remove_page(struct address_space *mapping, struct page *page); int invalidate_inode_page(struct page *page); #ifdef CONFIG_MMU extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags); extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, unsigned long address, unsigned int fault_flags); #else static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { /* should never happen if there's no MMU */ BUG(); return VM_FAULT_SIGBUS; } static inline int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, unsigned long address, unsigned int fault_flags) { /* should never happen if there's no MMU */ BUG(); return -EFAULT; } #endif extern int make_pages_present(unsigned long addr, unsigned long end); extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, int write); int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, int len, unsigned int foll_flags, struct page **pages, struct vm_area_struct **vmas, int *nonblocking); int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, int nr_pages, int write, int force, struct page **pages, struct vm_area_struct **vmas); int get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages); struct page *get_dump_page(unsigned long addr); extern int try_to_release_page(struct page * page, gfp_t gfp_mask); extern void do_invalidatepage(struct page *page, unsigned long offset); int __set_page_dirty_nobuffers(struct page *page); int __set_page_dirty_no_writeback(struct page *page); int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page); void account_page_dirtied(struct page *page, struct address_space *mapping); void account_page_writeback(struct page *page); int set_page_dirty(struct page *page); int set_page_dirty_lock(struct page *page); int clear_page_dirty_for_io(struct page *page); /* Is the vma a continuation of the stack vma above it? */ static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) { return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); } static inline int stack_guard_page_start(struct vm_area_struct *vma, unsigned long addr) { return (vma->vm_flags & VM_GROWSDOWN) && (vma->vm_start == addr) && !vma_growsdown(vma->vm_prev, addr); } /* Is the vma a continuation of the stack vma below it? */ static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) { return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); } static inline int stack_guard_page_end(struct vm_area_struct *vma, unsigned long addr) { return (vma->vm_flags & VM_GROWSUP) && (vma->vm_end == addr) && !vma_growsup(vma->vm_next, addr); } extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len); extern unsigned long do_mremap(unsigned long addr, unsigned long old_len, unsigned long new_len, unsigned long flags, unsigned long new_addr); extern int mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start, unsigned long end, unsigned long newflags); /* * doesn't attempt to fault and will return short. */ int __get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages); /* * per-process(per-mm_struct) statistics. */ static inline void set_mm_counter(struct mm_struct *mm, int member, long value) { atomic_long_set(&mm->rss_stat.count[member], value); } #if defined(SPLIT_RSS_COUNTING) unsigned long get_mm_counter(struct mm_struct *mm, int member); #else static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) { return atomic_long_read(&mm->rss_stat.count[member]); } #endif static inline void add_mm_counter(struct mm_struct *mm, int member, long value) { atomic_long_add(value, &mm->rss_stat.count[member]); } static inline void inc_mm_counter(struct mm_struct *mm, int member) { atomic_long_inc(&mm->rss_stat.count[member]); } static inline void dec_mm_counter(struct mm_struct *mm, int member) { atomic_long_dec(&mm->rss_stat.count[member]); } static inline unsigned long get_mm_rss(struct mm_struct *mm) { return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES); } static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) { return max(mm->hiwater_rss, get_mm_rss(mm)); } static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) { return max(mm->hiwater_vm, mm->total_vm); } static inline void update_hiwater_rss(struct mm_struct *mm) { unsigned long _rss = get_mm_rss(mm); if ((mm)->hiwater_rss < _rss) (mm)->hiwater_rss = _rss; } static inline void update_hiwater_vm(struct mm_struct *mm) { if (mm->hiwater_vm < mm->total_vm) mm->hiwater_vm = mm->total_vm; } static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm) { unsigned long hiwater_rss = get_mm_hiwater_rss(mm); if (*maxrss < hiwater_rss) *maxrss = hiwater_rss; } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); #else static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) { } #endif /* * This struct is used to pass information from page reclaim to the shrinkers. * We consolidate the values for easier extention later. */ struct shrink_control { gfp_t gfp_mask; /* How many slab objects shrinker() should scan and try to reclaim */ unsigned long nr_to_scan; }; /* * A callback you can register to apply pressure to ageable caches. * * 'sc' is passed shrink_control which includes a count 'nr_to_scan' * and a 'gfpmask'. It should look through the least-recently-used * 'nr_to_scan' entries and attempt to free them up. It should return * the number of objects which remain in the cache. If it returns -1, it means * it cannot do any scanning at this time (eg. there is a risk of deadlock). * * The 'gfpmask' refers to the allocation we are currently trying to * fulfil. * * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is * querying the cache size, so a fastpath for that case is appropriate. */ struct shrinker { int (*shrink)(struct shrinker *, struct shrink_control *sc); int seeks; /* seeks to recreate an obj */ long batch; /* reclaim batch size, 0 = default */ /* These are for internal use */ struct list_head list; long nr; /* objs pending delete */ }; #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ extern void register_shrinker(struct shrinker *); extern void unregister_shrinker(struct shrinker *); int vma_wants_writenotify(struct vm_area_struct *vma); extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pte_t *ptep; __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); return ptep; } #ifdef __PAGETABLE_PUD_FOLDED static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return 0; } #else int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); #endif #ifdef __PAGETABLE_PMD_FOLDED static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return 0; } #else int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); #endif int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, pmd_t *pmd, unsigned long address); int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); /* * The following ifdef needed to get the 4level-fixup.h header to work. * Remove it when 4level-fixup.h has been removed. */ #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? NULL: pud_offset(pgd, address); } static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? NULL: pmd_offset(pud, address); } #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ #if USE_SPLIT_PTLOCKS /* * We tuck a spinlock to guard each pagetable page into its struct page, * at page->private, with BUILD_BUG_ON to make sure that this will not * overflow into the next struct page (as it might with DEBUG_SPINLOCK). * When freeing, reset page->mapping so free_pages_check won't complain. */ #define __pte_lockptr(page) &((page)->ptl) #define pte_lock_init(_page) do { \ spin_lock_init(__pte_lockptr(_page)); \ } while (0) #define pte_lock_deinit(page) ((page)->mapping = NULL) #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) #else /* !USE_SPLIT_PTLOCKS */ /* * We use mm->page_table_lock to guard all pagetable pages of the mm. */ #define pte_lock_init(page) do {} while (0) #define pte_lock_deinit(page) do {} while (0) #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) #endif /* USE_SPLIT_PTLOCKS */ static inline void pgtable_page_ctor(struct page *page) { pte_lock_init(page); inc_zone_page_state(page, NR_PAGETABLE); } static inline void pgtable_page_dtor(struct page *page) { pte_lock_deinit(page); dec_zone_page_state(page, NR_PAGETABLE); } #define pte_offset_map_lock(mm, pmd, address, ptlp) \ ({ \ spinlock_t *__ptl = pte_lockptr(mm, pmd); \ pte_t *__pte = pte_offset_map(pmd, address); \ *(ptlp) = __ptl; \ spin_lock(__ptl); \ __pte; \ }) #define pte_unmap_unlock(pte, ptl) do { \ spin_unlock(ptl); \ pte_unmap(pte); \ } while (0) #define pte_alloc_map(mm, vma, pmd, address) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ pmd, address))? \ NULL: pte_offset_map(pmd, address)) #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ pmd, address))? \ NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) #define pte_alloc_kernel(pmd, address) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ NULL: pte_offset_kernel(pmd, address)) extern void free_area_init(unsigned long * zones_size); extern void free_area_init_node(int nid, unsigned long * zones_size, unsigned long zone_start_pfn, unsigned long *zholes_size); #ifdef CONFIG_ARCH_POPULATES_NODE_MAP /* * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its * zones, allocate the backing mem_map and account for memory holes in a more * architecture independent manner. This is a substitute for creating the * zone_sizes[] and zholes_size[] arrays and passing them to * free_area_init_node() * * An architecture is expected to register range of page frames backed by * physical memory with add_active_range() before calling * free_area_init_nodes() passing in the PFN each zone ends at. At a basic * usage, an architecture is expected to do something like * * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, * max_highmem_pfn}; * for_each_valid_physical_page_range() * add_active_range(node_id, start_pfn, end_pfn) * free_area_init_nodes(max_zone_pfns); * * If the architecture guarantees that there are no holes in the ranges * registered with add_active_range(), free_bootmem_active_regions() * will call free_bootmem_node() for each registered physical page range. * Similarly sparse_memory_present_with_active_regions() calls * memory_present() for each range when SPARSEMEM is enabled. * * See mm/page_alloc.c for more information on each function exposed by * CONFIG_ARCH_POPULATES_NODE_MAP */ extern void free_area_init_nodes(unsigned long *max_zone_pfn); extern void add_active_range(unsigned int nid, unsigned long start_pfn, unsigned long end_pfn); extern void remove_active_range(unsigned int nid, unsigned long start_pfn, unsigned long end_pfn); extern void remove_all_active_ranges(void); void sort_node_map(void); unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn); extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn); extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn); extern unsigned long find_min_pfn_with_active_regions(void); extern void free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn); int add_from_early_node_map(struct range *range, int az, int nr_range, int nid); u64 __init find_memory_core_early(int nid, u64 size, u64 align, u64 goal, u64 limit); typedef int (*work_fn_t)(unsigned long, unsigned long, void *); extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); extern void sparse_memory_present_with_active_regions(int nid); #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) static inline int __early_pfn_to_nid(unsigned long pfn) { return 0; } #else /* please see mm/page_alloc.c */ extern int __meminit early_pfn_to_nid(unsigned long pfn); #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID /* there is a per-arch backend function. */ extern int __meminit __early_pfn_to_nid(unsigned long pfn); #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ #endif extern void set_dma_reserve(unsigned long new_dma_reserve); extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, enum memmap_context); extern void setup_per_zone_wmarks(void); extern int __meminit init_per_zone_wmark_min(void); extern void mem_init(void); extern void __init mmap_init(void); extern void show_mem(unsigned int flags); extern void si_meminfo(struct sysinfo * val); extern void si_meminfo_node(struct sysinfo *val, int nid); extern int after_bootmem; extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); extern void setup_per_cpu_pageset(void); extern void zone_pcp_update(struct zone *zone); /* nommu.c */ extern atomic_long_t mmap_pages_allocated; extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); /* prio_tree.c */ void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, struct prio_tree_iter *iter); #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ (vma = vma_prio_tree_next(vma, iter)); ) static inline void vma_nonlinear_insert(struct vm_area_struct *vma, struct list_head *list) { vma->shared.vm_set.parent = NULL; list_add_tail(&vma->shared.vm_set.list, list); } /* mmap.c */ extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, struct mempolicy *); extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, struct rb_node **, struct rb_node *); extern void unlink_file_vma(struct vm_area_struct *); extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff); extern void exit_mmap(struct mm_struct *); extern int mm_take_all_locks(struct mm_struct *mm); extern void mm_drop_all_locks(struct mm_struct *mm); /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ extern void added_exe_file_vma(struct mm_struct *mm); extern void removed_exe_file_vma(struct mm_struct *mm); extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); extern struct file *get_mm_exe_file(struct mm_struct *mm); extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, struct page **pages); extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long pgoff); extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, unsigned long flags, vm_flags_t vm_flags, unsigned long pgoff); static inline unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long offset) { unsigned long ret = -EINVAL; if ((offset + PAGE_ALIGN(len)) < offset) goto out; if (!(offset & ~PAGE_MASK)) ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); out: return ret; } extern int do_munmap(struct mm_struct *, unsigned long, size_t); extern unsigned long do_brk(unsigned long, unsigned long); /* filemap.c */ extern unsigned long page_unuse(struct page *); extern void truncate_inode_pages(struct address_space *, loff_t); extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend); /* generic vm_area_ops exported for stackable file systems */ extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); /* mm/page-writeback.c */ int write_one_page(struct page *page, int wait); void task_dirty_inc(struct task_struct *tsk); /* readahead.c */ #define VM_MAX_READAHEAD 128 /* kbytes */ #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ int force_page_cache_readahead(struct address_space *mapping, struct file *filp, pgoff_t offset, unsigned long nr_to_read); void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *filp, pgoff_t offset, unsigned long size); void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *filp, struct page *pg, pgoff_t offset, unsigned long size); unsigned long max_sane_readahead(unsigned long nr); unsigned long ra_submit(struct file_ra_state *ra, struct address_space *mapping, struct file *filp); /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ extern int expand_stack(struct vm_area_struct *vma, unsigned long address); /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ extern int expand_downwards(struct vm_area_struct *vma, unsigned long address); #if VM_GROWSUP extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); #else #define expand_upwards(vma, address) do { } while (0) #endif /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev); /* Look up the first VMA which intersects the interval start_addr..end_addr-1, NULL if none. Assume start_addr < end_addr. */ static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) { struct vm_area_struct * vma = find_vma(mm,start_addr); if (vma && end_addr <= vma->vm_start) vma = NULL; return vma; } static inline unsigned long vma_pages(struct vm_area_struct *vma) { return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; } #ifdef CONFIG_MMU pgprot_t vm_get_page_prot(unsigned long vm_flags); #else static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) { return __pgprot(0); } #endif struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t); int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); struct page *follow_page(struct vm_area_struct *, unsigned long address, unsigned int foll_flags); #define FOLL_WRITE 0x01 /* check pte is writable */ #define FOLL_TOUCH 0x02 /* mark page accessed */ #define FOLL_GET 0x04 /* do get_page on page */ #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO * and return without waiting upon it */ #define FOLL_MLOCK 0x40 /* mark page as mlocked */ #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, void *data); extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); #ifdef CONFIG_PROC_FS void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); #else static inline void vm_stat_account(struct mm_struct *mm, unsigned long flags, struct file *file, long pages) { } #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_DEBUG_PAGEALLOC extern int debug_pagealloc_enabled; extern void kernel_map_pages(struct page *page, int numpages, int enable); static inline void enable_debug_pagealloc(void) { debug_pagealloc_enabled = 1; } #ifdef CONFIG_HIBERNATION extern bool kernel_page_present(struct page *page); #endif /* CONFIG_HIBERNATION */ #else static inline void kernel_map_pages(struct page *page, int numpages, int enable) {} static inline void enable_debug_pagealloc(void) { } #ifdef CONFIG_HIBERNATION static inline bool kernel_page_present(struct page *page) { return true; } #endif /* CONFIG_HIBERNATION */ #endif extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); #ifdef __HAVE_ARCH_GATE_AREA int in_gate_area_no_mm(unsigned long addr); int in_gate_area(struct mm_struct *mm, unsigned long addr); #else int in_gate_area_no_mm(unsigned long addr); #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) #endif /* __HAVE_ARCH_GATE_AREA */ int drop_caches_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); unsigned long shrink_slab(struct shrink_control *shrink, unsigned long nr_pages_scanned, unsigned long lru_pages); #ifndef CONFIG_MMU #define randomize_va_space 0 #else extern int randomize_va_space; #endif const char * arch_vma_name(struct vm_area_struct *vma); void print_vma_addr(char *prefix, unsigned long rip); void sparse_mem_maps_populate_node(struct page **map_map, unsigned long pnum_begin, unsigned long pnum_end, unsigned long map_count, int nodeid); struct page *sparse_mem_map_populate(unsigned long pnum, int nid); pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); void *vmemmap_alloc_block(unsigned long size, int node); void *vmemmap_alloc_block_buf(unsigned long size, int node); void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); int vmemmap_populate_basepages(struct page *start_page, unsigned long pages, int node); int vmemmap_populate(struct page *start_page, unsigned long pages, int node); void vmemmap_populate_print_last(void); enum mf_flags { MF_COUNT_INCREASED = 1 << 0, }; extern void memory_failure(unsigned long pfn, int trapno); extern int __memory_failure(unsigned long pfn, int trapno, int flags); extern int unpoison_memory(unsigned long pfn); extern int sysctl_memory_failure_early_kill; extern int sysctl_memory_failure_recovery; extern void shake_page(struct page *p, int access); extern atomic_long_t mce_bad_pages; extern int soft_offline_page(struct page *page, int flags); extern void dump_page(struct page *page); #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) extern void clear_huge_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page); extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page); #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #endif /* __KERNEL__ */ #endif /* _LINUX_MM_H */