/* * BRIEF MODULE DESCRIPTION * Driver for AMD Au1000 MIPS Processor, AC'97 Sound Port * * Copyright 2004 Cooper Street Innovations Inc. * Author: Charles Eidsness <charles@cooper-street.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * * History: * * 2004-09-09 Charles Eidsness -- Original verion -- based on * sa11xx-uda1341.c ALSA driver and the * au1000.c OSS driver. * 2004-09-09 Matt Porter -- Added support for ALSA 1.0.6 * */ #include <linux/ioport.h> #include <linux/interrupt.h> #include <sound/driver.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/version.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/ac97_codec.h> #include <asm/mach-au1x00/au1000.h> #include <asm/mach-au1x00/au1000_dma.h> MODULE_AUTHOR("Charles Eidsness <charles@cooper-street.com>"); MODULE_DESCRIPTION("Au1000 AC'97 ALSA Driver"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{AMD,Au1000 AC'97}}"); #define PLAYBACK 0 #define CAPTURE 1 #define AC97_SLOT_3 0x01 #define AC97_SLOT_4 0x02 #define AC97_SLOT_6 0x08 #define AC97_CMD_IRQ 31 #define READ 0 #define WRITE 1 #define READ_WAIT 2 #define RW_DONE 3 struct au1000_period { u32 start; u32 relative_end; /*realtive to start of buffer*/ struct au1000_period * next; }; /*Au1000 AC97 Port Control Reisters*/ struct au1000_ac97_reg { u32 volatile config; u32 volatile status; u32 volatile data; u32 volatile cmd; u32 volatile cntrl; }; struct audio_stream { struct snd_pcm_substream *substream; int dma; spinlock_t dma_lock; struct au1000_period * buffer; unsigned int period_size; unsigned int periods; }; struct snd_au1000 { struct snd_card *card; struct au1000_ac97_reg volatile *ac97_ioport; struct resource *ac97_res_port; spinlock_t ac97_lock; struct snd_ac97 *ac97; struct snd_pcm *pcm; struct audio_stream *stream[2]; /* playback & capture */ }; /*--------------------------- Local Functions --------------------------------*/ static void au1000_set_ac97_xmit_slots(struct snd_au1000 *au1000, long xmit_slots) { u32 volatile ac97_config; spin_lock(&au1000->ac97_lock); ac97_config = au1000->ac97_ioport->config; ac97_config = ac97_config & ~AC97C_XMIT_SLOTS_MASK; ac97_config |= (xmit_slots << AC97C_XMIT_SLOTS_BIT); au1000->ac97_ioport->config = ac97_config; spin_unlock(&au1000->ac97_lock); } static void au1000_set_ac97_recv_slots(struct snd_au1000 *au1000, long recv_slots) { u32 volatile ac97_config; spin_lock(&au1000->ac97_lock); ac97_config = au1000->ac97_ioport->config; ac97_config = ac97_config & ~AC97C_RECV_SLOTS_MASK; ac97_config |= (recv_slots << AC97C_RECV_SLOTS_BIT); au1000->ac97_ioport->config = ac97_config; spin_unlock(&au1000->ac97_lock); } static void au1000_release_dma_link(struct audio_stream *stream) { struct au1000_period * pointer; struct au1000_period * pointer_next; stream->period_size = 0; stream->periods = 0; pointer = stream->buffer; if (! pointer) return; do { pointer_next = pointer->next; kfree(pointer); pointer = pointer_next; } while (pointer != stream->buffer); stream->buffer = NULL; } static int au1000_setup_dma_link(struct audio_stream *stream, unsigned int period_bytes, unsigned int periods) { struct snd_pcm_substream *substream = stream->substream; struct snd_pcm_runtime *runtime = substream->runtime; struct au1000_period *pointer; unsigned long dma_start; int i; dma_start = virt_to_phys(runtime->dma_area); if (stream->period_size == period_bytes && stream->periods == periods) return 0; /* not changed */ au1000_release_dma_link(stream); stream->period_size = period_bytes; stream->periods = periods; stream->buffer = kmalloc(sizeof(struct au1000_period), GFP_KERNEL); if (! stream->buffer) return -ENOMEM; pointer = stream->buffer; for (i = 0; i < periods; i++) { pointer->start = (u32)(dma_start + (i * period_bytes)); pointer->relative_end = (u32) (((i+1) * period_bytes) - 0x1); if (i < periods - 1) { pointer->next = kmalloc(sizeof(struct au1000_period), GFP_KERNEL); if (! pointer->next) { au1000_release_dma_link(stream); return -ENOMEM; } pointer = pointer->next; } } pointer->next = stream->buffer; return 0; } static void au1000_dma_stop(struct audio_stream *stream) { snd_assert(stream->buffer, return); disable_dma(stream->dma); } static void au1000_dma_start(struct audio_stream *stream) { snd_assert(stream->buffer, return); init_dma(stream->dma); if (get_dma_active_buffer(stream->dma) == 0) { clear_dma_done0(stream->dma); set_dma_addr0(stream->dma, stream->buffer->start); set_dma_count0(stream->dma, stream->period_size >> 1); set_dma_addr1(stream->dma, stream->buffer->next->start); set_dma_count1(stream->dma, stream->period_size >> 1); } else { clear_dma_done1(stream->dma); set_dma_addr1(stream->dma, stream->buffer->start); set_dma_count1(stream->dma, stream->period_size >> 1); set_dma_addr0(stream->dma, stream->buffer->next->start); set_dma_count0(stream->dma, stream->period_size >> 1); } enable_dma_buffers(stream->dma); start_dma(stream->dma); } static irqreturn_t au1000_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct audio_stream *stream = (struct audio_stream *) dev_id; struct snd_pcm_substream *substream = stream->substream; spin_lock(&stream->dma_lock); switch (get_dma_buffer_done(stream->dma)) { case DMA_D0: stream->buffer = stream->buffer->next; clear_dma_done0(stream->dma); set_dma_addr0(stream->dma, stream->buffer->next->start); set_dma_count0(stream->dma, stream->period_size >> 1); enable_dma_buffer0(stream->dma); break; case DMA_D1: stream->buffer = stream->buffer->next; clear_dma_done1(stream->dma); set_dma_addr1(stream->dma, stream->buffer->next->start); set_dma_count1(stream->dma, stream->period_size >> 1); enable_dma_buffer1(stream->dma); break; case (DMA_D0 | DMA_D1): printk(KERN_ERR "DMA %d missed interrupt.\n",stream->dma); au1000_dma_stop(stream); au1000_dma_start(stream); break; case (~DMA_D0 & ~DMA_D1): printk(KERN_ERR "DMA %d empty irq.\n",stream->dma); } spin_unlock(&stream->dma_lock); snd_pcm_period_elapsed(substream); return IRQ_HANDLED; } /*-------------------------- PCM Audio Streams -------------------------------*/ static unsigned int rates[] = {8000, 11025, 16000, 22050}; static struct snd_pcm_hw_constraint_list hw_constraints_rates = { .count = sizeof(rates) / sizeof(rates[0]), .list = rates, .mask = 0, }; static struct snd_pcm_hardware snd_au1000_hw = { .info = (SNDRV_PCM_INFO_INTERLEAVED | \ SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 | SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050), .rate_min = 8000, .rate_max = 22050, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 128*1024, .period_bytes_min = 32, .period_bytes_max = 16*1024, .periods_min = 8, .periods_max = 255, .fifo_size = 16, }; static int snd_au1000_playback_open(struct snd_pcm_substream *substream) { struct snd_au1000 *au1000 = substream->pcm->private_data; au1000->stream[PLAYBACK]->substream = substream; au1000->stream[PLAYBACK]->buffer = NULL; substream->private_data = au1000->stream[PLAYBACK]; substream->runtime->hw = snd_au1000_hw; return (snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates) < 0); } static int snd_au1000_capture_open(struct snd_pcm_substream *substream) { struct snd_au1000 *au1000 = substream->pcm->private_data; au1000->stream[CAPTURE]->substream = substream; au1000->stream[CAPTURE]->buffer = NULL; substream->private_data = au1000->stream[CAPTURE]; substream->runtime->hw = snd_au1000_hw; return (snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates) < 0); } static int snd_au1000_playback_close(struct snd_pcm_substream *substream) { struct snd_au1000 *au1000 = substream->pcm->private_data; au1000->stream[PLAYBACK]->substream = NULL; return 0; } static int snd_au1000_capture_close(struct snd_pcm_substream *substream) { struct snd_au1000 *au1000 = substream->pcm->private_data; au1000->stream[CAPTURE]->substream = NULL; return 0; } static int snd_au1000_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct audio_stream *stream = substream->private_data; int err; err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); if (err < 0) return err; return au1000_setup_dma_link(stream, params_period_bytes(hw_params), params_periods(hw_params)); } static int snd_au1000_hw_free(struct snd_pcm_substream *substream) { struct audio_stream *stream = substream->private_data; au1000_release_dma_link(stream); return snd_pcm_lib_free_pages(substream); } static int snd_au1000_playback_prepare(struct snd_pcm_substream *substream) { struct snd_au1000 *au1000 = substream->pcm->private_data; struct snd_pcm_runtime *runtime = substream->runtime; if (runtime->channels == 1) au1000_set_ac97_xmit_slots(au1000, AC97_SLOT_4); else au1000_set_ac97_xmit_slots(au1000, AC97_SLOT_3 | AC97_SLOT_4); snd_ac97_set_rate(au1000->ac97, AC97_PCM_FRONT_DAC_RATE, runtime->rate); return 0; } static int snd_au1000_capture_prepare(struct snd_pcm_substream *substream) { struct snd_au1000 *au1000 = substream->pcm->private_data; struct snd_pcm_runtime *runtime = substream->runtime; if (runtime->channels == 1) au1000_set_ac97_recv_slots(au1000, AC97_SLOT_4); else au1000_set_ac97_recv_slots(au1000, AC97_SLOT_3 | AC97_SLOT_4); snd_ac97_set_rate(au1000->ac97, AC97_PCM_LR_ADC_RATE, runtime->rate); return 0; } static int snd_au1000_trigger(struct snd_pcm_substream *substream, int cmd) { struct audio_stream *stream = substream->private_data; int err = 0; spin_lock(&stream->dma_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: au1000_dma_start(stream); break; case SNDRV_PCM_TRIGGER_STOP: au1000_dma_stop(stream); break; default: err = -EINVAL; break; } spin_unlock(&stream->dma_lock); return err; } static snd_pcm_uframes_t snd_au1000_pointer(struct snd_pcm_substream *substream) { struct audio_stream *stream = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; long location; spin_lock(&stream->dma_lock); location = get_dma_residue(stream->dma); spin_unlock(&stream->dma_lock); location = stream->buffer->relative_end - location; if (location == -1) location = 0; return bytes_to_frames(runtime,location); } static struct snd_pcm_ops snd_card_au1000_playback_ops = { .open = snd_au1000_playback_open, .close = snd_au1000_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_au1000_hw_params, .hw_free = snd_au1000_hw_free, .prepare = snd_au1000_playback_prepare, .trigger = snd_au1000_trigger, .pointer = snd_au1000_pointer, }; static struct snd_pcm_ops snd_card_au1000_capture_ops = { .open = snd_au1000_capture_open, .close = snd_au1000_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_au1000_hw_params, .hw_free = snd_au1000_hw_free, .prepare = snd_au1000_capture_prepare, .trigger = snd_au1000_trigger, .pointer = snd_au1000_pointer, }; static int __devinit snd_au1000_pcm_new(struct snd_au1000 *au1000) { struct snd_pcm *pcm; int err; unsigned long flags; if ((err = snd_pcm_new(au1000->card, "AU1000 AC97 PCM", 0, 1, 1, &pcm)) < 0) return err; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), 128*1024, 128*1024); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_card_au1000_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_card_au1000_capture_ops); pcm->private_data = au1000; pcm->info_flags = 0; strcpy(pcm->name, "Au1000 AC97 PCM"); spin_lock_init(&au1000->stream[PLAYBACK]->dma_lock); spin_lock_init(&au1000->stream[CAPTURE]->dma_lock); flags = claim_dma_lock(); if ((au1000->stream[PLAYBACK]->dma = request_au1000_dma(DMA_ID_AC97C_TX, "AC97 TX", au1000_dma_interrupt, IRQF_DISABLED, au1000->stream[PLAYBACK])) < 0) { release_dma_lock(flags); return -EBUSY; } if ((au1000->stream[CAPTURE]->dma = request_au1000_dma(DMA_ID_AC97C_RX, "AC97 RX", au1000_dma_interrupt, IRQF_DISABLED, au1000->stream[CAPTURE])) < 0){ release_dma_lock(flags); return -EBUSY; } /* enable DMA coherency in read/write DMA channels */ set_dma_mode(au1000->stream[PLAYBACK]->dma, get_dma_mode(au1000->stream[PLAYBACK]->dma) & ~DMA_NC); set_dma_mode(au1000->stream[CAPTURE]->dma, get_dma_mode(au1000->stream[CAPTURE]->dma) & ~DMA_NC); release_dma_lock(flags); au1000->pcm = pcm; return 0; } /*-------------------------- AC97 CODEC Control ------------------------------*/ static unsigned short snd_au1000_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct snd_au1000 *au1000 = ac97->private_data; u32 volatile cmd; u16 volatile data; int i; spin_lock(&au1000->ac97_lock); /* would rather use the interupt than this polling but it works and I can't get the interupt driven case to work efficiently */ for (i = 0; i < 0x5000; i++) if (!(au1000->ac97_ioport->status & AC97C_CP)) break; if (i == 0x5000) printk(KERN_ERR "au1000 AC97: AC97 command read timeout\n"); cmd = (u32) reg & AC97C_INDEX_MASK; cmd |= AC97C_READ; au1000->ac97_ioport->cmd = cmd; /* now wait for the data */ for (i = 0; i < 0x5000; i++) if (!(au1000->ac97_ioport->status & AC97C_CP)) break; if (i == 0x5000) { printk(KERN_ERR "au1000 AC97: AC97 command read timeout\n"); return 0; } data = au1000->ac97_ioport->cmd & 0xffff; spin_unlock(&au1000->ac97_lock); return data; } static void snd_au1000_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct snd_au1000 *au1000 = ac97->private_data; u32 cmd; int i; spin_lock(&au1000->ac97_lock); /* would rather use the interupt than this polling but it works and I can't get the interupt driven case to work efficiently */ for (i = 0; i < 0x5000; i++) if (!(au1000->ac97_ioport->status & AC97C_CP)) break; if (i == 0x5000) printk(KERN_ERR "au1000 AC97: AC97 command write timeout\n"); cmd = (u32) reg & AC97C_INDEX_MASK; cmd &= ~AC97C_READ; cmd |= ((u32) val << AC97C_WD_BIT); au1000->ac97_ioport->cmd = cmd; spin_unlock(&au1000->ac97_lock); } static int __devinit snd_au1000_ac97_new(struct snd_au1000 *au1000) { int err; struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; static struct snd_ac97_bus_ops ops = { .write = snd_au1000_ac97_write, .read = snd_au1000_ac97_read, }; if ((au1000->ac97_res_port = request_mem_region(CPHYSADDR(AC97C_CONFIG), 0x100000, "Au1x00 AC97")) == NULL) { snd_printk(KERN_ERR "ALSA AC97: can't grap AC97 port\n"); return -EBUSY; } au1000->ac97_ioport = (struct au1000_ac97_reg *) KSEG1ADDR(au1000->ac97_res_port->start); spin_lock_init(&au1000->ac97_lock); /* configure pins for AC'97 TODO: move to board_setup.c */ au_writel(au_readl(SYS_PINFUNC) & ~0x02, SYS_PINFUNC); /* Initialise Au1000's AC'97 Control Block */ au1000->ac97_ioport->cntrl = AC97C_RS | AC97C_CE; udelay(10); au1000->ac97_ioport->cntrl = AC97C_CE; udelay(10); /* Initialise External CODEC -- cold reset */ au1000->ac97_ioport->config = AC97C_RESET; udelay(10); au1000->ac97_ioport->config = 0x0; mdelay(5); /* Initialise AC97 middle-layer */ if ((err = snd_ac97_bus(au1000->card, 0, &ops, au1000, &pbus)) < 0) return err; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = au1000; if ((err = snd_ac97_mixer(pbus, &ac97, &au1000->ac97)) < 0) return err; return 0; } /*------------------------------ Setup / Destroy ----------------------------*/ void snd_au1000_free(struct snd_card *card) { struct snd_au1000 *au1000 = card->private_data; if (au1000->ac97_res_port) { /* put internal AC97 block into reset */ au1000->ac97_ioport->cntrl = AC97C_RS; au1000->ac97_ioport = NULL; release_and_free_resource(au1000->ac97_res_port); } if (au1000->stream[PLAYBACK]) { if (au1000->stream[PLAYBACK]->dma >= 0) free_au1000_dma(au1000->stream[PLAYBACK]->dma); kfree(au1000->stream[PLAYBACK]); } if (au1000->stream[CAPTURE]) { if (au1000->stream[CAPTURE]->dma >= 0) free_au1000_dma(au1000->stream[CAPTURE]->dma); kfree(au1000->stream[CAPTURE]); } } static struct snd_card *au1000_card; static int __init au1000_init(void) { int err; struct snd_card *card; struct snd_au1000 *au1000; card = snd_card_new(-1, "AC97", THIS_MODULE, sizeof(struct snd_au1000)); if (card == NULL) return -ENOMEM; card->private_free = snd_au1000_free; au1000 = card->private_data; au1000->card = card; au1000->stream[PLAYBACK] = kmalloc(sizeof(struct audio_stream), GFP_KERNEL); au1000->stream[CAPTURE ] = kmalloc(sizeof(struct audio_stream), GFP_KERNEL); /* so that snd_au1000_free will work as intended */ au1000->ac97_res_port = NULL; if (au1000->stream[PLAYBACK]) au1000->stream[PLAYBACK]->dma = -1; if (au1000->stream[CAPTURE ]) au1000->stream[CAPTURE ]->dma = -1; if (au1000->stream[PLAYBACK] == NULL || au1000->stream[CAPTURE ] == NULL) { snd_card_free(card); return -ENOMEM; } if ((err = snd_au1000_ac97_new(au1000)) < 0 ) { snd_card_free(card); return err; } if ((err = snd_au1000_pcm_new(au1000)) < 0) { snd_card_free(card); return err; } strcpy(card->driver, "Au1000-AC97"); strcpy(card->shortname, "AMD Au1000-AC97"); sprintf(card->longname, "AMD Au1000--AC97 ALSA Driver"); if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } printk( KERN_INFO "ALSA AC97: Driver Initialized\n" ); au1000_card = card; return 0; } static void __exit au1000_exit(void) { snd_card_free(au1000_card); } module_init(au1000_init); module_exit(au1000_exit);