/* * lib/reed_solomon/rslib.c * * Overview: * Generic Reed Solomon encoder / decoder library * * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) * * Reed Solomon code lifted from reed solomon library written by Phil Karn * Copyright 2002 Phil Karn, KA9Q * * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Description: * * The generic Reed Solomon library provides runtime configurable * encoding / decoding of RS codes. * Each user must call init_rs to get a pointer to a rs_control * structure for the given rs parameters. This structure is either * generated or a already available matching control structure is used. * If a structure is generated then the polynomial arrays for * fast encoding / decoding are built. This can take some time so * make sure not to call this function from a time critical path. * Usually a module / driver should initialize the necessary * rs_control structure on module / driver init and release it * on exit. * The encoding puts the calculated syndrome into a given syndrome * buffer. * The decoding is a two step process. The first step calculates * the syndrome over the received (data + syndrome) and calls the * second stage, which does the decoding / error correction itself. * Many hw encoders provide a syndrome calculation over the received * data + syndrome and can call the second stage directly. * */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/rslib.h> #include <linux/slab.h> #include <asm/semaphore.h> /* This list holds all currently allocated rs control structures */ static LIST_HEAD (rslist); /* Protection for the list */ static DECLARE_MUTEX(rslistlock); /** * rs_init - Initialize a Reed-Solomon codec * * @symsize: symbol size, bits (1-8) * @gfpoly: Field generator polynomial coefficients * @fcr: first root of RS code generator polynomial, index form * @prim: primitive element to generate polynomial roots * @nroots: RS code generator polynomial degree (number of roots) * * Allocate a control structure and the polynom arrays for faster * en/decoding. Fill the arrays according to the given parameters */ static struct rs_control *rs_init(int symsize, int gfpoly, int fcr, int prim, int nroots) { struct rs_control *rs; int i, j, sr, root, iprim; /* Allocate the control structure */ rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL); if (rs == NULL) return NULL; INIT_LIST_HEAD(&rs->list); rs->mm = symsize; rs->nn = (1 << symsize) - 1; rs->fcr = fcr; rs->prim = prim; rs->nroots = nroots; rs->gfpoly = gfpoly; /* Allocate the arrays */ rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL); if (rs->alpha_to == NULL) goto errrs; rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL); if (rs->index_of == NULL) goto erralp; rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL); if(rs->genpoly == NULL) goto erridx; /* Generate Galois field lookup tables */ rs->index_of[0] = rs->nn; /* log(zero) = -inf */ rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ sr = 1; for (i = 0; i < rs->nn; i++) { rs->index_of[sr] = i; rs->alpha_to[i] = sr; sr <<= 1; if (sr & (1 << symsize)) sr ^= gfpoly; sr &= rs->nn; } /* If it's not primitive, exit */ if(sr != 1) goto errpol; /* Find prim-th root of 1, used in decoding */ for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); /* prim-th root of 1, index form */ rs->iprim = iprim / prim; /* Form RS code generator polynomial from its roots */ rs->genpoly[0] = 1; for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { rs->genpoly[i + 1] = 1; /* Multiply rs->genpoly[] by @**(root + x) */ for (j = i; j > 0; j--) { if (rs->genpoly[j] != 0) { rs->genpoly[j] = rs->genpoly[j -1] ^ rs->alpha_to[rs_modnn(rs, rs->index_of[rs->genpoly[j]] + root)]; } else rs->genpoly[j] = rs->genpoly[j - 1]; } /* rs->genpoly[0] can never be zero */ rs->genpoly[0] = rs->alpha_to[rs_modnn(rs, rs->index_of[rs->genpoly[0]] + root)]; } /* convert rs->genpoly[] to index form for quicker encoding */ for (i = 0; i <= nroots; i++) rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; return rs; /* Error exit */ errpol: kfree(rs->genpoly); erridx: kfree(rs->index_of); erralp: kfree(rs->alpha_to); errrs: kfree(rs); return NULL; } /** * free_rs - Free the rs control structure, if its not longer used * * @rs: the control structure which is not longer used by the * caller */ void free_rs(struct rs_control *rs) { down(&rslistlock); rs->users--; if(!rs->users) { list_del(&rs->list); kfree(rs->alpha_to); kfree(rs->index_of); kfree(rs->genpoly); kfree(rs); } up(&rslistlock); } /** * init_rs - Find a matching or allocate a new rs control structure * * @symsize: the symbol size (number of bits) * @gfpoly: the extended Galois field generator polynomial coefficients, * with the 0th coefficient in the low order bit. The polynomial * must be primitive; * @fcr: the first consecutive root of the rs code generator polynomial * in index form * @prim: primitive element to generate polynomial roots * @nroots: RS code generator polynomial degree (number of roots) */ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim, int nroots) { struct list_head *tmp; struct rs_control *rs; /* Sanity checks */ if (symsize < 1) return NULL; if (fcr < 0 || fcr >= (1<<symsize)) return NULL; if (prim <= 0 || prim >= (1<<symsize)) return NULL; if (nroots < 0 || nroots >= (1<<symsize)) return NULL; down(&rslistlock); /* Walk through the list and look for a matching entry */ list_for_each(tmp, &rslist) { rs = list_entry(tmp, struct rs_control, list); if (symsize != rs->mm) continue; if (gfpoly != rs->gfpoly) continue; if (fcr != rs->fcr) continue; if (prim != rs->prim) continue; if (nroots != rs->nroots) continue; /* We have a matching one already */ rs->users++; goto out; } /* Create a new one */ rs = rs_init(symsize, gfpoly, fcr, prim, nroots); if (rs) { rs->users = 1; list_add(&rs->list, &rslist); } out: up(&rslistlock); return rs; } #ifdef CONFIG_REED_SOLOMON_ENC8 /** * encode_rs8 - Calculate the parity for data values (8bit data width) * * @rs: the rs control structure * @data: data field of a given type * @len: data length * @par: parity data, must be initialized by caller (usually all 0) * @invmsk: invert data mask (will be xored on data) * * The parity uses a uint16_t data type to enable * symbol size > 8. The calling code must take care of encoding of the * syndrome result for storage itself. */ int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par, uint16_t invmsk) { #include "encode_rs.c" } EXPORT_SYMBOL_GPL(encode_rs8); #endif #ifdef CONFIG_REED_SOLOMON_DEC8 /** * decode_rs8 - Decode codeword (8bit data width) * * @rs: the rs control structure * @data: data field of a given type * @par: received parity data field * @len: data length * @s: syndrome data field (if NULL, syndrome is calculated) * @no_eras: number of erasures * @eras_pos: position of erasures, can be NULL * @invmsk: invert data mask (will be xored on data, not on parity!) * @corr: buffer to store correction bitmask on eras_pos * * The syndrome and parity uses a uint16_t data type to enable * symbol size > 8. The calling code must take care of decoding of the * syndrome result and the received parity before calling this code. */ int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len, uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, uint16_t *corr) { #include "decode_rs.c" } EXPORT_SYMBOL_GPL(decode_rs8); #endif #ifdef CONFIG_REED_SOLOMON_ENC16 /** * encode_rs16 - Calculate the parity for data values (16bit data width) * * @rs: the rs control structure * @data: data field of a given type * @len: data length * @par: parity data, must be initialized by caller (usually all 0) * @invmsk: invert data mask (will be xored on data, not on parity!) * * Each field in the data array contains up to symbol size bits of valid data. */ int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par, uint16_t invmsk) { #include "encode_rs.c" } EXPORT_SYMBOL_GPL(encode_rs16); #endif #ifdef CONFIG_REED_SOLOMON_DEC16 /** * decode_rs16 - Decode codeword (16bit data width) * * @rs: the rs control structure * @data: data field of a given type * @par: received parity data field * @len: data length * @s: syndrome data field (if NULL, syndrome is calculated) * @no_eras: number of erasures * @eras_pos: position of erasures, can be NULL * @invmsk: invert data mask (will be xored on data, not on parity!) * @corr: buffer to store correction bitmask on eras_pos * * Each field in the data array contains up to symbol size bits of valid data. */ int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len, uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, uint16_t *corr) { #include "decode_rs.c" } EXPORT_SYMBOL_GPL(decode_rs16); #endif EXPORT_SYMBOL_GPL(init_rs); EXPORT_SYMBOL_GPL(free_rs); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); MODULE_AUTHOR("Phil Karn, Thomas Gleixner");