/* * omap-abe-dsp.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * * Copyright (C) 2010 Texas Instruments Inc. * * Authors: Liam Girdwood * Misael Lopez Cruz * Sebastien Guiriec * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omap-abe-dsp.h" #include "omap-abe.h" #include "abe/abe_main.h" #include "abe/port_mgr.h" #define OMAP_ABE_HS_DC_OFFSET_STEP (1800 / 8) #define OMAP_ABE_HF_DC_OFFSET_STEP (4600 / 8) static const char *abe_memory_bank[5] = { "dmem", "cmem", "smem", "pmem", "mpu" }; /* * ABE loadable coefficients. * The coefficient and their mixer configurations are loaded with the firmware * blob duing probe(). */ struct coeff_config { char name[ABE_COEFF_NAME_SIZE]; u32 count; u32 coeff; char texts[ABE_COEFF_NUM_TEXTS][ABE_COEFF_TEXT_SIZE]; }; /* * ABE Firmware Header. * The ABE firmware blob has a header that describes each data section. This * way we can store coefficients etc in the firmware. */ struct fw_header { u32 magic; /* magic number */ u32 crc; /* optional crc */ u32 firmware_size; /* payload size */ u32 coeff_size; /* payload size */ u32 coeff_version; /* coefficent version */ u32 firmware_version; /* min version of ABE firmware required */ u32 num_equ; /* number of equalizers */ }; struct abe_opp_req { struct device *dev; struct list_head node; int opp; }; /* * ABE private data. */ struct abe_data { struct omap4_abe_dsp_pdata *abe_pdata; struct device *dev; struct snd_soc_platform *platform; struct delayed_work delayed_work; struct mutex mutex; struct mutex opp_mutex; struct mutex opp_req_mutex; struct clk *clk; void __iomem *io_base[5]; int irq; int opp; unsigned long opp_freqs[OMAP_ABE_OPP_COUNT]; /* DC offset cancellation */ int power_mode; u32 dc_hsl; u32 dc_hsr; u32 dc_hfl; u32 dc_hfr; int active; /* coefficients */ struct fw_header hdr; u32 *firmware; s32 *equ[ABE_MAX_EQU]; int equ_profile[ABE_MAX_EQU]; struct soc_enum equalizer_enum[ABE_MAX_EQU]; struct snd_kcontrol_new equalizer_control[ABE_MAX_EQU]; struct coeff_config *equ_texts; int mono_mix[ABE_NUM_MONO_MIXERS]; /* DAPM mixer config - TODO: some of this can be replaced with HAL update */ u32 widget_opp[ABE_NUM_DAPM_REG + 1]; struct list_head opp_req; int opp_req_count; u16 router[16]; struct snd_pcm_substream *ping_pong_substream; int first_irq; struct snd_pcm_substream *psubs; #ifdef CONFIG_DEBUG_FS /* ABE runtime debug config */ /* its intended we can switch on/off individual debug items */ u32 dbg_format1; /* TODO: match flag names here to debug format flags */ u32 dbg_format2; u32 dbg_format3; u32 dbg_buffer_bytes; u32 dbg_circular; u32 dbg_buffer_msecs; /* size of buffer in secs */ u32 dbg_elem_bytes; dma_addr_t dbg_buffer_addr; wait_queue_head_t wait; int dbg_reader_offset; int dbg_dma_offset; int dbg_complete; struct dentry *debugfs_root; struct dentry *debugfs_fmt1; struct dentry *debugfs_fmt2; struct dentry *debugfs_fmt3; struct dentry *debugfs_size; struct dentry *debugfs_data; struct dentry *debugfs_circ; struct dentry *debugfs_elem_bytes; struct dentry *debugfs_opp_level; char *dbg_buffer; struct omap_pcm_dma_data *dma_data; int dma_ch; int dma_req; #endif }; static struct abe_data *the_abe; static int aess_set_runtime_opp_level(struct abe_data *abe); // TODO: map to the new version of HAL static unsigned int abe_dsp_read(struct snd_soc_platform *platform, unsigned int reg) { struct abe_data *abe = snd_soc_platform_get_drvdata(platform); BUG_ON(reg > ABE_NUM_DAPM_REG); return abe->widget_opp[reg]; } static int abe_dsp_write(struct snd_soc_platform *platform, unsigned int reg, unsigned int val) { struct abe_data *abe = snd_soc_platform_get_drvdata(platform); BUG_ON(reg > ABE_NUM_DAPM_REG); abe->widget_opp[reg] = val; return 0; } static void abe_irq_pingpong_subroutine(u32 *data) { u32 dst, n_bytes; abe_read_next_ping_pong_buffer(MM_DL_PORT, &dst, &n_bytes); abe_set_ping_pong_buffer(MM_DL_PORT, n_bytes); /* Do not call ALSA function for first IRQ */ if (the_abe->first_irq) { the_abe->first_irq = 0; } else { if (the_abe->ping_pong_substream) snd_pcm_period_elapsed(the_abe->ping_pong_substream); } } static irqreturn_t abe_irq_handler(int irq, void *dev_id) { struct abe_data *abe = dev_id; /* TODO: handle underruns/overruns/errors */ pm_runtime_get_sync(abe->dev); abe_clear_irq(); // TODO: why is IRQ not cleared after processing ? abe_irq_processing(); pm_runtime_put_sync_suspend(abe->dev); return IRQ_HANDLED; } // TODO: these should really be called internally since we will know the McPDM state void abe_dsp_pm_get(void) { pm_runtime_get_sync(the_abe->dev); } EXPORT_SYMBOL_GPL(abe_dsp_pm_get); void abe_dsp_pm_put(void) { pm_runtime_put_sync(the_abe->dev); } EXPORT_SYMBOL_GPL(abe_dsp_pm_put); void abe_dsp_shutdown(void) { struct omap4_abe_dsp_pdata *pdata = the_abe->abe_pdata; int ret; if (!the_abe->active && !abe_check_activity()) { abe_set_opp_processing(ABE_OPP25); the_abe->opp = 25; abe_stop_event_generator(); udelay(250); if (pdata && pdata->device_scale) { ret = pdata->device_scale(the_abe->dev, the_abe->dev, the_abe->opp_freqs[0]); if (ret) dev_err(the_abe->dev, "failed to scale to lowest OPP\n"); } } } EXPORT_SYMBOL_GPL(abe_dsp_shutdown); void abe_dsp_set_hs_offset(int left, int right, int mult) { /* TODO: do not use abe global structure */ if (the_abe == NULL) return; if (left >= 8) left -= 16; the_abe->dc_hsl = OMAP_ABE_HS_DC_OFFSET_STEP * left * mult; if (right >= 8) right -= 16; the_abe->dc_hsr = OMAP_ABE_HS_DC_OFFSET_STEP * right * mult; } EXPORT_SYMBOL(abe_dsp_set_hs_offset); void abe_dsp_set_hf_offset(int left, int right) { /* TODO: do not use abe global structure */ if (the_abe == NULL) return; if (left >= 8) left -= 16; the_abe->dc_hfl = OMAP_ABE_HF_DC_OFFSET_STEP * left; if (right >= 8) right -= 16; the_abe->dc_hfr = OMAP_ABE_HF_DC_OFFSET_STEP * right; } EXPORT_SYMBOL(abe_dsp_set_hf_offset); void abe_dsp_set_power_mode(int mode) { if (the_abe == NULL) return; /* TODO: do not use abe global structure */ the_abe->power_mode = mode; } EXPORT_SYMBOL(abe_dsp_set_power_mode); /* * These TLV settings will need fine tuned for each individual control */ /* Media DL1 volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(mm_dl1_tlv, -12000, 100, 3000); /* Media DL1 volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(tones_dl1_tlv, -12000, 100, 3000); /* Media DL1 volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(voice_dl1_tlv, -12000, 100, 3000); /* Media DL1 volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(capture_dl1_tlv, -12000, 100, 3000); /* Media DL2 volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(mm_dl2_tlv, -12000, 100, 3000); /* Media DL2 volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(tones_dl2_tlv, -12000, 100, 3000); /* Media DL2 volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(voice_dl2_tlv, -12000, 100, 3000); /* Media DL2 volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(capture_dl2_tlv, -12000, 100, 3000); /* SDT volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(sdt_ul_tlv, -12000, 100, 3000); /* SDT volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(sdt_dl_tlv, -12000, 100, 3000); /* AUDUL volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(audul_mm_tlv, -12000, 100, 3000); /* AUDUL volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(audul_tones_tlv, -12000, 100, 3000); /* AUDUL volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(audul_vx_ul_tlv, -12000, 100, 3000); /* AUDUL volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(audul_vx_dl_tlv, -12000, 100, 3000); /* VXREC volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(vxrec_mm_dl_tlv, -12000, 100, 3000); /* VXREC volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(vxrec_tones_tlv, -12000, 100, 3000); /* VXREC volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(vxrec_vx_dl_tlv, -12000, 100, 3000); /* VXREC volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(vxrec_vx_ul_tlv, -12000, 100, 3000); /* DMIC volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(dmic_tlv, -12000, 100, 3000); /* BT UL volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(btul_tlv, -12000, 100, 3000); /* AMIC volume control from -120 to 30 dB in 1 dB steps */ static DECLARE_TLV_DB_SCALE(amic_tlv, -12000, 100, 3000); //TODO: we have to use the shift value atm to represent register id due to current HAL static int dl1_put_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); // TODO: optimise all of these to call HAL abe_enable_gain(mixer, enable) if (ucontrol->value.integer.value[0]) { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 1); abe_enable_gain(MIXDL1, mc->reg); } else { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 0); abe_disable_gain(MIXDL1, mc->reg); } pm_runtime_put_sync(the_abe->dev); return 1; } static int dl2_put_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); if (ucontrol->value.integer.value[0]) { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 1); abe_enable_gain(MIXDL2, mc->reg); } else { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 0); abe_disable_gain(MIXDL2, mc->reg); } pm_runtime_put_sync(the_abe->dev); return 1; } static int audio_ul_put_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); if (ucontrol->value.integer.value[0]) { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 1); abe_enable_gain(MIXAUDUL, mc->reg); } else { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 0); abe_disable_gain(MIXAUDUL, mc->reg); } pm_runtime_put_sync(the_abe->dev); return 1; } static int vxrec_put_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); if (ucontrol->value.integer.value[0]) { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 1); abe_enable_gain(MIXVXREC, mc->reg); } else { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 0); abe_disable_gain(MIXVXREC, mc->reg); } pm_runtime_put_sync(the_abe->dev); return 1; } static int sdt_put_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); if (ucontrol->value.integer.value[0]) { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 1); abe_enable_gain(MIXSDT, mc->reg); } else { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 0); abe_disable_gain(MIXSDT, mc->reg); } pm_runtime_put_sync(the_abe->dev); return 1; } static int abe_get_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; ucontrol->value.integer.value[0] = the_abe->widget_opp[mc->shift]; return 0; } static int abe_dsp_set_mono_mixer(int id, int enable) { int mixer; switch (id) { case MIX_DL1_MONO: mixer = MIXDL1; break; case MIX_DL2_MONO: mixer = MIXDL2; break; case MIX_AUDUL_MONO: mixer = MIXAUDUL; break; default: return -EINVAL; } pm_runtime_get_sync(the_abe->dev); abe_mono_mixer(mixer, enable); pm_runtime_put_sync(the_abe->dev); return 0; } static int abe_put_mono_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int id = mc->shift - MIX_DL1_MONO; the_abe->mono_mix[id] = ucontrol->value.integer.value[0]; abe_dsp_set_mono_mixer(mc->shift, the_abe->mono_mix[id]); return 1; } static int abe_get_mono_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; int id = mc->shift - MIX_DL1_MONO; ucontrol->value.integer.value[0] = the_abe->mono_mix[id]; return 0; } /* router IDs that match our mixer strings */ static const abe_router_t router[] = { ZERO_labelID, /* strangely this is not 0 */ DMIC1_L_labelID, DMIC1_R_labelID, DMIC2_L_labelID, DMIC2_R_labelID, DMIC3_L_labelID, DMIC3_R_labelID, BT_UL_L_labelID, BT_UL_R_labelID, MM_EXT_IN_L_labelID, MM_EXT_IN_R_labelID, AMIC_L_labelID, AMIC_R_labelID, VX_REC_L_labelID, VX_REC_R_labelID, }; static int ul_mux_put_route(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; int mux = ucontrol->value.enumerated.item[0]; int reg = e->reg - ABE_MUX(0); pm_runtime_get_sync(the_abe->dev); if (mux > ABE_ROUTES_UL) return 0; // TODO: get all this via firmware if (reg < 8) { /* 0 .. 9 = MM_UL */ the_abe->router[reg] = router[mux]; } else if (reg < 12) { /* 10 .. 11 = MM_UL2 */ /* 12 .. 13 = VX_UL */ the_abe->router[reg + 2] = router[mux]; } /* 2nd arg here is unused */ abe_set_router_configuration(UPROUTE, 0, (u32 *)the_abe->router); if (router[mux] != ZERO_labelID) the_abe->widget_opp[e->reg] = e->shift_l; else the_abe->widget_opp[e->reg] = 0; snd_soc_dapm_mux_update_power(widget, kcontrol, 1, mux, e); pm_runtime_put_sync(the_abe->dev); return 1; } static int ul_mux_get_route(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; int reg = e->reg - ABE_MUX(0), i, rval = 0; // TODO: get all this via firmware if (reg < 8) { /* 0 .. 9 = MM_UL */ rval = the_abe->router[reg]; } else if (reg < 12) { /* 10 .. 11 = MM_UL2 */ /* 12 .. 13 = VX_UL */ rval = the_abe->router[reg + 2]; } for (i = 0; i < ARRAY_SIZE(router); i++) { if (router[i] == rval) { ucontrol->value.integer.value[0] = i; return 0; } } return 1; } static int abe_put_switch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *widget = wlist->widgets[0]; struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); if (ucontrol->value.integer.value[0]) { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 1); } else { the_abe->widget_opp[mc->shift] = ucontrol->value.integer.value[0]; snd_soc_dapm_mixer_update_power(widget, kcontrol, 0); } pm_runtime_put_sync(the_abe->dev); return 1; } static int volume_put_sdt_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); abe_write_mixer(MIXSDT, abe_val_to_gain(ucontrol->value.integer.value[0]), RAMP_2MS, mc->reg); pm_runtime_put_sync(the_abe->dev); return 1; } static int volume_put_audul_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); abe_write_mixer(MIXAUDUL, abe_val_to_gain(ucontrol->value.integer.value[0]), RAMP_2MS, mc->reg); pm_runtime_put_sync(the_abe->dev); return 1; } static int volume_put_vxrec_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); abe_write_mixer(MIXVXREC, abe_val_to_gain(ucontrol->value.integer.value[0]), RAMP_2MS, mc->reg); pm_runtime_put_sync(the_abe->dev); return 1; } static int volume_put_dl1_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); abe_write_mixer(MIXDL1, abe_val_to_gain(ucontrol->value.integer.value[0]), RAMP_2MS, mc->reg); pm_runtime_put_sync(the_abe->dev); return 1; } static int volume_put_dl2_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); abe_write_mixer(MIXDL2, abe_val_to_gain(ucontrol->value.integer.value[0]), RAMP_2MS, mc->reg); pm_runtime_put_sync(the_abe->dev); return 1; } static int volume_put_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; pm_runtime_get_sync(the_abe->dev); abe_write_gain(mc->reg, abe_val_to_gain(ucontrol->value.integer.value[0]), RAMP_2MS, mc->shift); abe_write_gain(mc->reg, -12000 + (ucontrol->value.integer.value[1] * 100), RAMP_2MS, mc->rshift); pm_runtime_put_sync(the_abe->dev); return 1; } static int volume_get_dl1_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; u32 val; pm_runtime_get_sync(the_abe->dev); abe_read_mixer(MIXDL1, &val, mc->reg); ucontrol->value.integer.value[0] = abe_gain_to_val(val); pm_runtime_put_sync(the_abe->dev); return 0; } static int volume_get_dl2_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; u32 val; pm_runtime_get_sync(the_abe->dev); abe_read_mixer(MIXDL2, &val, mc->reg); ucontrol->value.integer.value[0] = abe_gain_to_val(val); pm_runtime_put_sync(the_abe->dev); return 0; } static int volume_get_audul_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; u32 val; pm_runtime_get_sync(the_abe->dev); abe_read_mixer(MIXAUDUL, &val, mc->reg); ucontrol->value.integer.value[0] = abe_gain_to_val(val); pm_runtime_put_sync(the_abe->dev); return 0; } static int volume_get_vxrec_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; u32 val; pm_runtime_get_sync(the_abe->dev); abe_read_mixer(MIXVXREC, &val, mc->reg); ucontrol->value.integer.value[0] = abe_gain_to_val(val); pm_runtime_put_sync(the_abe->dev); return 0; } static int volume_get_sdt_mixer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; u32 val; pm_runtime_get_sync(the_abe->dev); abe_read_mixer(MIXSDT, &val, mc->reg); ucontrol->value.integer.value[0] = abe_gain_to_val(val); pm_runtime_put_sync(the_abe->dev); return 0; } static int volume_get_gain(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; u32 val; pm_runtime_get_sync(the_abe->dev); abe_read_gain(mc->reg, &val, mc->shift); ucontrol->value.integer.value[0] = abe_gain_to_val(val); abe_read_gain(mc->reg, &val, mc->rshift); ucontrol->value.integer.value[1] = abe_gain_to_val(val); pm_runtime_put_sync(the_abe->dev); return 0; } static int abe_dsp_set_equalizer(unsigned int id, unsigned int profile) { abe_equ_t equ_params; int len; if (id >= the_abe->hdr.num_equ) return -EINVAL; if (profile >= the_abe->equ_texts[id].count) return -EINVAL; len = the_abe->equ_texts[id].coeff; equ_params.equ_length = len; memcpy(equ_params.coef.type1, the_abe->equ[id] + profile * len, len * sizeof(u32)); the_abe->equ_profile[id] = profile; pm_runtime_get_sync(the_abe->dev); abe_write_equalizer(id + 1, &equ_params); pm_runtime_put_sync(the_abe->dev); return 0; } static int abe_get_equalizer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_enum *eqc = (struct soc_enum *)kcontrol->private_value; ucontrol->value.integer.value[0] = the_abe->equ_profile[eqc->reg]; return 0; } static int abe_put_equalizer(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_enum *eqc = (struct soc_enum *)kcontrol->private_value; u16 val = ucontrol->value.enumerated.item[0]; int ret; ret = abe_dsp_set_equalizer(eqc->reg, val); if (ret < 0) return ret; return 1; } int snd_soc_info_enum_ext1(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = e->max; if (uinfo->value.enumerated.item > e->max - 1) uinfo->value.enumerated.item = e->max - 1; strcpy(uinfo->value.enumerated.name, snd_soc_get_enum_text(e, uinfo->value.enumerated.item)); return 0; } static const char *route_ul_texts[] = { "None", "DMic0L", "DMic0R", "DMic1L", "DMic1R", "DMic2L", "DMic2R", "BT Left", "BT Right", "MMExt Left", "MMExt Right", "AMic0", "AMic1", "VX Left", "VX Right" }; /* ROUTE_UL Mux table */ static const struct soc_enum abe_enum[] = { SOC_ENUM_SINGLE(MUX_MM_UL10, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL11, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL12, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL13, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL14, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL15, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL16, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL17, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL20, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_MM_UL21, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_VX_UL0, 0, 15, route_ul_texts), SOC_ENUM_SINGLE(MUX_VX_UL1, 0, 15, route_ul_texts), }; static const struct snd_kcontrol_new mm_ul00_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[0], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul01_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[1], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul02_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[2], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul03_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[3], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul04_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[4], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul05_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[5], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul06_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[6], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul07_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[7], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul10_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[8], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_ul11_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[9], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_vx0_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[10], ul_mux_get_route, ul_mux_put_route); static const struct snd_kcontrol_new mm_vx1_control = SOC_DAPM_ENUM_EXT("Route", abe_enum[11], ul_mux_get_route, ul_mux_put_route); /* DL1 mixer paths */ static const struct snd_kcontrol_new dl1_mixer_controls[] = { SOC_SINGLE_EXT("Tones", MIX_DL1_INPUT_TONES, MIX_DL1_TONES, 1, 0, abe_get_mixer, dl1_put_mixer), SOC_SINGLE_EXT("Voice", MIX_DL1_INPUT_VX_DL, MIX_DL1_VOICE, 1, 0, abe_get_mixer, dl1_put_mixer), SOC_SINGLE_EXT("Capture", MIX_DL1_INPUT_MM_UL2, MIX_DL1_CAPTURE, 1, 0, abe_get_mixer, dl1_put_mixer), SOC_SINGLE_EXT("Multimedia", MIX_DL1_INPUT_MM_DL, MIX_DL1_MEDIA, 1, 0, abe_get_mixer, dl1_put_mixer), }; /* DL2 mixer paths */ static const struct snd_kcontrol_new dl2_mixer_controls[] = { SOC_SINGLE_EXT("Tones", MIX_DL2_INPUT_TONES, MIX_DL2_TONES, 1, 0, abe_get_mixer, dl2_put_mixer), SOC_SINGLE_EXT("Voice", MIX_DL2_INPUT_VX_DL, MIX_DL2_VOICE, 1, 0, abe_get_mixer, dl2_put_mixer), SOC_SINGLE_EXT("Capture", MIX_DL2_INPUT_MM_UL2, MIX_DL2_CAPTURE, 1, 0, abe_get_mixer, dl2_put_mixer), SOC_SINGLE_EXT("Multimedia", MIX_DL2_INPUT_MM_DL, MIX_DL2_MEDIA, 1, 0, abe_get_mixer, dl2_put_mixer), }; /* AUDUL ("Voice Capture Mixer") mixer paths */ static const struct snd_kcontrol_new audio_ul_mixer_controls[] = { SOC_SINGLE_EXT("Tones Playback", MIX_AUDUL_INPUT_TONES, MIX_AUDUL_TONES, 1, 0, abe_get_mixer, audio_ul_put_mixer), SOC_SINGLE_EXT("Media Playback", MIX_AUDUL_INPUT_MM_DL, MIX_AUDUL_MEDIA, 1, 0, abe_get_mixer, audio_ul_put_mixer), SOC_SINGLE_EXT("Capture", MIX_AUDUL_INPUT_UPLINK, MIX_AUDUL_CAPTURE, 1, 0, abe_get_mixer, audio_ul_put_mixer), }; /* VXREC ("Capture Mixer") mixer paths */ static const struct snd_kcontrol_new vx_rec_mixer_controls[] = { SOC_SINGLE_EXT("Tones", MIX_VXREC_INPUT_TONES, MIX_VXREC_TONES, 1, 0, abe_get_mixer, vxrec_put_mixer), SOC_SINGLE_EXT("Voice Playback", MIX_VXREC_INPUT_VX_DL, MIX_VXREC_VOICE_PLAYBACK, 1, 0, abe_get_mixer, vxrec_put_mixer), SOC_SINGLE_EXT("Voice Capture", MIX_VXREC_INPUT_VX_UL, MIX_VXREC_VOICE_CAPTURE, 1, 0, abe_get_mixer, vxrec_put_mixer), SOC_SINGLE_EXT("Media Playback", MIX_VXREC_INPUT_MM_DL, MIX_VXREC_MEDIA, 1, 0, abe_get_mixer, vxrec_put_mixer), }; /* SDT ("Sidetone Mixer") mixer paths */ static const struct snd_kcontrol_new sdt_mixer_controls[] = { SOC_SINGLE_EXT("Capture", MIX_SDT_INPUT_UP_MIXER, MIX_SDT_CAPTURE, 1, 0, abe_get_mixer, sdt_put_mixer), SOC_SINGLE_EXT("Playback", MIX_SDT_INPUT_DL1_MIXER, MIX_SDT_PLAYBACK, 1, 0, abe_get_mixer, sdt_put_mixer), }; /* Virtual PDM_DL Switch */ static const struct snd_kcontrol_new pdm_dl1_switch_controls = SOC_SINGLE_EXT("Switch", ABE_VIRTUAL_SWITCH, MIX_SWITCH_PDM_DL, 1, 0, abe_get_mixer, abe_put_switch); /* Virtual BT_VX_DL Switch */ static const struct snd_kcontrol_new bt_vx_dl_switch_controls = SOC_SINGLE_EXT("Switch", ABE_VIRTUAL_SWITCH, MIX_SWITCH_BT_VX_DL, 1, 0, abe_get_mixer, abe_put_switch); /* Virtual MM_EXT_DL Switch */ static const struct snd_kcontrol_new mm_ext_dl_switch_controls = SOC_SINGLE_EXT("Switch", ABE_VIRTUAL_SWITCH, MIX_SWITCH_MM_EXT_DL, 1, 0, abe_get_mixer, abe_put_switch); static const struct snd_kcontrol_new abe_controls[] = { /* DL1 mixer gains */ SOC_SINGLE_EXT_TLV("DL1 Media Playback Volume", MIX_DL1_INPUT_MM_DL, 0, 149, 0, volume_get_dl1_mixer, volume_put_dl1_mixer, mm_dl1_tlv), SOC_SINGLE_EXT_TLV("DL1 Tones Playback Volume", MIX_DL1_INPUT_TONES, 0, 149, 0, volume_get_dl1_mixer, volume_put_dl1_mixer, tones_dl1_tlv), SOC_SINGLE_EXT_TLV("DL1 Voice Playback Volume", MIX_DL1_INPUT_VX_DL, 0, 149, 0, volume_get_dl1_mixer, volume_put_dl1_mixer, voice_dl1_tlv), SOC_SINGLE_EXT_TLV("DL1 Capture Playback Volume", MIX_DL1_INPUT_MM_UL2, 0, 149, 0, volume_get_dl1_mixer, volume_put_dl1_mixer, capture_dl1_tlv), /* DL2 mixer gains */ SOC_SINGLE_EXT_TLV("DL2 Media Playback Volume", MIX_DL2_INPUT_MM_DL, 0, 149, 0, volume_get_dl2_mixer, volume_put_dl2_mixer, mm_dl2_tlv), SOC_SINGLE_EXT_TLV("DL2 Tones Playback Volume", MIX_DL2_INPUT_TONES, 0, 149, 0, volume_get_dl2_mixer, volume_put_dl2_mixer, tones_dl2_tlv), SOC_SINGLE_EXT_TLV("DL2 Voice Playback Volume", MIX_DL2_INPUT_VX_DL, 0, 149, 0, volume_get_dl2_mixer, volume_put_dl2_mixer, voice_dl2_tlv), SOC_SINGLE_EXT_TLV("DL2 Capture Playback Volume", MIX_DL2_INPUT_MM_UL2, 0, 149, 0, volume_get_dl2_mixer, volume_put_dl2_mixer, capture_dl2_tlv), /* VXREC mixer gains */ SOC_SINGLE_EXT_TLV("VXREC Media Volume", MIX_VXREC_INPUT_MM_DL, 0, 149, 0, volume_get_vxrec_mixer, volume_put_vxrec_mixer, vxrec_mm_dl_tlv), SOC_SINGLE_EXT_TLV("VXREC Tones Volume", MIX_VXREC_INPUT_TONES, 0, 149, 0, volume_get_vxrec_mixer, volume_put_vxrec_mixer, vxrec_tones_tlv), SOC_SINGLE_EXT_TLV("VXREC Voice DL Volume", MIX_VXREC_INPUT_VX_UL, 0, 149, 0, volume_get_vxrec_mixer, volume_put_vxrec_mixer, vxrec_vx_dl_tlv), SOC_SINGLE_EXT_TLV("VXREC Voice UL Volume", MIX_VXREC_INPUT_VX_DL, 0, 149, 0, volume_get_vxrec_mixer, volume_put_vxrec_mixer, vxrec_vx_ul_tlv), /* AUDUL mixer gains */ SOC_SINGLE_EXT_TLV("AUDUL Media Volume", MIX_AUDUL_INPUT_MM_DL, 0, 149, 0, volume_get_audul_mixer, volume_put_audul_mixer, audul_mm_tlv), SOC_SINGLE_EXT_TLV("AUDUL Tones Volume", MIX_AUDUL_INPUT_TONES, 0, 149, 0, volume_get_audul_mixer, volume_put_audul_mixer, audul_tones_tlv), SOC_SINGLE_EXT_TLV("AUDUL Voice UL Volume", MIX_AUDUL_INPUT_UPLINK, 0, 149, 0, volume_get_audul_mixer, volume_put_audul_mixer, audul_vx_ul_tlv), SOC_SINGLE_EXT_TLV("AUDUL Voice DL Volume", MIX_AUDUL_INPUT_VX_DL, 0, 149, 0, volume_get_audul_mixer, volume_put_audul_mixer, audul_vx_dl_tlv), /* SDT mixer gains */ SOC_SINGLE_EXT_TLV("SDT UL Volume", MIX_SDT_INPUT_UP_MIXER, 0, 149, 0, volume_get_sdt_mixer, volume_put_sdt_mixer, sdt_ul_tlv), SOC_SINGLE_EXT_TLV("SDT DL Volume", MIX_SDT_INPUT_DL1_MIXER, 0, 149, 0, volume_get_sdt_mixer, volume_put_sdt_mixer, sdt_dl_tlv), /* DMIC gains */ SOC_DOUBLE_EXT_TLV("DMIC1 UL Volume", GAINS_DMIC1, GAIN_LEFT_OFFSET, GAIN_RIGHT_OFFSET, 149, 0, volume_get_gain, volume_put_gain, dmic_tlv), SOC_DOUBLE_EXT_TLV("DMIC2 UL Volume", GAINS_DMIC2, GAIN_LEFT_OFFSET, GAIN_RIGHT_OFFSET, 149, 0, volume_get_gain, volume_put_gain, dmic_tlv), SOC_DOUBLE_EXT_TLV("DMIC3 UL Volume", GAINS_DMIC3, GAIN_LEFT_OFFSET, GAIN_RIGHT_OFFSET, 149, 0, volume_get_gain, volume_put_gain, dmic_tlv), SOC_DOUBLE_EXT_TLV("AMIC UL Volume", GAINS_AMIC, GAIN_LEFT_OFFSET, GAIN_RIGHT_OFFSET, 149, 0, volume_get_gain, volume_put_gain, amic_tlv), SOC_DOUBLE_EXT_TLV("BT UL Volume", GAINS_BTUL, GAIN_LEFT_OFFSET, GAIN_RIGHT_OFFSET, 149, 0, volume_get_gain, volume_put_gain, btul_tlv), SOC_SINGLE_EXT("DL1 Mono Mixer", MIXDL1, MIX_DL1_MONO, 1, 0, abe_get_mono_mixer, abe_put_mono_mixer), SOC_SINGLE_EXT("DL2 Mono Mixer", MIXDL2, MIX_DL2_MONO, 1, 0, abe_get_mono_mixer, abe_put_mono_mixer), SOC_SINGLE_EXT("AUDUL Mono Mixer", MIXAUDUL, MIX_AUDUL_MONO, 1, 0, abe_get_mono_mixer, abe_put_mono_mixer), }; static const struct snd_soc_dapm_widget abe_dapm_widgets[] = { /* Frontend AIFs */ SND_SOC_DAPM_AIF_IN("TONES_DL", "Tones Playback", 0, W_AIF_TONES_DL, ABE_OPP_25, 0), SND_SOC_DAPM_AIF_IN("VX_DL", "Voice Playback", 0, W_AIF_VX_DL, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_OUT("VX_UL", "Voice Capture", 0, W_AIF_VX_UL, ABE_OPP_50, 0), /* the MM_UL mapping is intentional */ SND_SOC_DAPM_AIF_OUT("MM_UL1", "MultiMedia1 Capture", 0, W_AIF_MM_UL1, ABE_OPP_100, 0), SND_SOC_DAPM_AIF_OUT("MM_UL2", "MultiMedia2 Capture", 0, W_AIF_MM_UL2, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_IN("MM_DL", " MultiMedia1 Playback", 0, W_AIF_MM_DL, ABE_OPP_25, 0), SND_SOC_DAPM_AIF_IN("MM_DL_LP", " MultiMedia1 LP Playback", 0, W_AIF_MM_DL_LP, ABE_OPP_25, 0), SND_SOC_DAPM_AIF_IN("VIB_DL", "Vibra Playback", 0, W_AIF_VIB_DL, ABE_OPP_100, 0), SND_SOC_DAPM_AIF_IN("MODEM_DL", "MODEM Playback", 0, W_AIF_MODEM_DL, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_OUT("MODEM_UL", "MODEM Capture", 0, W_AIF_MODEM_UL, ABE_OPP_50, 0), /* Backend DAIs */ SND_SOC_DAPM_AIF_IN("PDM_UL1", "Analog Capture", 0, W_AIF_PDM_UL1, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_OUT("PDM_DL1", "HS Playback", 0, W_AIF_PDM_DL1, ABE_OPP_25, 0), SND_SOC_DAPM_AIF_OUT("PDM_DL2", "HF Playback", 0, W_AIF_PDM_DL2, ABE_OPP_100, 0), SND_SOC_DAPM_AIF_OUT("PDM_VIB", "Vibra Playback", 0, W_AIF_PDM_VIB, ABE_OPP_100, 0), SND_SOC_DAPM_AIF_IN("BT_VX_UL", "BT Capture", 0, W_AIF_BT_VX_UL, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_OUT("BT_VX_DL", "BT Playback", 0, W_AIF_BT_VX_DL, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_IN("MM_EXT_UL", "FM Capture", 0, W_AIF_MM_EXT_UL, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_OUT("MM_EXT_DL", "FM Playback", 0, W_AIF_MM_EXT_DL, ABE_OPP_25, 0), SND_SOC_DAPM_AIF_IN("DMIC0", "DMIC0 Capture", 0, W_AIF_DMIC0, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_IN("DMIC1", "DMIC1 Capture", 0, W_AIF_DMIC1, ABE_OPP_50, 0), SND_SOC_DAPM_AIF_IN("DMIC2", "DMIC2 Capture", 0, W_AIF_DMIC2, ABE_OPP_50, 0), /* ROUTE_UL Capture Muxes */ SND_SOC_DAPM_MUX("MUX_UL00", W_MUX_UL00, ABE_OPP_50, 0, &mm_ul00_control), SND_SOC_DAPM_MUX("MUX_UL01", W_MUX_UL01, ABE_OPP_50, 0, &mm_ul01_control), SND_SOC_DAPM_MUX("MUX_UL02", W_MUX_UL02, ABE_OPP_50, 0, &mm_ul02_control), SND_SOC_DAPM_MUX("MUX_UL03", W_MUX_UL03, ABE_OPP_50, 0, &mm_ul03_control), SND_SOC_DAPM_MUX("MUX_UL04", W_MUX_UL04, ABE_OPP_50, 0, &mm_ul04_control), SND_SOC_DAPM_MUX("MUX_UL05", W_MUX_UL05, ABE_OPP_50, 0, &mm_ul05_control), SND_SOC_DAPM_MUX("MUX_UL06", W_MUX_UL06, ABE_OPP_50, 0, &mm_ul06_control), SND_SOC_DAPM_MUX("MUX_UL07", W_MUX_UL07, ABE_OPP_50, 0, &mm_ul07_control), SND_SOC_DAPM_MUX("MUX_UL10", W_MUX_UL10, ABE_OPP_50, 0, &mm_ul10_control), SND_SOC_DAPM_MUX("MUX_UL11", W_MUX_UL11, ABE_OPP_50, 0, &mm_ul11_control), SND_SOC_DAPM_MUX("MUX_VX0", W_MUX_VX00, ABE_OPP_50, 0, &mm_vx0_control), SND_SOC_DAPM_MUX("MUX_VX1", W_MUX_VX01, ABE_OPP_50, 0, &mm_vx1_control), /* DL1 & DL2 Playback Mixers */ SND_SOC_DAPM_MIXER("DL1 Mixer", W_MIXER_DL1, ABE_OPP_25, 0, dl1_mixer_controls, ARRAY_SIZE(dl1_mixer_controls)), SND_SOC_DAPM_MIXER("DL2 Mixer", W_MIXER_DL2, ABE_OPP_100, 0, dl2_mixer_controls, ARRAY_SIZE(dl2_mixer_controls)), /* DL1 Mixer Input volumes ?????*/ SND_SOC_DAPM_PGA("DL1 Media Volume", W_VOLUME_DL1, 0, 0, NULL, 0), /* AUDIO_UL_MIXER */ SND_SOC_DAPM_MIXER("Voice Capture Mixer", W_MIXER_AUDIO_UL, ABE_OPP_50, 0, audio_ul_mixer_controls, ARRAY_SIZE(audio_ul_mixer_controls)), /* VX_REC_MIXER */ SND_SOC_DAPM_MIXER("Capture Mixer", W_MIXER_VX_REC, ABE_OPP_50, 0, vx_rec_mixer_controls, ARRAY_SIZE(vx_rec_mixer_controls)), /* SDT_MIXER - TODO: shoult this not be OPP25 ??? */ SND_SOC_DAPM_MIXER("Sidetone Mixer", W_MIXER_SDT, ABE_OPP_25, 0, sdt_mixer_controls, ARRAY_SIZE(sdt_mixer_controls)), /* * The Following three are virtual switches to select the output port * after DL1 Gain. */ /* Virtual PDM_DL1 Switch */ SND_SOC_DAPM_MIXER("DL1 PDM", W_VSWITCH_DL1_PDM, ABE_OPP_25, 0, &pdm_dl1_switch_controls, 1), /* Virtual BT_VX_DL Switch */ SND_SOC_DAPM_MIXER("DL1 BT_VX", W_VSWITCH_DL1_BT_VX, ABE_OPP_50, 0, &bt_vx_dl_switch_controls, 1), /* Virtual MM_EXT_DL Switch TODO: confrm OPP level here */ SND_SOC_DAPM_MIXER("DL1 MM_EXT", W_VSWITCH_DL1_MM_EXT, ABE_OPP_50, 0, &mm_ext_dl_switch_controls, 1), /* Virtuals to join our capture sources */ SND_SOC_DAPM_MIXER("Sidetone Capture VMixer", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("Voice Capture VMixer", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("DL1 Capture VMixer", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("DL2 Capture VMixer", SND_SOC_NOPM, 0, 0, NULL, 0), /* Join our MM_DL and MM_DL_LP playback */ SND_SOC_DAPM_MIXER("MM_DL VMixer", SND_SOC_NOPM, 0, 0, NULL, 0), /* Virtual MODEM and VX_UL mixer */ SND_SOC_DAPM_MIXER("VX UL VMixer", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("VX DL VMixer", SND_SOC_NOPM, 0, 0, NULL, 0), /* Virtual Pins to force backends ON atm */ SND_SOC_DAPM_OUTPUT("BE_OUT"), SND_SOC_DAPM_INPUT("BE_IN"), }; static const struct snd_soc_dapm_route intercon[] = { /* MUX_UL00 - ROUTE_UL - Chan 0 */ {"MUX_UL00", "DMic0L", "DMIC0"}, {"MUX_UL00", "DMic0R", "DMIC0"}, {"MUX_UL00", "DMic1L", "DMIC1"}, {"MUX_UL00", "DMic1R", "DMIC1"}, {"MUX_UL00", "DMic2L", "DMIC2"}, {"MUX_UL00", "DMic2R", "DMIC2"}, {"MUX_UL00", "BT Left", "BT_VX_UL"}, {"MUX_UL00", "BT Right", "BT_VX_UL"}, {"MUX_UL00", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL00", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL00", "AMic0", "PDM_UL1"}, {"MUX_UL00", "AMic1", "PDM_UL1"}, {"MUX_UL00", "VX Left", "Capture Mixer"}, {"MUX_UL00", "VX Right", "Capture Mixer"}, {"MM_UL1", NULL, "MUX_UL00"}, /* MUX_UL01 - ROUTE_UL - Chan 1 */ {"MUX_UL01", "DMic0L", "DMIC0"}, {"MUX_UL01", "DMic0R", "DMIC0"}, {"MUX_UL01", "DMic1L", "DMIC1"}, {"MUX_UL01", "DMic1R", "DMIC1"}, {"MUX_UL01", "DMic2L", "DMIC2"}, {"MUX_UL01", "DMic2R", "DMIC2"}, {"MUX_UL01", "BT Left", "BT_VX_UL"}, {"MUX_UL01", "BT Right", "BT_VX_UL"}, {"MUX_UL01", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL01", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL01", "AMic0", "PDM_UL1"}, {"MUX_UL01", "AMic1", "PDM_UL1"}, {"MUX_UL01", "VX Left", "Capture Mixer"}, {"MUX_UL01", "VX Right", "Capture Mixer"}, {"MM_UL1", NULL, "MUX_UL01"}, /* MUX_UL02 - ROUTE_UL - Chan 2 */ {"MUX_UL02", "DMic0L", "DMIC0"}, {"MUX_UL02", "DMic0R", "DMIC0"}, {"MUX_UL02", "DMic1L", "DMIC1"}, {"MUX_UL02", "DMic1R", "DMIC1"}, {"MUX_UL02", "DMic2L", "DMIC2"}, {"MUX_UL02", "DMic2R", "DMIC2"}, {"MUX_UL02", "BT Left", "BT_VX_UL"}, {"MUX_UL02", "BT Right", "BT_VX_UL"}, {"MUX_UL02", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL02", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL02", "AMic0", "PDM_UL1"}, {"MUX_UL02", "AMic1", "PDM_UL1"}, {"MUX_UL02", "VX Left", "Capture Mixer"}, {"MUX_UL02", "VX Right", "Capture Mixer"}, {"MM_UL1", NULL, "MUX_UL02"}, /* MUX_UL03 - ROUTE_UL - Chan 3 */ {"MUX_UL03", "DMic0L", "DMIC0"}, {"MUX_UL03", "DMic0R", "DMIC0"}, {"MUX_UL03", "DMic1L", "DMIC1"}, {"MUX_UL03", "DMic1R", "DMIC1"}, {"MUX_UL03", "DMic2L", "DMIC2"}, {"MUX_UL03", "DMic2R", "DMIC2"}, {"MUX_UL03", "BT Left", "BT_VX_UL"}, {"MUX_UL03", "BT Right", "BT_VX_UL"}, {"MUX_UL03", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL03", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL03", "AMic0", "PDM_UL1"}, {"MUX_UL03", "AMic1", "PDM_UL1"}, {"MUX_UL03", "VX Left", "Capture Mixer"}, {"MUX_UL03", "VX Right", "Capture Mixer"}, {"MM_UL1", NULL, "MUX_UL03"}, /* MUX_UL04 - ROUTE_UL - Chan 4 */ {"MUX_UL04", "DMic0L", "DMIC0"}, {"MUX_UL04", "DMic0R", "DMIC0"}, {"MUX_UL04", "DMic1L", "DMIC1"}, {"MUX_UL04", "DMic1R", "DMIC1"}, {"MUX_UL04", "DMic2L", "DMIC2"}, {"MUX_UL04", "DMic2R", "DMIC2"}, {"MUX_UL04", "BT Left", "BT_VX_UL"}, {"MUX_UL04", "BT Right", "BT_VX_UL"}, {"MUX_UL04", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL04", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL04", "AMic0", "PDM_UL1"}, {"MUX_UL04", "AMic1", "PDM_UL1"}, {"MUX_UL04", "VX Left", "Capture Mixer"}, {"MUX_UL04", "VX Right", "Capture Mixer"}, {"MM_UL1", NULL, "MUX_UL04"}, /* MUX_UL05 - ROUTE_UL - Chan 5 */ {"MUX_UL05", "DMic0L", "DMIC0"}, {"MUX_UL05", "DMic0R", "DMIC0"}, {"MUX_UL05", "DMic1L", "DMIC1"}, {"MUX_UL05", "DMic1R", "DMIC1"}, {"MUX_UL05", "DMic2L", "DMIC2"}, {"MUX_UL05", "DMic2R", "DMIC2"}, {"MUX_UL05", "BT Left", "BT_VX_UL"}, {"MUX_UL05", "BT Right", "BT_VX_UL"}, {"MUX_UL05", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL05", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL05", "AMic0", "PDM_UL1"}, {"MUX_UL05", "AMic1", "PDM_UL1"}, {"MUX_UL05", "VX Left", "Capture Mixer"}, {"MUX_UL05", "VX Right", "Capture Mixer"}, {"MM_UL1", NULL, "MUX_UL05"}, /* MUX_UL06 - ROUTE_UL - Chan 6 */ {"MUX_UL06", "DMic0L", "DMIC0"}, {"MUX_UL06", "DMic0R", "DMIC0"}, {"MUX_UL06", "DMic1L", "DMIC1"}, {"MUX_UL06", "DMic1R", "DMIC1"}, {"MUX_UL06", "DMic2L", "DMIC2"}, {"MUX_UL06", "DMic2R", "DMIC2"}, {"MUX_UL06", "BT Left", "BT_VX_UL"}, {"MUX_UL06", "BT Right", "BT_VX_UL"}, {"MUX_UL06", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL06", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL06", "AMic0", "PDM_UL1"}, {"MUX_UL06", "AMic1", "PDM_UL1"}, {"MUX_UL06", "VX Left", "Capture Mixer"}, {"MUX_UL06", "VX Right", "Capture Mixer"}, {"MM_UL1", NULL, "MUX_UL06"}, /* MUX_UL07 - ROUTE_UL - Chan 7 */ {"MUX_UL07", "DMic0L", "DMIC0"}, {"MUX_UL07", "DMic0R", "DMIC0"}, {"MUX_UL07", "DMic1L", "DMIC1"}, {"MUX_UL07", "DMic1R", "DMIC1"}, {"MUX_UL07", "DMic2L", "DMIC2"}, {"MUX_UL07", "DMic2R", "DMIC2"}, {"MUX_UL07", "BT Left", "BT_VX_UL"}, {"MUX_UL07", "BT Right", "BT_VX_UL"}, {"MUX_UL07", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL07", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL07", "AMic0", "PDM_UL1"}, {"MUX_UL07", "AMic1", "PDM_UL1"}, {"MUX_UL07", "VX Left", "Capture Mixer"}, {"MUX_UL07", "VX Right", "Capture Mixer"}, {"MM_UL1", NULL, "MUX_UL07"}, /* MUX_UL10 - ROUTE_UL - Chan 10 */ {"MUX_UL10", "DMic0L", "DMIC0"}, {"MUX_UL10", "DMic0R", "DMIC0"}, {"MUX_UL10", "DMic1L", "DMIC1"}, {"MUX_UL10", "DMic1R", "DMIC1"}, {"MUX_UL10", "DMic2L", "DMIC2"}, {"MUX_UL10", "DMic2R", "DMIC2"}, {"MUX_UL10", "BT Left", "BT_VX_UL"}, {"MUX_UL10", "BT Right", "BT_VX_UL"}, {"MUX_UL10", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL10", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL10", "AMic0", "PDM_UL1"}, {"MUX_UL10", "AMic1", "PDM_UL1"}, {"MUX_UL10", "VX Left", "Capture Mixer"}, {"MUX_UL10", "VX Right", "Capture Mixer"}, {"MM_UL2", NULL, "MUX_UL10"}, /* MUX_UL11 - ROUTE_UL - Chan 11 */ {"MUX_UL11", "DMic0L", "DMIC0"}, {"MUX_UL11", "DMic0R", "DMIC0"}, {"MUX_UL11", "DMic1L", "DMIC1"}, {"MUX_UL11", "DMic1R", "DMIC1"}, {"MUX_UL11", "DMic2L", "DMIC2"}, {"MUX_UL11", "DMic2R", "DMIC2"}, {"MUX_UL11", "BT Left", "BT_VX_UL"}, {"MUX_UL11", "BT Right", "BT_VX_UL"}, {"MUX_UL11", "MMExt Left", "MM_EXT_UL"}, {"MUX_UL11", "MMExt Right", "MM_EXT_UL"}, {"MUX_UL11", "AMic0", "PDM_UL1"}, {"MUX_UL11", "AMic1", "PDM_UL1"}, {"MUX_UL11", "VX Left", "Capture Mixer"}, {"MUX_UL11", "VX Right", "Capture Mixer"}, {"MM_UL2", NULL, "MUX_UL11"}, /* MUX_VX0 - ROUTE_UL - Chan 20 */ {"MUX_VX0", "DMic0L", "DMIC0"}, {"MUX_VX0", "DMic0R", "DMIC0"}, {"MUX_VX0", "DMic1L", "DMIC1"}, {"MUX_VX0", "DMic1R", "DMIC1"}, {"MUX_VX0", "DMic2L", "DMIC2"}, {"MUX_VX0", "DMic2R", "DMIC2"}, {"MUX_VX0", "BT Left", "BT_VX_UL"}, {"MUX_VX0", "BT Right", "BT_VX_UL"}, {"MUX_VX0", "MMExt Left", "MM_EXT_UL"}, {"MUX_VX0", "MMExt Right", "MM_EXT_UL"}, {"MUX_VX0", "AMic0", "PDM_UL1"}, {"MUX_VX0", "AMic1", "PDM_UL1"}, {"MUX_VX0", "VX Left", "Capture Mixer"}, {"MUX_VX0", "VX Right", "Capture Mixer"}, /* MUX_VX1 - ROUTE_UL - Chan 20 */ {"MUX_VX1", "DMic0L", "DMIC0"}, {"MUX_VX1", "DMic0R", "DMIC0"}, {"MUX_VX1", "DMic1L", "DMIC1"}, {"MUX_VX1", "DMic1R", "DMIC1"}, {"MUX_VX1", "DMic2L", "DMIC2"}, {"MUX_VX1", "DMic2R", "DMIC2"}, {"MUX_VX1", "BT Left", "BT_VX_UL"}, {"MUX_VX1", "BT Right", "BT_VX_UL"}, {"MUX_VX1", "MMExt Left", "MM_EXT_UL"}, {"MUX_VX1", "MMExt Right", "MM_EXT_UL"}, {"MUX_VX1", "AMic0", "PDM_UL1"}, {"MUX_VX1", "AMic1", "PDM_UL1"}, {"MUX_VX1", "VX Left", "Capture Mixer"}, {"MUX_VX1", "VX Right", "Capture Mixer"}, /* Headset (DL1) playback path */ {"DL1 Mixer", "Tones", "TONES_DL"}, {"DL1 Mixer", "Voice", "VX DL VMixer"}, {"DL1 Mixer", "Capture", "DL1 Capture VMixer"}, {"DL1 Capture VMixer", NULL, "MUX_UL10"}, {"DL1 Capture VMixer", NULL, "MUX_UL11"}, {"DL1 Mixer", "Multimedia", "MM_DL VMixer"}, {"MM_DL VMixer", NULL, "MM_DL"}, {"MM_DL VMixer", NULL, "MM_DL_LP"}, /* Sidetone Mixer */ {"Sidetone Mixer", "Playback", "DL1 Mixer"}, {"Sidetone Mixer", "Capture", "Sidetone Capture VMixer"}, {"Sidetone Capture VMixer", NULL, "MUX_VX0"}, {"Sidetone Capture VMixer", NULL, "MUX_VX1"}, /* Playback Output selection after DL1 Gain */ {"DL1 BT_VX", "Switch", "Sidetone Mixer"}, {"DL1 MM_EXT", "Switch", "Sidetone Mixer"}, {"DL1 PDM", "Switch", "Sidetone Mixer"}, {"PDM_DL1", NULL, "DL1 PDM"}, {"BT_VX_DL", NULL, "DL1 BT_VX"}, {"MM_EXT_DL", NULL, "DL1 MM_EXT"}, /* Handsfree (DL2) playback path */ {"DL2 Mixer", "Tones", "TONES_DL"}, {"DL2 Mixer", "Voice", "VX DL VMixer"}, {"DL2 Mixer", "Capture", "DL2 Capture VMixer"}, {"DL2 Capture VMixer", NULL, "MUX_UL10"}, {"DL2 Capture VMixer", NULL, "MUX_UL11"}, {"DL2 Mixer", "Multimedia", "MM_DL VMixer"}, {"MM_DL VMixer", NULL, "MM_DL"}, {"MM_DL VMixer", NULL, "MM_DL_LP"}, {"PDM_DL2", NULL, "DL2 Mixer"}, /* VxREC Mixer */ {"Capture Mixer", "Tones", "TONES_DL"}, {"Capture Mixer", "Voice Playback", "VX DL VMixer"}, {"Capture Mixer", "Voice Capture", "VX UL VMixer"}, {"Capture Mixer", "Media Playback", "MM_DL VMixer"}, {"MM_DL VMixer", NULL, "MM_DL"}, {"MM_DL VMixer", NULL, "MM_DL_LP"}, /* Audio UL mixer */ {"Voice Capture Mixer", "Tones Playback", "TONES_DL"}, {"Voice Capture Mixer", "Media Playback", "MM_DL VMixer"}, {"MM_DL VMixer", NULL, "MM_DL"}, {"MM_DL VMixer", NULL, "MM_DL_LP"}, {"Voice Capture Mixer", "Capture", "Voice Capture VMixer"}, {"Voice Capture VMixer", NULL, "MUX_VX0"}, {"Voice Capture VMixer", NULL, "MUX_VX1"}, /* BT */ {"VX UL VMixer", NULL, "Voice Capture Mixer"}, /* Vibra */ {"PDM_VIB", NULL, "VIB_DL"}, /* VX and MODEM */ {"VX_UL", NULL, "VX UL VMixer"}, {"MODEM_UL", NULL, "VX UL VMixer"}, {"VX DL VMixer", NULL, "VX_DL"}, {"VX DL VMixer", NULL, "MODEM_DL"}, /* Backend Enablement - TODO: maybe re-work*/ {"BE_OUT", NULL, "PDM_DL1"}, {"BE_OUT", NULL, "PDM_DL2"}, {"BE_OUT", NULL, "PDM_VIB"}, {"BE_OUT", NULL, "MM_EXT_DL"}, {"BE_OUT", NULL, "BT_VX_DL"}, {"PDM_UL1", NULL, "BE_IN"}, {"BT_VX_UL", NULL, "BE_IN"}, {"MM_EXT_UL", NULL, "BE_IN"}, {"DMIC0", NULL, "BE_IN"}, {"DMIC1", NULL, "BE_IN"}, {"DMIC2", NULL, "BE_IN"}, }; #ifdef CONFIG_DEBUG_FS static int abe_dbg_get_dma_pos(struct abe_data *abe) { return omap_get_dma_dst_pos(abe->dma_ch) - abe->dbg_buffer_addr; } static void abe_dbg_dma_irq(int ch, u16 stat, void *data) { } static int abe_dbg_start_dma(struct abe_data *abe, int circular) { struct omap_dma_channel_params dma_params; int err; /* TODO: start the DMA in either :- * * 1) circular buffer mode where the DMA will restart when it get to * the end of the buffer. * 2) default mode, where DMA stops at the end of the buffer. */ abe->dma_req = OMAP44XX_DMA_ABE_REQ_7; err = omap_request_dma(abe->dma_req, "ABE debug", abe_dbg_dma_irq, abe, &abe->dma_ch); if (abe->dbg_circular) { /* * Link channel with itself so DMA doesn't need any * reprogramming while looping the buffer */ omap_dma_link_lch(abe->dma_ch, abe->dma_ch); } memset(&dma_params, 0, sizeof(dma_params)); dma_params.data_type = OMAP_DMA_DATA_TYPE_S32; dma_params.trigger = abe->dma_req; dma_params.sync_mode = OMAP_DMA_SYNC_FRAME; dma_params.src_amode = OMAP_DMA_AMODE_DOUBLE_IDX; dma_params.dst_amode = OMAP_DMA_AMODE_POST_INC; dma_params.src_or_dst_synch = OMAP_DMA_SRC_SYNC; dma_params.src_start = D_DEBUG_FIFO_ADDR + ABE_DMEM_BASE_ADDRESS_L3; dma_params.dst_start = abe->dbg_buffer_addr; dma_params.src_port = OMAP_DMA_PORT_MPUI; dma_params.src_ei = 1; dma_params.src_fi = 1 - abe->dbg_elem_bytes; dma_params.elem_count = abe->dbg_elem_bytes >> 2; /* 128 bytes shifted into words */ dma_params.frame_count = abe->dbg_buffer_bytes / abe->dbg_elem_bytes; omap_set_dma_params(abe->dma_ch, &dma_params); omap_enable_dma_irq(abe->dma_ch, OMAP_DMA_FRAME_IRQ); omap_set_dma_src_burst_mode(abe->dma_ch, OMAP_DMA_DATA_BURST_16); omap_set_dma_dest_burst_mode(abe->dma_ch, OMAP_DMA_DATA_BURST_16); abe->dbg_reader_offset = 0; pm_runtime_get_sync(abe->dev); omap_start_dma(abe->dma_ch); return 0; } static void abe_dbg_stop_dma(struct abe_data *abe) { while (omap_get_dma_active_status(abe->dma_ch)) omap_stop_dma(abe->dma_ch); if (abe->dbg_circular) omap_dma_unlink_lch(abe->dma_ch, abe->dma_ch); omap_free_dma(abe->dma_ch); pm_runtime_put_sync(abe->dev); } static int abe_open_data(struct inode *inode, struct file *file) { struct abe_data *abe = inode->i_private; abe->dbg_elem_bytes = 128; /* size of debug data per tick */ if (abe->dbg_format1) abe->dbg_elem_bytes += ABE_DBG_FLAG1_SIZE; if (abe->dbg_format2) abe->dbg_elem_bytes += ABE_DBG_FLAG2_SIZE; if (abe->dbg_format3) abe->dbg_elem_bytes += ABE_DBG_FLAG3_SIZE; abe->dbg_buffer_bytes = abe->dbg_elem_bytes * 4 * abe->dbg_buffer_msecs; abe->dbg_buffer = dma_alloc_writecombine(abe->dev, abe->dbg_buffer_bytes, &abe->dbg_buffer_addr, GFP_KERNEL); if (abe->dbg_buffer == NULL) return -ENOMEM; file->private_data = inode->i_private; abe->dbg_complete = 0; abe_dbg_start_dma(abe, abe->dbg_circular); return 0; } static int abe_release_data(struct inode *inode, struct file *file) { struct abe_data *abe = inode->i_private; abe_dbg_stop_dma(abe); dma_free_writecombine(abe->dev, abe->dbg_buffer_bytes, abe->dbg_buffer, abe->dbg_buffer_addr); return 0; } static ssize_t abe_copy_to_user(struct abe_data *abe, char __user *user_buf, size_t count) { /* check for reader buffer wrap */ if (abe->dbg_reader_offset + count > abe->dbg_buffer_bytes) { int size = abe->dbg_buffer_bytes - abe->dbg_reader_offset; /* wrap */ if (copy_to_user(user_buf, abe->dbg_buffer + abe->dbg_reader_offset, size)) return -EFAULT; /* need to just return if non circular */ if (!abe->dbg_circular) { abe->dbg_complete = 1; return count; } if (copy_to_user(user_buf, abe->dbg_buffer, count - size)) return -EFAULT; abe->dbg_reader_offset = count - size; return count; } else { /* no wrap */ if (copy_to_user(user_buf, abe->dbg_buffer + abe->dbg_reader_offset, count)) return -EFAULT; abe->dbg_reader_offset += count; if (!abe->dbg_circular && abe->dbg_reader_offset == abe->dbg_buffer_bytes) abe->dbg_complete = 1; return count; } } static ssize_t abe_read_data(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { ssize_t ret = 0; struct abe_data *abe = file->private_data; DECLARE_WAITQUEUE(wait, current); int dma_offset, bytes; add_wait_queue(&abe->wait, &wait); do { set_current_state(TASK_INTERRUPTIBLE); /* TODO: Check if really needed. Or adjust sleep delay * If not delay trace is not working */ msleep_interruptible(1); dma_offset = abe_dbg_get_dma_pos(abe); /* is DMA finished ? */ if (abe->dbg_complete) break; /* get maximum amount of debug bytes we can read */ if (dma_offset >= abe->dbg_reader_offset) { /* dma ptr is ahead of reader */ bytes = dma_offset - abe->dbg_reader_offset; } else { /* dma ptr is behind reader */ bytes = dma_offset + abe->dbg_buffer_bytes - abe->dbg_reader_offset; } if (count > bytes) count = bytes; if (count > 0) { ret = abe_copy_to_user(abe, user_buf, count); break; } if (file->f_flags & O_NONBLOCK) { ret = -EAGAIN; break; } if (signal_pending(current)) { ret = -ERESTARTSYS; break; } schedule(); } while (1); __set_current_state(TASK_RUNNING); remove_wait_queue(&abe->wait, &wait); return ret; } static const struct file_operations abe_data_fops = { .open = abe_open_data, .read = abe_read_data, .release = abe_release_data, }; static void abe_init_debugfs(struct abe_data *abe) { abe->debugfs_root = debugfs_create_dir("omap4-abe", NULL); if (!abe->debugfs_root) { printk(KERN_WARNING "ABE: Failed to create debugfs directory\n"); return; } abe->debugfs_fmt1 = debugfs_create_bool("format1", 0644, abe->debugfs_root, &abe->dbg_format1); if (!abe->debugfs_fmt1) printk(KERN_WARNING "ABE: Failed to create format1 debugfs file\n"); abe->debugfs_fmt2 = debugfs_create_bool("format2", 0644, abe->debugfs_root, &abe->dbg_format2); if (!abe->debugfs_fmt2) printk(KERN_WARNING "ABE: Failed to create format2 debugfs file\n"); abe->debugfs_fmt3 = debugfs_create_bool("format3", 0644, abe->debugfs_root, &abe->dbg_format3); if (!abe->debugfs_fmt3) printk(KERN_WARNING "ABE: Failed to create format3 debugfs file\n"); abe->debugfs_elem_bytes = debugfs_create_u32("element_bytes", 0604, abe->debugfs_root, &abe->dbg_elem_bytes); if (!abe->debugfs_elem_bytes) printk(KERN_WARNING "ABE: Failed to create element size debugfs file\n"); abe->debugfs_size = debugfs_create_u32("msecs", 0644, abe->debugfs_root, &abe->dbg_buffer_msecs); if (!abe->debugfs_size) printk(KERN_WARNING "ABE: Failed to create buffer size debugfs file\n"); abe->debugfs_circ = debugfs_create_bool("circular", 0644, abe->debugfs_root, &abe->dbg_circular); if (!abe->debugfs_size) printk(KERN_WARNING "ABE: Failed to create circular mode debugfs file\n"); abe->debugfs_data = debugfs_create_file("debug", 0644, abe->debugfs_root, abe, &abe_data_fops); if (!abe->debugfs_data) printk(KERN_WARNING "ABE: Failed to create data debugfs file\n"); abe->debugfs_opp_level = debugfs_create_u32("opp_level", 0604, abe->debugfs_root, &abe->opp); if (!abe->debugfs_opp_level) printk(KERN_WARNING "ABE: Failed to create OPP level debugfs file\n"); abe->dbg_buffer_msecs = 500; init_waitqueue_head(&abe->wait); } static void abe_cleanup_debugfs(struct abe_data *abe) { debugfs_remove_recursive(abe->debugfs_root); } #else static inline void abe_init_debugfs(struct abe_data *abe) { } static inline void abe_cleanup_debugfs(struct abe_data *abe) { } #endif static const struct snd_pcm_hardware omap_abe_hardware = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, .period_bytes_min = 4 * 1024, .period_bytes_max = 24 * 1024, .periods_min = 4, .periods_max = 4, .buffer_bytes_max = 24 * 1024 * 2, }; static struct abe_opp_req *abe_opp_req_lookup(struct abe_data *abe, struct device *dev) { struct abe_opp_req *req, *tmp_req; req = NULL; list_for_each_entry(tmp_req, &abe->opp_req, node) { if (tmp_req->dev == dev) { req = tmp_req; break; } } return req; } static int abe_get_opp_req(struct abe_data *abe) { struct abe_opp_req *req; int opp = 0; list_for_each_entry(req, &abe->opp_req, node) opp |= req->opp; opp = (1 << (fls(opp) - 1)) * 25; return opp; } int abe_add_opp_req(struct device *dev, int opp) { struct abe_opp_req *req; int ret = 0; mutex_lock(&the_abe->opp_req_mutex); req = abe_opp_req_lookup(the_abe, dev); if (!req) { req = kzalloc(sizeof(struct abe_opp_req), GFP_KERNEL); if (!req) { ret = -ENOMEM; goto out; } req->dev = dev; /* use the same convention as ABE DSP DAPM */ req->opp = 1 << opp; list_add(&req->node, &the_abe->opp_req); the_abe->opp_req_count++; } else { req->opp = opp; } aess_set_runtime_opp_level(the_abe); out: mutex_unlock(&the_abe->opp_req_mutex); return ret; } EXPORT_SYMBOL(abe_add_opp_req); int abe_remove_opp_req(struct device *dev) { struct abe_opp_req *req; int ret = 0; mutex_lock(&the_abe->opp_req_mutex); req = abe_opp_req_lookup(the_abe, dev); if (!req) { dev_err(dev, "trying to remove an invalid opp req\n"); ret = -EINVAL; goto out; } list_del(&req->node); the_abe->opp_req_count--; kfree(req); aess_set_runtime_opp_level(the_abe); out: mutex_unlock(&the_abe->opp_req_mutex); return ret; } EXPORT_SYMBOL(abe_remove_opp_req); static int abe_set_opp_mode(struct abe_data *abe, int opp) { struct omap4_abe_dsp_pdata *pdata = abe->abe_pdata; int ret = 0; if (abe->opp > opp) { /* Decrease OPP mode - no need of OPP100% */ switch (opp) { case 25: abe_set_opp_processing(ABE_OPP25); udelay(250); if (pdata && pdata->device_scale) { ret = pdata->device_scale(abe->dev, abe->dev, abe->opp_freqs[OMAP_ABE_OPP25]); if (ret) goto err_scale; } break; case 50: default: abe_set_opp_processing(ABE_OPP50); udelay(250); if (pdata && pdata->device_scale) { ret = pdata->device_scale(abe->dev, abe->dev, abe->opp_freqs[OMAP_ABE_OPP50]); if (ret) goto err_scale; } break; } } else if (abe->opp < opp) { /* Increase OPP mode */ switch (opp) { case 25: if (pdata && pdata->device_scale) { pdata->device_scale(abe->dev, abe->dev, abe->opp_freqs[OMAP_ABE_OPP25]); if (ret) goto err_scale; } abe_set_opp_processing(ABE_OPP25); break; case 50: if (pdata && pdata->device_scale) { ret = pdata->device_scale(abe->dev, abe->dev, abe->opp_freqs[OMAP_ABE_OPP50]); if (ret) goto err_scale; } abe_set_opp_processing(ABE_OPP50); break; case 100: default: if (pdata && pdata->device_scale) { ret = pdata->device_scale(abe->dev, abe->dev, abe->opp_freqs[OMAP_ABE_OPP100]); if (ret) goto err_scale; } abe_set_opp_processing(ABE_OPP100); break; } } abe->opp = opp; dev_dbg(abe->dev, "new OPP level is %d\n", opp); return 0; err_scale: dev_err(abe->dev, "failed to scale to OPP%d\n", opp); return ret; } static int aess_set_runtime_opp_level(struct abe_data *abe) { int i, req_opp, opp = 0; mutex_lock(&abe->opp_mutex); /* now calculate OPP level based upon DAPM widget status */ for (i = 0; i < ABE_NUM_WIDGETS; i++) { if (abe->widget_opp[ABE_WIDGET(i)]) { dev_dbg(abe->dev, "OPP: id %d = %d%%\n", i, abe->widget_opp[ABE_WIDGET(i)] * 25); opp |= abe->widget_opp[ABE_WIDGET(i)]; } } opp = (1 << (fls(opp) - 1)) * 25; /* opps requested outside ABE DSP driver (e.g. McPDM) */ req_opp = abe_get_opp_req(abe); pm_runtime_get_sync(abe->dev); abe_set_opp_mode(abe, max(opp, req_opp)); pm_runtime_put_sync(abe->dev); mutex_unlock(&abe->opp_mutex); return 0; } static void abe_dsp_init_gains(struct abe_data *abe) { /* Uplink gains */ abe_mute_gain(MIXAUDUL, MIX_AUDUL_INPUT_MM_DL); abe_mute_gain(MIXAUDUL, MIX_AUDUL_INPUT_TONES); abe_mute_gain(MIXAUDUL, MIX_AUDUL_INPUT_UPLINK); abe_mute_gain(MIXAUDUL, MIX_AUDUL_INPUT_VX_DL); abe_mute_gain(MIXVXREC, MIX_VXREC_INPUT_TONES); abe_mute_gain(MIXVXREC, MIX_VXREC_INPUT_VX_DL); abe_mute_gain(MIXVXREC, MIX_VXREC_INPUT_MM_DL); abe_mute_gain(MIXVXREC, MIX_VXREC_INPUT_VX_UL); abe_mute_gain(GAINS_DMIC1, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_DMIC1, GAIN_RIGHT_OFFSET); abe_mute_gain(GAINS_DMIC2, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_DMIC2, GAIN_RIGHT_OFFSET); abe_mute_gain(GAINS_DMIC3, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_DMIC3, GAIN_RIGHT_OFFSET); abe_mute_gain(GAINS_AMIC, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_AMIC, GAIN_RIGHT_OFFSET); abe_mute_gain(GAINS_BTUL, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_BTUL, GAIN_RIGHT_OFFSET); /* Downlink gains */ abe_write_gain(GAINS_DL1, GAIN_0dB, RAMP_2MS, GAIN_LEFT_OFFSET); abe_write_gain(GAINS_DL1, GAIN_0dB, RAMP_2MS, GAIN_RIGHT_OFFSET); abe_mute_gain(GAINS_DL1, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_DL1, GAIN_RIGHT_OFFSET); abe_write_gain(GAINS_DL2, GAIN_M7dB, RAMP_2MS, GAIN_LEFT_OFFSET); abe_write_gain(GAINS_DL2, GAIN_M7dB, RAMP_2MS, GAIN_RIGHT_OFFSET); abe_mute_gain(GAINS_DL2, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_DL2, GAIN_RIGHT_OFFSET); abe_mute_gain(MIXDL1, MIX_DL1_INPUT_MM_DL); abe_mute_gain(MIXDL1, MIX_DL1_INPUT_MM_UL2); abe_mute_gain(MIXDL1, MIX_DL1_INPUT_VX_DL); abe_mute_gain(MIXDL1, MIX_DL1_INPUT_TONES); abe_mute_gain(MIXDL2, MIX_DL2_INPUT_TONES); abe_mute_gain(MIXDL2, MIX_DL2_INPUT_VX_DL); abe_mute_gain(MIXDL2, MIX_DL2_INPUT_MM_DL); abe_mute_gain(MIXDL2, MIX_DL2_INPUT_MM_UL2); abe_mute_gain(MIXECHO, MIX_ECHO_DL1); abe_mute_gain(MIXECHO, MIX_ECHO_DL2); /* Sidetone gains */ abe_mute_gain(MIXSDT, MIX_SDT_INPUT_UP_MIXER); abe_mute_gain(MIXSDT, MIX_SDT_INPUT_DL1_MIXER); } static int aess_save_context(struct abe_data *abe) { /* mute gains not associated with FEs/BEs */ abe_mute_gain(MIXAUDUL, MIX_AUDUL_INPUT_MM_DL); abe_mute_gain(MIXAUDUL, MIX_AUDUL_INPUT_TONES); abe_mute_gain(MIXAUDUL, MIX_AUDUL_INPUT_VX_DL); abe_mute_gain(MIXVXREC, MIX_VXREC_INPUT_TONES); abe_mute_gain(MIXVXREC, MIX_VXREC_INPUT_VX_DL); abe_mute_gain(MIXVXREC, MIX_VXREC_INPUT_MM_DL); abe_mute_gain(MIXVXREC, MIX_VXREC_INPUT_VX_UL); abe_mute_gain(MIXECHO, MIX_ECHO_DL1); abe_mute_gain(MIXECHO, MIX_ECHO_DL2); return 0; } static int aess_restore_context(struct abe_data *abe) { struct omap4_abe_dsp_pdata *pdata = abe->abe_pdata; int i, ret; if (pdata && pdata->device_scale) { ret = pdata->device_scale(the_abe->dev, the_abe->dev, abe->opp_freqs[OMAP_ABE_OPP50]); if (ret) { dev_err(abe->dev, "failed to scale to OPP50\n"); return ret; } } if (pdata->was_context_lost && pdata->was_context_lost(abe->dev)) abe_reload_fw(abe->firmware); /* unmute gains not associated with FEs/BEs */ abe_unmute_gain(MIXAUDUL, MIX_AUDUL_INPUT_MM_DL); abe_unmute_gain(MIXAUDUL, MIX_AUDUL_INPUT_TONES); abe_unmute_gain(MIXAUDUL, MIX_AUDUL_INPUT_VX_DL); abe_unmute_gain(MIXVXREC, MIX_VXREC_INPUT_TONES); abe_unmute_gain(MIXVXREC, MIX_VXREC_INPUT_VX_DL); abe_unmute_gain(MIXVXREC, MIX_VXREC_INPUT_MM_DL); abe_unmute_gain(MIXVXREC, MIX_VXREC_INPUT_VX_UL); abe_unmute_gain(MIXECHO, MIX_ECHO_DL1); abe_unmute_gain(MIXECHO, MIX_ECHO_DL2); abe_set_router_configuration(UPROUTE, 0, (u32 *)abe->router); /* DC offset cancellation setting */ if (abe->power_mode) abe_write_pdmdl_offset(1, abe->dc_hsl * 2, abe->dc_hsr * 2); else abe_write_pdmdl_offset(1, abe->dc_hsl, abe->dc_hsr); abe_write_pdmdl_offset(2, abe->dc_hfl, abe->dc_hfr); for (i = 0; i < abe->hdr.num_equ; i++) abe_dsp_set_equalizer(i, abe->equ_profile[i]); for (i = 0; i < ABE_NUM_MONO_MIXERS; i++) abe_dsp_set_mono_mixer(MIX_DL1_MONO + i, abe->mono_mix[i]); return 0; } static int aess_open(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_platform *platform = rtd->platform; struct abe_data *abe = snd_soc_platform_get_drvdata(platform); struct snd_soc_dai *dai = rtd->cpu_dai; int ret = 0; mutex_lock(&abe->mutex); dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); pm_runtime_get_sync(abe->dev); if (!abe->active++) { abe->opp = 0; aess_restore_context(abe); abe_set_opp_mode(abe, 100); abe_wakeup(); } switch (dai->id) { case ABE_FRONTEND_DAI_MODEM: break; case ABE_FRONTEND_DAI_LP_MEDIA: snd_soc_set_runtime_hwparams(substream, &omap_abe_hardware); ret = snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 1024); break; default: break; } mutex_unlock(&abe->mutex); return ret; } static int aess_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; struct snd_soc_platform *platform = rtd->platform; struct abe_data *abe = snd_soc_platform_get_drvdata(platform); struct snd_soc_dai *dai = rtd->cpu_dai; abe_data_format_t format; size_t period_size; u32 dst; dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); if (dai->id != ABE_FRONTEND_DAI_LP_MEDIA) return 0; /*Storing substream pointer for irq*/ abe->ping_pong_substream = substream; format.f = params_rate(params); if (params_format(params) == SNDRV_PCM_FORMAT_S32_LE) format.samp_format = STEREO_MSB; else format.samp_format = STEREO_16_16; if (format.f == 44100) abe_write_event_generator(EVENT_44100); period_size = params_period_bytes(params); /*Adding ping pong buffer subroutine*/ abe_plug_subroutine(&abe_irq_pingpong_player_id, (abe_subroutine2) abe_irq_pingpong_subroutine, SUB_1_PARAM, (u32 *)abe); /* Connect a Ping-Pong cache-flush protocol to MM_DL port */ abe_connect_irq_ping_pong_port(MM_DL_PORT, &format, abe_irq_pingpong_player_id, period_size, &dst, PING_PONG_WITH_MCU_IRQ); /* Memory mapping for hw params */ runtime->dma_area = abe->io_base[0] + dst; runtime->dma_addr = 0; runtime->dma_bytes = period_size * 4; /* Need to set the first buffer in order to get interrupt */ abe_set_ping_pong_buffer(MM_DL_PORT, period_size); abe->first_irq = 1; return 0; } static int aess_prepare(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_platform *platform = rtd->platform; struct abe_data *abe = snd_soc_platform_get_drvdata(platform); struct snd_soc_dai *dai = rtd->cpu_dai; mutex_lock(&abe->mutex); dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); aess_set_runtime_opp_level(abe); mutex_unlock(&abe->mutex); return 0; } static int aess_close(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_platform *platform = rtd->platform; struct abe_data *abe = snd_soc_platform_get_drvdata(platform); struct snd_soc_dai *dai = rtd->cpu_dai; mutex_lock(&abe->mutex); dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name); if (!--abe->active) { abe_disable_irq(); aess_save_context(abe); abe_dsp_shutdown(); } else { /* Only scale OPP level * if ABE is still active */ aess_set_runtime_opp_level(abe); } pm_runtime_put_sync(abe->dev); mutex_unlock(&abe->mutex); return 0; } static int aess_mmap(struct snd_pcm_substream *substream, struct vm_area_struct *vma) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *dai = rtd->cpu_dai; int offset, size, err; if (dai->id != ABE_FRONTEND_DAI_LP_MEDIA) return -EINVAL; vma->vm_flags |= VM_IO | VM_RESERVED; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); size = vma->vm_end - vma->vm_start; offset = vma->vm_pgoff << PAGE_SHIFT; err = io_remap_pfn_range(vma, vma->vm_start, (ABE_DMEM_BASE_ADDRESS_MPU + ABE_DMEM_BASE_OFFSET_PING_PONG + offset) >> PAGE_SHIFT, size, vma->vm_page_prot); if (err) return -EAGAIN; return 0; } static snd_pcm_uframes_t aess_pointer(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_platform *platform = rtd->platform; struct abe_data *abe = snd_soc_platform_get_drvdata(platform); snd_pcm_uframes_t offset = 0; u32 pingpong; if (!abe->first_irq) { abe_read_offset_from_ping_buffer(MM_DL_PORT, &pingpong); offset = (snd_pcm_uframes_t)pingpong; } return offset; } static struct snd_pcm_ops omap_aess_pcm_ops = { .open = aess_open, .hw_params = aess_hw_params, .prepare = aess_prepare, .close = aess_close, .pointer = aess_pointer, .mmap = aess_mmap, }; static int aess_stream_event(struct snd_soc_dapm_context *dapm) { struct snd_soc_platform *platform = dapm->platform; struct abe_data *abe = snd_soc_platform_get_drvdata(platform); if (abe->active) aess_set_runtime_opp_level(abe); return 0; } static int abe_add_widgets(struct snd_soc_platform *platform) { struct abe_data *abe = snd_soc_platform_get_drvdata(platform); struct fw_header *hdr = &abe->hdr; int i, j; /* create equalizer controls */ for (i = 0; i < hdr->num_equ; i++) { struct soc_enum *equalizer_enum = &abe->equalizer_enum[i]; struct snd_kcontrol_new *equalizer_control = &abe->equalizer_control[i]; equalizer_enum->reg = i; equalizer_enum->max = abe->equ_texts[i].count; for (j = 0; j < abe->equ_texts[i].count; j++) equalizer_enum->dtexts[j] = abe->equ_texts[i].texts[j]; equalizer_control->name = abe->equ_texts[i].name; equalizer_control->private_value = (unsigned long)equalizer_enum; equalizer_control->get = abe_get_equalizer; equalizer_control->put = abe_put_equalizer; equalizer_control->info = snd_soc_info_enum_ext1; equalizer_control->iface = SNDRV_CTL_ELEM_IFACE_MIXER; dev_dbg(platform->dev, "added EQU mixer: %s profiles %d\n", abe->equ_texts[i].name, abe->equ_texts[i].count); for (j = 0; j < abe->equ_texts[i].count; j++) dev_dbg(platform->dev, " %s\n", equalizer_enum->dtexts[j]); } snd_soc_add_platform_controls(platform, abe->equalizer_control, hdr->num_equ); snd_soc_add_platform_controls(platform, abe_controls, ARRAY_SIZE(abe_controls)); snd_soc_dapm_new_controls(&platform->dapm, abe_dapm_widgets, ARRAY_SIZE(abe_dapm_widgets)); snd_soc_dapm_add_routes(&platform->dapm, intercon, ARRAY_SIZE(intercon)); snd_soc_dapm_new_widgets(&platform->dapm); return 0; } #ifdef CONFIG_PM static int abe_suspend(struct snd_soc_dai *dai) { struct abe_data *abe = the_abe; int ret = 0; dev_dbg(dai->dev, "%s: %s active %d\n", __func__, dai->name, dai->active); if (!dai->active) return 0; pm_runtime_get_sync(abe->dev); switch (dai->id) { case OMAP_ABE_DAI_PDM_UL: abe_mute_gain(GAINS_AMIC, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_AMIC, GAIN_RIGHT_OFFSET); break; case OMAP_ABE_DAI_PDM_DL1: case OMAP_ABE_DAI_PDM_DL2: case OMAP_ABE_DAI_PDM_VIB: break; case OMAP_ABE_DAI_BT_VX: abe_mute_gain(GAINS_BTUL, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_BTUL, GAIN_RIGHT_OFFSET); break; case OMAP_ABE_DAI_MM_FM: case OMAP_ABE_DAI_MODEM: break; case OMAP_ABE_DAI_DMIC0: abe_mute_gain(GAINS_DMIC1, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_DMIC1, GAIN_RIGHT_OFFSET); break; case OMAP_ABE_DAI_DMIC1: abe_mute_gain(GAINS_DMIC2, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_DMIC2, GAIN_RIGHT_OFFSET); break; case OMAP_ABE_DAI_DMIC2: abe_mute_gain(GAINS_DMIC3, GAIN_LEFT_OFFSET); abe_mute_gain(GAINS_DMIC3, GAIN_RIGHT_OFFSET); break; default: dev_err(dai->dev, "%s: invalid DAI id %d\n", __func__, dai->id); ret = -EINVAL; goto out; } out: pm_runtime_put_sync(abe->dev); return ret; } static int abe_resume(struct snd_soc_dai *dai) { struct abe_data *abe = the_abe; struct omap4_abe_dsp_pdata *pdata = abe->abe_pdata; int i, ret = 0; dev_dbg(dai->dev, "%s: %s active %d\n", __func__, dai->name, dai->active); if (!dai->active) return 0; /* context retained, no need to restore */ if (pdata->was_context_lost && !pdata->was_context_lost(abe->dev)) return 0; pm_runtime_get_sync(abe->dev); if (pdata && pdata->device_scale) { ret = pdata->device_scale(abe->dev, abe->dev, abe->opp_freqs[OMAP_ABE_OPP50]); if (ret) { dev_err(abe->dev, "failed to scale to OPP50\n"); goto out; } } abe_reload_fw(abe->firmware); switch (dai->id) { case OMAP_ABE_DAI_PDM_UL: abe_unmute_gain(GAINS_AMIC, GAIN_LEFT_OFFSET); abe_unmute_gain(GAINS_AMIC, GAIN_RIGHT_OFFSET); break; case OMAP_ABE_DAI_PDM_DL1: case OMAP_ABE_DAI_PDM_DL2: case OMAP_ABE_DAI_PDM_VIB: break; case OMAP_ABE_DAI_BT_VX: abe_unmute_gain(GAINS_BTUL, GAIN_LEFT_OFFSET); abe_unmute_gain(GAINS_BTUL, GAIN_RIGHT_OFFSET); break; case OMAP_ABE_DAI_MM_FM: case OMAP_ABE_DAI_MODEM: break; case OMAP_ABE_DAI_DMIC0: abe_unmute_gain(GAINS_DMIC1, GAIN_LEFT_OFFSET); abe_unmute_gain(GAINS_DMIC1, GAIN_RIGHT_OFFSET); break; case OMAP_ABE_DAI_DMIC1: abe_unmute_gain(GAINS_DMIC2, GAIN_LEFT_OFFSET); abe_unmute_gain(GAINS_DMIC2, GAIN_RIGHT_OFFSET); break; case OMAP_ABE_DAI_DMIC2: abe_unmute_gain(GAINS_DMIC3, GAIN_LEFT_OFFSET); abe_unmute_gain(GAINS_DMIC3, GAIN_RIGHT_OFFSET); break; default: dev_err(dai->dev, "%s: invalid DAI id %d\n", __func__, dai->id); ret = -EINVAL; goto out; } abe_set_router_configuration(UPROUTE, 0, (u32 *)abe->router); if (abe->power_mode) abe_write_pdmdl_offset(1, abe->dc_hsl * 2, abe->dc_hsr * 2); else abe_write_pdmdl_offset(1, abe->dc_hsl, abe->dc_hsr); abe_write_pdmdl_offset(2, abe->dc_hfl, abe->dc_hfr); for (i = 0; i < abe->hdr.num_equ; i++) abe_dsp_set_equalizer(i, abe->equ_profile[i]); for (i = 0; i < ABE_NUM_MONO_MIXERS; i++) abe_dsp_set_mono_mixer(MIX_DL1_MONO + i, abe->mono_mix[i]); out: pm_runtime_put_sync(abe->dev); return ret; } #else #define abe_suspend NULL #define abe_resume NULL #endif static int abe_probe(struct snd_soc_platform *platform) { struct abe_data *abe = snd_soc_platform_get_drvdata(platform); struct opp *opp; const u8 *fw_data; unsigned long freq = ULONG_MAX; int ret = 0, i, opp_count, offset = 0; #if defined(CONFIG_SND_OMAP_SOC_ABE_DSP_MODULE) const struct firmware *fw; #endif abe->platform = platform; pm_runtime_enable(abe->dev); pm_runtime_irq_safe(abe->dev); #if defined(CONFIG_SND_OMAP_SOC_ABE_DSP_MODULE) /* request firmware & coefficients */ ret = request_firmware(&fw, "omap4_abe", platform->dev); if (ret != 0) { dev_err(abe->dev, "Failed to load firmware: %d\n", ret); return ret; } fw_data = fw->data; #else fw_data = (u8 *)abe_get_default_fw(); #endif /* get firmware and coefficients header info */ memcpy(&abe->hdr, fw_data, sizeof(struct fw_header)); if (abe->hdr.firmware_size > ABE_MAX_FW_SIZE) { dev_err(abe->dev, "Firmware too large at %d bytes: %d\n", abe->hdr.firmware_size, ret); ret = -EINVAL; goto err_fw; } dev_dbg(abe->dev, "ABE firmware size %d bytes\n", abe->hdr.firmware_size); if (abe->hdr.coeff_size > ABE_MAX_COEFF_SIZE) { dev_err(abe->dev, "Coefficients too large at %d bytes: %d\n", abe->hdr.coeff_size, ret); ret = -EINVAL; goto err_fw; } dev_dbg(abe->dev, "ABE coefficients size %d bytes\n", abe->hdr.coeff_size); /* get coefficient EQU mixer strings */ if (abe->hdr.num_equ >= ABE_MAX_EQU) { dev_err(abe->dev, "Too many equalizers got %d\n", abe->hdr.num_equ); ret = -EINVAL; goto err_fw; } abe->equ_texts = kzalloc(abe->hdr.num_equ * sizeof(struct coeff_config), GFP_KERNEL); if (abe->equ_texts == NULL) { ret = -ENOMEM; goto err_fw; } offset = sizeof(struct fw_header); memcpy(abe->equ_texts, fw_data + offset, abe->hdr.num_equ * sizeof(struct coeff_config)); /* get coefficients from firmware */ abe->equ[0] = kmalloc(abe->hdr.coeff_size, GFP_KERNEL); if (abe->equ[0] == NULL) { ret = -ENOMEM; goto err_equ; } offset += abe->hdr.num_equ * sizeof(struct coeff_config); memcpy(abe->equ[0], fw_data + offset, abe->hdr.coeff_size); /* allocate coefficient mixer texts */ dev_dbg(abe->dev, "loaded %d equalizers\n", abe->hdr.num_equ); for (i = 0; i < abe->hdr.num_equ; i++) { dev_dbg(abe->dev, "equ %d: %s profiles %d\n", i, abe->equ_texts[i].name, abe->equ_texts[i].count); if (abe->equ_texts[i].count >= ABE_MAX_PROFILES) { dev_err(abe->dev, "Too many profiles got %d for equ %d\n", abe->equ_texts[i].count, i); ret = -EINVAL; goto err_texts; } abe->equalizer_enum[i].dtexts = kzalloc(abe->equ_texts[i].count * sizeof(char *), GFP_KERNEL); if (abe->equalizer_enum[i].dtexts == NULL) { ret = -ENOMEM; goto err_texts; } } /* initialise coefficient equalizers */ for (i = 1; i < abe->hdr.num_equ; i++) { abe->equ[i] = abe->equ[i - 1] + abe->equ_texts[i - 1].count * abe->equ_texts[i - 1].coeff; } /* store ABE firmware for later context restore */ abe->firmware = kzalloc(abe->hdr.firmware_size, GFP_KERNEL); if (abe->firmware == NULL) { ret = -ENOMEM; goto err_texts; } memcpy(abe->firmware, fw_data + sizeof(struct fw_header) + abe->hdr.coeff_size, abe->hdr.firmware_size); ret = request_threaded_irq(abe->irq, NULL, abe_irq_handler, IRQF_ONESHOT, "ABE", (void *)abe); if (ret) { dev_err(platform->dev, "request for ABE IRQ %d failed %d\n", abe->irq, ret); goto err_irq; } /* query supported opps */ rcu_read_lock(); opp_count = opp_get_opp_count(abe->dev); if (opp_count <= 0) { dev_err(abe->dev, "invalid OPP data\n"); ret = opp_count; goto err_opp; } else if (opp_count > OMAP_ABE_OPP_COUNT) { dev_err(abe->dev, "unsupported OPP count %d (max:%d)\n", opp_count, OMAP_ABE_OPP_COUNT); ret = -EINVAL; goto err_opp; } /* assume provided opps are always higher */ for (i = OMAP_ABE_OPP_COUNT - 1; i >= 0; i--) { opp = opp_find_freq_floor(abe->dev, &freq); if (IS_ERR_OR_NULL(opp)) break; abe->opp_freqs[i] = freq; /* prepare to obtain next available opp */ freq--; } /* use lowest available opp for non-populated items */ for (freq++; i >= 0; i--) abe->opp_freqs[i] = freq; rcu_read_unlock(); /* aess_clk has to be enabled to access hal register. * Disable the clk after it has been used. */ pm_runtime_get_sync(abe->dev); abe_init_mem(abe->io_base); abe_reset_hal(); abe_load_fw(abe->firmware); /* "tick" of the audio engine */ abe_write_event_generator(EVENT_TIMER); abe_dsp_init_gains(abe); /* Stop the engine */ abe_stop_event_generator(); abe_disable_irq(); pm_runtime_put_sync(abe->dev); abe_add_widgets(platform); #if defined(CONFIG_SND_OMAP_SOC_ABE_DSP_MODULE) release_firmware(fw); #endif return ret; err_opp: rcu_read_unlock(); free_irq(abe->irq, (void *)abe); err_irq: kfree(abe->firmware); err_texts: for (i = 0; i < abe->hdr.num_equ; i++) kfree(abe->equalizer_enum[i].texts); kfree(abe->equ[0]); err_equ: kfree(abe->equ_texts); err_fw: #if defined(CONFIG_SND_OMAP_SOC_ABE_DSP_MODULE) release_firmware(fw); #endif return ret; } static int abe_remove(struct snd_soc_platform *platform) { struct abe_data *abe = snd_soc_platform_get_drvdata(platform); int i; free_irq(abe->irq, (void *)abe); for (i = 0; i < abe->hdr.num_equ; i++) kfree(abe->equalizer_enum[i].texts); kfree(abe->equ[0]); kfree(abe->equ_texts); kfree(abe->firmware); pm_runtime_disable(abe->dev); return 0; } static struct snd_soc_platform_driver omap_aess_platform = { .ops = &omap_aess_pcm_ops, .probe = abe_probe, .remove = abe_remove, .suspend = abe_suspend, .resume = abe_resume, .read = abe_dsp_read, .write = abe_dsp_write, .stream_event = aess_stream_event, }; static int __devinit abe_engine_probe(struct platform_device *pdev) { struct resource *res; struct omap4_abe_dsp_pdata *pdata = pdev->dev.platform_data; struct abe_data *abe; int ret = -EINVAL, i; abe = kzalloc(sizeof(struct abe_data), GFP_KERNEL); if (abe == NULL) return -ENOMEM; dev_set_drvdata(&pdev->dev, abe); the_abe = abe; /* ZERO_labelID should really be 0 */ for (i = 0; i < ABE_ROUTES_UL + 2; i++) abe->router[i] = ZERO_labelID; for (i = 0; i < 5; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, abe_memory_bank[i]); if (res == NULL) { dev_err(&pdev->dev, "no resource %s\n", abe_memory_bank[i]); goto err; } abe->io_base[i] = ioremap(res->start, resource_size(res)); if (!abe->io_base[i]) { ret = -ENOMEM; goto err; } } abe->irq = platform_get_irq(pdev, 0); if (abe->irq < 0) { ret = abe->irq; goto err; } abe->abe_pdata = pdata; abe->dev = &pdev->dev; mutex_init(&abe->mutex); mutex_init(&abe->opp_mutex); mutex_init(&abe->opp_req_mutex); INIT_LIST_HEAD(&abe->opp_req); abe->opp_req_count = 0; ret = snd_soc_register_platform(abe->dev, &omap_aess_platform); if (ret < 0) return ret; abe_init_debugfs(abe); return ret; err: for (--i; i >= 0; i--) iounmap(abe->io_base[i]); kfree(abe); return ret; } static int __devexit abe_engine_remove(struct platform_device *pdev) { struct abe_data *abe = dev_get_drvdata(&pdev->dev); int i; abe_cleanup_debugfs(abe); snd_soc_unregister_platform(&pdev->dev); for (i = 0; i < 5; i++) iounmap(abe->io_base[i]); kfree(abe); return 0; } static struct platform_driver omap_aess_driver = { .driver = { .name = "aess", .owner = THIS_MODULE, }, .probe = abe_engine_probe, .remove = __devexit_p(abe_engine_remove), }; static int __init abe_engine_init(void) { return platform_driver_register(&omap_aess_driver); } module_init(abe_engine_init); static void __exit abe_engine_exit(void) { platform_driver_unregister(&omap_aess_driver); } module_exit(abe_engine_exit); MODULE_DESCRIPTION("ASoC OMAP4 ABE"); MODULE_AUTHOR("Liam Girdwood "); MODULE_LICENSE("GPL");