summaryrefslogtreecommitdiffstats
path: root/luni/src/main/java/java/util/concurrent/ForkJoinPool.java
diff options
context:
space:
mode:
Diffstat (limited to 'luni/src/main/java/java/util/concurrent/ForkJoinPool.java')
-rw-r--r--luni/src/main/java/java/util/concurrent/ForkJoinPool.java2127
1 files changed, 2127 insertions, 0 deletions
diff --git a/luni/src/main/java/java/util/concurrent/ForkJoinPool.java b/luni/src/main/java/java/util/concurrent/ForkJoinPool.java
new file mode 100644
index 0000000..ee15ac8
--- /dev/null
+++ b/luni/src/main/java/java/util/concurrent/ForkJoinPool.java
@@ -0,0 +1,2127 @@
+/*
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/publicdomain/zero/1.0/
+ */
+
+package java.util.concurrent;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Collection;
+import java.util.Collections;
+import java.util.List;
+import java.util.Random;
+import java.util.concurrent.AbstractExecutorService;
+import java.util.concurrent.Callable;
+import java.util.concurrent.ExecutorService;
+import java.util.concurrent.Future;
+import java.util.concurrent.RejectedExecutionException;
+import java.util.concurrent.RunnableFuture;
+import java.util.concurrent.TimeUnit;
+import java.util.concurrent.atomic.AtomicInteger;
+import java.util.concurrent.locks.LockSupport;
+import java.util.concurrent.locks.ReentrantLock;
+import java.util.concurrent.locks.Condition;
+import libcore.util.SneakyThrow;
+
+// BEGIN android-note
+// removed security manager docs
+// END android-note
+
+/**
+ * An {@link ExecutorService} for running {@link ForkJoinTask}s.
+ * A {@code ForkJoinPool} provides the entry point for submissions
+ * from non-{@code ForkJoinTask} clients, as well as management and
+ * monitoring operations.
+ *
+ * <p>A {@code ForkJoinPool} differs from other kinds of {@link
+ * ExecutorService} mainly by virtue of employing
+ * <em>work-stealing</em>: all threads in the pool attempt to find and
+ * execute subtasks created by other active tasks (eventually blocking
+ * waiting for work if none exist). This enables efficient processing
+ * when most tasks spawn other subtasks (as do most {@code
+ * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
+ * constructors, {@code ForkJoinPool}s may also be appropriate for use
+ * with event-style tasks that are never joined.
+ *
+ * <p>A {@code ForkJoinPool} is constructed with a given target
+ * parallelism level; by default, equal to the number of available
+ * processors. The pool attempts to maintain enough active (or
+ * available) threads by dynamically adding, suspending, or resuming
+ * internal worker threads, even if some tasks are stalled waiting to
+ * join others. However, no such adjustments are guaranteed in the
+ * face of blocked IO or other unmanaged synchronization. The nested
+ * {@link ManagedBlocker} interface enables extension of the kinds of
+ * synchronization accommodated.
+ *
+ * <p>In addition to execution and lifecycle control methods, this
+ * class provides status check methods (for example
+ * {@link #getStealCount}) that are intended to aid in developing,
+ * tuning, and monitoring fork/join applications. Also, method
+ * {@link #toString} returns indications of pool state in a
+ * convenient form for informal monitoring.
+ *
+ * <p> As is the case with other ExecutorServices, there are three
+ * main task execution methods summarized in the following
+ * table. These are designed to be used by clients not already engaged
+ * in fork/join computations in the current pool. The main forms of
+ * these methods accept instances of {@code ForkJoinTask}, but
+ * overloaded forms also allow mixed execution of plain {@code
+ * Runnable}- or {@code Callable}- based activities as well. However,
+ * tasks that are already executing in a pool should normally
+ * <em>NOT</em> use these pool execution methods, but instead use the
+ * within-computation forms listed in the table.
+ *
+ * <table BORDER CELLPADDING=3 CELLSPACING=1>
+ * <tr>
+ * <td></td>
+ * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
+ * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
+ * </tr>
+ * <tr>
+ * <td> <b>Arrange async execution</td>
+ * <td> {@link #execute(ForkJoinTask)}</td>
+ * <td> {@link ForkJoinTask#fork}</td>
+ * </tr>
+ * <tr>
+ * <td> <b>Await and obtain result</td>
+ * <td> {@link #invoke(ForkJoinTask)}</td>
+ * <td> {@link ForkJoinTask#invoke}</td>
+ * </tr>
+ * <tr>
+ * <td> <b>Arrange exec and obtain Future</td>
+ * <td> {@link #submit(ForkJoinTask)}</td>
+ * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
+ * </tr>
+ * </table>
+ *
+ * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
+ * used for all parallel task execution in a program or subsystem.
+ * Otherwise, use would not usually outweigh the construction and
+ * bookkeeping overhead of creating a large set of threads. For
+ * example, a common pool could be used for the {@code SortTasks}
+ * illustrated in {@link RecursiveAction}. Because {@code
+ * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
+ * daemon} mode, there is typically no need to explicitly {@link
+ * #shutdown} such a pool upon program exit.
+ *
+ * <pre> {@code
+ * static final ForkJoinPool mainPool = new ForkJoinPool();
+ * ...
+ * public void sort(long[] array) {
+ * mainPool.invoke(new SortTask(array, 0, array.length));
+ * }}</pre>
+ *
+ * <p><b>Implementation notes</b>: This implementation restricts the
+ * maximum number of running threads to 32767. Attempts to create
+ * pools with greater than the maximum number result in
+ * {@code IllegalArgumentException}.
+ *
+ * <p>This implementation rejects submitted tasks (that is, by throwing
+ * {@link RejectedExecutionException}) only when the pool is shut down
+ * or internal resources have been exhausted.
+ *
+ * @since 1.7
+ * @hide
+ * @author Doug Lea
+ */
+public class ForkJoinPool extends AbstractExecutorService {
+
+ /*
+ * Implementation Overview
+ *
+ * This class provides the central bookkeeping and control for a
+ * set of worker threads: Submissions from non-FJ threads enter
+ * into a submission queue. Workers take these tasks and typically
+ * split them into subtasks that may be stolen by other workers.
+ * Preference rules give first priority to processing tasks from
+ * their own queues (LIFO or FIFO, depending on mode), then to
+ * randomized FIFO steals of tasks in other worker queues, and
+ * lastly to new submissions.
+ *
+ * The main throughput advantages of work-stealing stem from
+ * decentralized control -- workers mostly take tasks from
+ * themselves or each other. We cannot negate this in the
+ * implementation of other management responsibilities. The main
+ * tactic for avoiding bottlenecks is packing nearly all
+ * essentially atomic control state into a single 64bit volatile
+ * variable ("ctl"). This variable is read on the order of 10-100
+ * times as often as it is modified (always via CAS). (There is
+ * some additional control state, for example variable "shutdown"
+ * for which we can cope with uncoordinated updates.) This
+ * streamlines synchronization and control at the expense of messy
+ * constructions needed to repack status bits upon updates.
+ * Updates tend not to contend with each other except during
+ * bursts while submitted tasks begin or end. In some cases when
+ * they do contend, threads can instead do something else
+ * (usually, scan for tasks) until contention subsides.
+ *
+ * To enable packing, we restrict maximum parallelism to (1<<15)-1
+ * (which is far in excess of normal operating range) to allow
+ * ids, counts, and their negations (used for thresholding) to fit
+ * into 16bit fields.
+ *
+ * Recording Workers. Workers are recorded in the "workers" array
+ * that is created upon pool construction and expanded if (rarely)
+ * necessary. This is an array as opposed to some other data
+ * structure to support index-based random steals by workers.
+ * Updates to the array recording new workers and unrecording
+ * terminated ones are protected from each other by a seqLock
+ * (scanGuard) but the array is otherwise concurrently readable,
+ * and accessed directly by workers. To simplify index-based
+ * operations, the array size is always a power of two, and all
+ * readers must tolerate null slots. To avoid flailing during
+ * start-up, the array is presized to hold twice #parallelism
+ * workers (which is unlikely to need further resizing during
+ * execution). But to avoid dealing with so many null slots,
+ * variable scanGuard includes a mask for the nearest power of two
+ * that contains all current workers. All worker thread creation
+ * is on-demand, triggered by task submissions, replacement of
+ * terminated workers, and/or compensation for blocked
+ * workers. However, all other support code is set up to work with
+ * other policies. To ensure that we do not hold on to worker
+ * references that would prevent GC, ALL accesses to workers are
+ * via indices into the workers array (which is one source of some
+ * of the messy code constructions here). In essence, the workers
+ * array serves as a weak reference mechanism. Thus for example
+ * the wait queue field of ctl stores worker indices, not worker
+ * references. Access to the workers in associated methods (for
+ * example signalWork) must both index-check and null-check the
+ * IDs. All such accesses ignore bad IDs by returning out early
+ * from what they are doing, since this can only be associated
+ * with termination, in which case it is OK to give up.
+ *
+ * All uses of the workers array, as well as queue arrays, check
+ * that the array is non-null (even if previously non-null). This
+ * allows nulling during termination, which is currently not
+ * necessary, but remains an option for resource-revocation-based
+ * shutdown schemes.
+ *
+ * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
+ * let workers spin indefinitely scanning for tasks when none can
+ * be found immediately, and we cannot start/resume workers unless
+ * there appear to be tasks available. On the other hand, we must
+ * quickly prod them into action when new tasks are submitted or
+ * generated. We park/unpark workers after placing in an event
+ * wait queue when they cannot find work. This "queue" is actually
+ * a simple Treiber stack, headed by the "id" field of ctl, plus a
+ * 15bit counter value to both wake up waiters (by advancing their
+ * count) and avoid ABA effects. Successors are held in worker
+ * field "nextWait". Queuing deals with several intrinsic races,
+ * mainly that a task-producing thread can miss seeing (and
+ * signalling) another thread that gave up looking for work but
+ * has not yet entered the wait queue. We solve this by requiring
+ * a full sweep of all workers both before (in scan()) and after
+ * (in tryAwaitWork()) a newly waiting worker is added to the wait
+ * queue. During a rescan, the worker might release some other
+ * queued worker rather than itself, which has the same net
+ * effect. Because enqueued workers may actually be rescanning
+ * rather than waiting, we set and clear the "parked" field of
+ * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
+ * (Use of the parked field requires a secondary recheck to avoid
+ * missed signals.)
+ *
+ * Signalling. We create or wake up workers only when there
+ * appears to be at least one task they might be able to find and
+ * execute. When a submission is added or another worker adds a
+ * task to a queue that previously had two or fewer tasks, they
+ * signal waiting workers (or trigger creation of new ones if
+ * fewer than the given parallelism level -- see signalWork).
+ * These primary signals are buttressed by signals during rescans
+ * as well as those performed when a worker steals a task and
+ * notices that there are more tasks too; together these cover the
+ * signals needed in cases when more than two tasks are pushed
+ * but untaken.
+ *
+ * Trimming workers. To release resources after periods of lack of
+ * use, a worker starting to wait when the pool is quiescent will
+ * time out and terminate if the pool has remained quiescent for
+ * SHRINK_RATE nanosecs. This will slowly propagate, eventually
+ * terminating all workers after long periods of non-use.
+ *
+ * Submissions. External submissions are maintained in an
+ * array-based queue that is structured identically to
+ * ForkJoinWorkerThread queues except for the use of
+ * submissionLock in method addSubmission. Unlike the case for
+ * worker queues, multiple external threads can add new
+ * submissions, so adding requires a lock.
+ *
+ * Compensation. Beyond work-stealing support and lifecycle
+ * control, the main responsibility of this framework is to take
+ * actions when one worker is waiting to join a task stolen (or
+ * always held by) another. Because we are multiplexing many
+ * tasks on to a pool of workers, we can't just let them block (as
+ * in Thread.join). We also cannot just reassign the joiner's
+ * run-time stack with another and replace it later, which would
+ * be a form of "continuation", that even if possible is not
+ * necessarily a good idea since we sometimes need both an
+ * unblocked task and its continuation to progress. Instead we
+ * combine two tactics:
+ *
+ * Helping: Arranging for the joiner to execute some task that it
+ * would be running if the steal had not occurred. Method
+ * ForkJoinWorkerThread.joinTask tracks joining->stealing
+ * links to try to find such a task.
+ *
+ * Compensating: Unless there are already enough live threads,
+ * method tryPreBlock() may create or re-activate a spare
+ * thread to compensate for blocked joiners until they
+ * unblock.
+ *
+ * The ManagedBlocker extension API can't use helping so relies
+ * only on compensation in method awaitBlocker.
+ *
+ * It is impossible to keep exactly the target parallelism number
+ * of threads running at any given time. Determining the
+ * existence of conservatively safe helping targets, the
+ * availability of already-created spares, and the apparent need
+ * to create new spares are all racy and require heuristic
+ * guidance, so we rely on multiple retries of each. Currently,
+ * in keeping with on-demand signalling policy, we compensate only
+ * if blocking would leave less than one active (non-waiting,
+ * non-blocked) worker. Additionally, to avoid some false alarms
+ * due to GC, lagging counters, system activity, etc, compensated
+ * blocking for joins is only attempted after rechecks stabilize
+ * (retries are interspersed with Thread.yield, for good
+ * citizenship). The variable blockedCount, incremented before
+ * blocking and decremented after, is sometimes needed to
+ * distinguish cases of waiting for work vs blocking on joins or
+ * other managed sync. Both cases are equivalent for most pool
+ * control, so we can update non-atomically. (Additionally,
+ * contention on blockedCount alleviates some contention on ctl).
+ *
+ * Shutdown and Termination. A call to shutdownNow atomically sets
+ * the ctl stop bit and then (non-atomically) sets each workers
+ * "terminate" status, cancels all unprocessed tasks, and wakes up
+ * all waiting workers. Detecting whether termination should
+ * commence after a non-abrupt shutdown() call requires more work
+ * and bookkeeping. We need consensus about quiescence (i.e., that
+ * there is no more work) which is reflected in active counts so
+ * long as there are no current blockers, as well as possible
+ * re-evaluations during independent changes in blocking or
+ * quiescing workers.
+ *
+ * Style notes: There is a lot of representation-level coupling
+ * among classes ForkJoinPool, ForkJoinWorkerThread, and
+ * ForkJoinTask. Most fields of ForkJoinWorkerThread maintain
+ * data structures managed by ForkJoinPool, so are directly
+ * accessed. Conversely we allow access to "workers" array by
+ * workers, and direct access to ForkJoinTask.status by both
+ * ForkJoinPool and ForkJoinWorkerThread. There is little point
+ * trying to reduce this, since any associated future changes in
+ * representations will need to be accompanied by algorithmic
+ * changes anyway. All together, these low-level implementation
+ * choices produce as much as a factor of 4 performance
+ * improvement compared to naive implementations, and enable the
+ * processing of billions of tasks per second, at the expense of
+ * some ugliness.
+ *
+ * Methods signalWork() and scan() are the main bottlenecks so are
+ * especially heavily micro-optimized/mangled. There are lots of
+ * inline assignments (of form "while ((local = field) != 0)")
+ * which are usually the simplest way to ensure the required read
+ * orderings (which are sometimes critical). This leads to a
+ * "C"-like style of listing declarations of these locals at the
+ * heads of methods or blocks. There are several occurrences of
+ * the unusual "do {} while (!cas...)" which is the simplest way
+ * to force an update of a CAS'ed variable. There are also other
+ * coding oddities that help some methods perform reasonably even
+ * when interpreted (not compiled).
+ *
+ * The order of declarations in this file is: (1) declarations of
+ * statics (2) fields (along with constants used when unpacking
+ * some of them), listed in an order that tends to reduce
+ * contention among them a bit under most JVMs. (3) internal
+ * control methods (4) callbacks and other support for
+ * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
+ * methods (plus a few little helpers). (6) static block
+ * initializing all statics in a minimally dependent order.
+ */
+
+ /**
+ * Factory for creating new {@link ForkJoinWorkerThread}s.
+ * A {@code ForkJoinWorkerThreadFactory} must be defined and used
+ * for {@code ForkJoinWorkerThread} subclasses that extend base
+ * functionality or initialize threads with different contexts.
+ */
+ public static interface ForkJoinWorkerThreadFactory {
+ /**
+ * Returns a new worker thread operating in the given pool.
+ *
+ * @param pool the pool this thread works in
+ * @throws NullPointerException if the pool is null
+ */
+ public ForkJoinWorkerThread newThread(ForkJoinPool pool);
+ }
+
+ /**
+ * Default ForkJoinWorkerThreadFactory implementation; creates a
+ * new ForkJoinWorkerThread.
+ */
+ static class DefaultForkJoinWorkerThreadFactory
+ implements ForkJoinWorkerThreadFactory {
+ public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
+ return new ForkJoinWorkerThread(pool);
+ }
+ }
+
+ /**
+ * Creates a new ForkJoinWorkerThread. This factory is used unless
+ * overridden in ForkJoinPool constructors.
+ */
+ public static final ForkJoinWorkerThreadFactory
+ defaultForkJoinWorkerThreadFactory;
+
+ /**
+ * Permission required for callers of methods that may start or
+ * kill threads.
+ */
+ private static final RuntimePermission modifyThreadPermission;
+
+ /**
+ * If there is a security manager, makes sure caller has
+ * permission to modify threads.
+ */
+ private static void checkPermission() {
+ SecurityManager security = System.getSecurityManager();
+ if (security != null)
+ security.checkPermission(modifyThreadPermission);
+ }
+
+ /**
+ * Generator for assigning sequence numbers as pool names.
+ */
+ private static final AtomicInteger poolNumberGenerator;
+
+ /**
+ * Generator for initial random seeds for worker victim
+ * selection. This is used only to create initial seeds. Random
+ * steals use a cheaper xorshift generator per steal attempt. We
+ * don't expect much contention on seedGenerator, so just use a
+ * plain Random.
+ */
+ static final Random workerSeedGenerator;
+
+ /**
+ * Array holding all worker threads in the pool. Initialized upon
+ * construction. Array size must be a power of two. Updates and
+ * replacements are protected by scanGuard, but the array is
+ * always kept in a consistent enough state to be randomly
+ * accessed without locking by workers performing work-stealing,
+ * as well as other traversal-based methods in this class, so long
+ * as reads memory-acquire by first reading ctl. All readers must
+ * tolerate that some array slots may be null.
+ */
+ ForkJoinWorkerThread[] workers;
+
+ /**
+ * Initial size for submission queue array. Must be a power of
+ * two. In many applications, these always stay small so we use a
+ * small initial cap.
+ */
+ private static final int INITIAL_QUEUE_CAPACITY = 8;
+
+ /**
+ * Maximum size for submission queue array. Must be a power of two
+ * less than or equal to 1 << (31 - width of array entry) to
+ * ensure lack of index wraparound, but is capped at a lower
+ * value to help users trap runaway computations.
+ */
+ private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
+
+ /**
+ * Array serving as submission queue. Initialized upon construction.
+ */
+ private ForkJoinTask<?>[] submissionQueue;
+
+ /**
+ * Lock protecting submissions array for addSubmission
+ */
+ private final ReentrantLock submissionLock;
+
+ /**
+ * Condition for awaitTermination, using submissionLock for
+ * convenience.
+ */
+ private final Condition termination;
+
+ /**
+ * Creation factory for worker threads.
+ */
+ private final ForkJoinWorkerThreadFactory factory;
+
+ /**
+ * The uncaught exception handler used when any worker abruptly
+ * terminates.
+ */
+ final Thread.UncaughtExceptionHandler ueh;
+
+ /**
+ * Prefix for assigning names to worker threads
+ */
+ private final String workerNamePrefix;
+
+ /**
+ * Sum of per-thread steal counts, updated only when threads are
+ * idle or terminating.
+ */
+ private volatile long stealCount;
+
+ /**
+ * Main pool control -- a long packed with:
+ * AC: Number of active running workers minus target parallelism (16 bits)
+ * TC: Number of total workers minus target parallelism (16 bits)
+ * ST: true if pool is terminating (1 bit)
+ * EC: the wait count of top waiting thread (15 bits)
+ * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
+ *
+ * When convenient, we can extract the upper 32 bits of counts and
+ * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
+ * (int)ctl. The ec field is never accessed alone, but always
+ * together with id and st. The offsets of counts by the target
+ * parallelism and the positionings of fields makes it possible to
+ * perform the most common checks via sign tests of fields: When
+ * ac is negative, there are not enough active workers, when tc is
+ * negative, there are not enough total workers, when id is
+ * negative, there is at least one waiting worker, and when e is
+ * negative, the pool is terminating. To deal with these possibly
+ * negative fields, we use casts in and out of "short" and/or
+ * signed shifts to maintain signedness.
+ */
+ volatile long ctl;
+
+ // bit positions/shifts for fields
+ private static final int AC_SHIFT = 48;
+ private static final int TC_SHIFT = 32;
+ private static final int ST_SHIFT = 31;
+ private static final int EC_SHIFT = 16;
+
+ // bounds
+ private static final int MAX_ID = 0x7fff; // max poolIndex
+ private static final int SMASK = 0xffff; // mask short bits
+ private static final int SHORT_SIGN = 1 << 15;
+ private static final int INT_SIGN = 1 << 31;
+
+ // masks
+ private static final long STOP_BIT = 0x0001L << ST_SHIFT;
+ private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
+ private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
+
+ // units for incrementing and decrementing
+ private static final long TC_UNIT = 1L << TC_SHIFT;
+ private static final long AC_UNIT = 1L << AC_SHIFT;
+
+ // masks and units for dealing with u = (int)(ctl >>> 32)
+ private static final int UAC_SHIFT = AC_SHIFT - 32;
+ private static final int UTC_SHIFT = TC_SHIFT - 32;
+ private static final int UAC_MASK = SMASK << UAC_SHIFT;
+ private static final int UTC_MASK = SMASK << UTC_SHIFT;
+ private static final int UAC_UNIT = 1 << UAC_SHIFT;
+ private static final int UTC_UNIT = 1 << UTC_SHIFT;
+
+ // masks and units for dealing with e = (int)ctl
+ private static final int E_MASK = 0x7fffffff; // no STOP_BIT
+ private static final int EC_UNIT = 1 << EC_SHIFT;
+
+ /**
+ * The target parallelism level.
+ */
+ final int parallelism;
+
+ /**
+ * Index (mod submission queue length) of next element to take
+ * from submission queue. Usage is identical to that for
+ * per-worker queues -- see ForkJoinWorkerThread internal
+ * documentation.
+ */
+ volatile int queueBase;
+
+ /**
+ * Index (mod submission queue length) of next element to add
+ * in submission queue. Usage is identical to that for
+ * per-worker queues -- see ForkJoinWorkerThread internal
+ * documentation.
+ */
+ int queueTop;
+
+ /**
+ * True when shutdown() has been called.
+ */
+ volatile boolean shutdown;
+
+ /**
+ * True if use local fifo, not default lifo, for local polling.
+ * Read by, and replicated by ForkJoinWorkerThreads.
+ */
+ final boolean locallyFifo;
+
+ /**
+ * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
+ * When non-zero, suppresses automatic shutdown when active
+ * counts become zero.
+ */
+ volatile int quiescerCount;
+
+ /**
+ * The number of threads blocked in join.
+ */
+ volatile int blockedCount;
+
+ /**
+ * Counter for worker Thread names (unrelated to their poolIndex)
+ */
+ private volatile int nextWorkerNumber;
+
+ /**
+ * The index for the next created worker. Accessed under scanGuard.
+ */
+ private int nextWorkerIndex;
+
+ /**
+ * SeqLock and index masking for updates to workers array. Locked
+ * when SG_UNIT is set. Unlocking clears bit by adding
+ * SG_UNIT. Staleness of read-only operations can be checked by
+ * comparing scanGuard to value before the reads. The low 16 bits
+ * (i.e, anding with SMASK) hold (the smallest power of two
+ * covering all worker indices, minus one, and is used to avoid
+ * dealing with large numbers of null slots when the workers array
+ * is overallocated.
+ */
+ volatile int scanGuard;
+
+ private static final int SG_UNIT = 1 << 16;
+
+ /**
+ * The wakeup interval (in nanoseconds) for a worker waiting for a
+ * task when the pool is quiescent to instead try to shrink the
+ * number of workers. The exact value does not matter too
+ * much. It must be short enough to release resources during
+ * sustained periods of idleness, but not so short that threads
+ * are continually re-created.
+ */
+ private static final long SHRINK_RATE =
+ 4L * 1000L * 1000L * 1000L; // 4 seconds
+
+ /**
+ * Top-level loop for worker threads: On each step: if the
+ * previous step swept through all queues and found no tasks, or
+ * there are excess threads, then possibly blocks. Otherwise,
+ * scans for and, if found, executes a task. Returns when pool
+ * and/or worker terminate.
+ *
+ * @param w the worker
+ */
+ final void work(ForkJoinWorkerThread w) {
+ boolean swept = false; // true on empty scans
+ long c;
+ while (!w.terminate && (int)(c = ctl) >= 0) {
+ int a; // active count
+ if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
+ swept = scan(w, a);
+ else if (tryAwaitWork(w, c))
+ swept = false;
+ }
+ }
+
+ // Signalling
+
+ /**
+ * Wakes up or creates a worker.
+ */
+ final void signalWork() {
+ /*
+ * The while condition is true if: (there is are too few total
+ * workers OR there is at least one waiter) AND (there are too
+ * few active workers OR the pool is terminating). The value
+ * of e distinguishes the remaining cases: zero (no waiters)
+ * for create, negative if terminating (in which case do
+ * nothing), else release a waiter. The secondary checks for
+ * release (non-null array etc) can fail if the pool begins
+ * terminating after the test, and don't impose any added cost
+ * because JVMs must perform null and bounds checks anyway.
+ */
+ long c; int e, u;
+ while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
+ (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
+ if (e > 0) { // release a waiting worker
+ int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
+ if ((ws = workers) == null ||
+ (i = ~e & SMASK) >= ws.length ||
+ (w = ws[i]) == null)
+ break;
+ long nc = (((long)(w.nextWait & E_MASK)) |
+ ((long)(u + UAC_UNIT) << 32));
+ if (w.eventCount == e &&
+ UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
+ w.eventCount = (e + EC_UNIT) & E_MASK;
+ if (w.parked)
+ UNSAFE.unpark(w);
+ break;
+ }
+ }
+ else if (UNSAFE.compareAndSwapLong
+ (this, ctlOffset, c,
+ (long)(((u + UTC_UNIT) & UTC_MASK) |
+ ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
+ addWorker();
+ break;
+ }
+ }
+ }
+
+ /**
+ * Variant of signalWork to help release waiters on rescans.
+ * Tries once to release a waiter if active count < 0.
+ *
+ * @return false if failed due to contention, else true
+ */
+ private boolean tryReleaseWaiter() {
+ long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
+ if ((e = (int)(c = ctl)) > 0 &&
+ (int)(c >> AC_SHIFT) < 0 &&
+ (ws = workers) != null &&
+ (i = ~e & SMASK) < ws.length &&
+ (w = ws[i]) != null) {
+ long nc = ((long)(w.nextWait & E_MASK) |
+ ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
+ if (w.eventCount != e ||
+ !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
+ return false;
+ w.eventCount = (e + EC_UNIT) & E_MASK;
+ if (w.parked)
+ UNSAFE.unpark(w);
+ }
+ return true;
+ }
+
+ // Scanning for tasks
+
+ /**
+ * Scans for and, if found, executes one task. Scans start at a
+ * random index of workers array, and randomly select the first
+ * (2*#workers)-1 probes, and then, if all empty, resort to 2
+ * circular sweeps, which is necessary to check quiescence. and
+ * taking a submission only if no stealable tasks were found. The
+ * steal code inside the loop is a specialized form of
+ * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
+ * helpJoinTask and signal propagation. The code for submission
+ * queues is almost identical. On each steal, the worker completes
+ * not only the task, but also all local tasks that this task may
+ * have generated. On detecting staleness or contention when
+ * trying to take a task, this method returns without finishing
+ * sweep, which allows global state rechecks before retry.
+ *
+ * @param w the worker
+ * @param a the number of active workers
+ * @return true if swept all queues without finding a task
+ */
+ private boolean scan(ForkJoinWorkerThread w, int a) {
+ int g = scanGuard; // mask 0 avoids useless scans if only one active
+ int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
+ ForkJoinWorkerThread[] ws = workers;
+ if (ws == null || ws.length <= m) // staleness check
+ return false;
+ for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
+ ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
+ ForkJoinWorkerThread v = ws[k & m];
+ if (v != null && (b = v.queueBase) != v.queueTop &&
+ (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
+ long u = (i << ASHIFT) + ABASE;
+ if ((t = q[i]) != null && v.queueBase == b &&
+ UNSAFE.compareAndSwapObject(q, u, t, null)) {
+ int d = (v.queueBase = b + 1) - v.queueTop;
+ v.stealHint = w.poolIndex;
+ if (d != 0)
+ signalWork(); // propagate if nonempty
+ w.execTask(t);
+ }
+ r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
+ return false; // store next seed
+ }
+ else if (j < 0) { // xorshift
+ r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
+ }
+ else
+ ++k;
+ }
+ if (scanGuard != g) // staleness check
+ return false;
+ else { // try to take submission
+ ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
+ if ((b = queueBase) != queueTop &&
+ (q = submissionQueue) != null &&
+ (i = (q.length - 1) & b) >= 0) {
+ long u = (i << ASHIFT) + ABASE;
+ if ((t = q[i]) != null && queueBase == b &&
+ UNSAFE.compareAndSwapObject(q, u, t, null)) {
+ queueBase = b + 1;
+ w.execTask(t);
+ }
+ return false;
+ }
+ return true; // all queues empty
+ }
+ }
+
+ /**
+ * Tries to enqueue worker w in wait queue and await change in
+ * worker's eventCount. If the pool is quiescent and there is
+ * more than one worker, possibly terminates worker upon exit.
+ * Otherwise, before blocking, rescans queues to avoid missed
+ * signals. Upon finding work, releases at least one worker
+ * (which may be the current worker). Rescans restart upon
+ * detected staleness or failure to release due to
+ * contention. Note the unusual conventions about Thread.interrupt
+ * here and elsewhere: Because interrupts are used solely to alert
+ * threads to check termination, which is checked here anyway, we
+ * clear status (using Thread.interrupted) before any call to
+ * park, so that park does not immediately return due to status
+ * being set via some other unrelated call to interrupt in user
+ * code.
+ *
+ * @param w the calling worker
+ * @param c the ctl value on entry
+ * @return true if waited or another thread was released upon enq
+ */
+ private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
+ int v = w.eventCount;
+ w.nextWait = (int)c; // w's successor record
+ long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
+ if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
+ long d = ctl; // return true if lost to a deq, to force scan
+ return (int)d != (int)c && (d & AC_MASK) >= (c & AC_MASK);
+ }
+ for (int sc = w.stealCount; sc != 0;) { // accumulate stealCount
+ long s = stealCount;
+ if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
+ sc = w.stealCount = 0;
+ else if (w.eventCount != v)
+ return true; // update next time
+ }
+ if ((!shutdown || !tryTerminate(false)) &&
+ (int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
+ blockedCount == 0 && quiescerCount == 0)
+ idleAwaitWork(w, nc, c, v); // quiescent
+ for (boolean rescanned = false;;) {
+ if (w.eventCount != v)
+ return true;
+ if (!rescanned) {
+ int g = scanGuard, m = g & SMASK;
+ ForkJoinWorkerThread[] ws = workers;
+ if (ws != null && m < ws.length) {
+ rescanned = true;
+ for (int i = 0; i <= m; ++i) {
+ ForkJoinWorkerThread u = ws[i];
+ if (u != null) {
+ if (u.queueBase != u.queueTop &&
+ !tryReleaseWaiter())
+ rescanned = false; // contended
+ if (w.eventCount != v)
+ return true;
+ }
+ }
+ }
+ if (scanGuard != g || // stale
+ (queueBase != queueTop && !tryReleaseWaiter()))
+ rescanned = false;
+ if (!rescanned)
+ Thread.yield(); // reduce contention
+ else
+ Thread.interrupted(); // clear before park
+ }
+ else {
+ w.parked = true; // must recheck
+ if (w.eventCount != v) {
+ w.parked = false;
+ return true;
+ }
+ LockSupport.park(this);
+ rescanned = w.parked = false;
+ }
+ }
+ }
+
+ /**
+ * If inactivating worker w has caused pool to become
+ * quiescent, check for pool termination, and wait for event
+ * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
+ * this case because quiescence reflects consensus about lack
+ * of work). On timeout, if ctl has not changed, terminate the
+ * worker. Upon its termination (see deregisterWorker), it may
+ * wake up another worker to possibly repeat this process.
+ *
+ * @param w the calling worker
+ * @param currentCtl the ctl value after enqueuing w
+ * @param prevCtl the ctl value if w terminated
+ * @param v the eventCount w awaits change
+ */
+ private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
+ long prevCtl, int v) {
+ if (w.eventCount == v) {
+ if (shutdown)
+ tryTerminate(false);
+ ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
+ while (ctl == currentCtl) {
+ long startTime = System.nanoTime();
+ w.parked = true;
+ if (w.eventCount == v) // must recheck
+ LockSupport.parkNanos(this, SHRINK_RATE);
+ w.parked = false;
+ if (w.eventCount != v)
+ break;
+ else if (System.nanoTime() - startTime <
+ SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
+ Thread.interrupted(); // spurious wakeup
+ else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
+ currentCtl, prevCtl)) {
+ w.terminate = true; // restore previous
+ w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
+ break;
+ }
+ }
+ }
+ }
+
+ // Submissions
+
+ /**
+ * Enqueues the given task in the submissionQueue. Same idea as
+ * ForkJoinWorkerThread.pushTask except for use of submissionLock.
+ *
+ * @param t the task
+ */
+ private void addSubmission(ForkJoinTask<?> t) {
+ final ReentrantLock lock = this.submissionLock;
+ lock.lock();
+ try {
+ ForkJoinTask<?>[] q; int s, m;
+ if ((q = submissionQueue) != null) { // ignore if queue removed
+ long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
+ UNSAFE.putOrderedObject(q, u, t);
+ queueTop = s + 1;
+ if (s - queueBase == m)
+ growSubmissionQueue();
+ }
+ } finally {
+ lock.unlock();
+ }
+ signalWork();
+ }
+
+ // (pollSubmission is defined below with exported methods)
+
+ /**
+ * Creates or doubles submissionQueue array.
+ * Basically identical to ForkJoinWorkerThread version.
+ */
+ private void growSubmissionQueue() {
+ ForkJoinTask<?>[] oldQ = submissionQueue;
+ int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
+ if (size > MAXIMUM_QUEUE_CAPACITY)
+ throw new RejectedExecutionException("Queue capacity exceeded");
+ if (size < INITIAL_QUEUE_CAPACITY)
+ size = INITIAL_QUEUE_CAPACITY;
+ ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
+ int mask = size - 1;
+ int top = queueTop;
+ int oldMask;
+ if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
+ for (int b = queueBase; b != top; ++b) {
+ long u = ((b & oldMask) << ASHIFT) + ABASE;
+ Object x = UNSAFE.getObjectVolatile(oldQ, u);
+ if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
+ UNSAFE.putObjectVolatile
+ (q, ((b & mask) << ASHIFT) + ABASE, x);
+ }
+ }
+ }
+
+ // Blocking support
+
+ /**
+ * Tries to increment blockedCount, decrement active count
+ * (sometimes implicitly) and possibly release or create a
+ * compensating worker in preparation for blocking. Fails
+ * on contention or termination.
+ *
+ * @return true if the caller can block, else should recheck and retry
+ */
+ private boolean tryPreBlock() {
+ int b = blockedCount;
+ if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
+ int pc = parallelism;
+ do {
+ ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
+ int e, ac, tc, i;
+ long c = ctl;
+ int u = (int)(c >>> 32);
+ if ((e = (int)c) < 0) {
+ // skip -- terminating
+ }
+ else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
+ (ws = workers) != null &&
+ (i = ~e & SMASK) < ws.length &&
+ (w = ws[i]) != null) {
+ long nc = ((long)(w.nextWait & E_MASK) |
+ (c & (AC_MASK|TC_MASK)));
+ if (w.eventCount == e &&
+ UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
+ w.eventCount = (e + EC_UNIT) & E_MASK;
+ if (w.parked)
+ UNSAFE.unpark(w);
+ return true; // release an idle worker
+ }
+ }
+ else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
+ long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
+ if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
+ return true; // no compensation needed
+ }
+ else if (tc + pc < MAX_ID) {
+ long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
+ if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
+ addWorker();
+ return true; // create a replacement
+ }
+ }
+ // try to back out on any failure and let caller retry
+ } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
+ b = blockedCount, b - 1));
+ }
+ return false;
+ }
+
+ /**
+ * Decrements blockedCount and increments active count.
+ */
+ private void postBlock() {
+ long c;
+ do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, // no mask
+ c = ctl, c + AC_UNIT));
+ int b;
+ do {} while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
+ b = blockedCount, b - 1));
+ }
+
+ /**
+ * Possibly blocks waiting for the given task to complete, or
+ * cancels the task if terminating. Fails to wait if contended.
+ *
+ * @param joinMe the task
+ */
+ final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
+ Thread.interrupted(); // clear interrupts before checking termination
+ if (joinMe.status >= 0) {
+ if (tryPreBlock()) {
+ joinMe.tryAwaitDone(0L);
+ postBlock();
+ }
+ else if ((ctl & STOP_BIT) != 0L)
+ joinMe.cancelIgnoringExceptions();
+ }
+ }
+
+ /**
+ * Possibly blocks the given worker waiting for joinMe to
+ * complete or timeout.
+ *
+ * @param joinMe the task
+ * @param nanos the wait time for underlying Object.wait
+ */
+ final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
+ while (joinMe.status >= 0) {
+ Thread.interrupted();
+ if ((ctl & STOP_BIT) != 0L) {
+ joinMe.cancelIgnoringExceptions();
+ break;
+ }
+ if (tryPreBlock()) {
+ long last = System.nanoTime();
+ while (joinMe.status >= 0) {
+ long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
+ if (millis <= 0)
+ break;
+ joinMe.tryAwaitDone(millis);
+ if (joinMe.status < 0)
+ break;
+ if ((ctl & STOP_BIT) != 0L) {
+ joinMe.cancelIgnoringExceptions();
+ break;
+ }
+ long now = System.nanoTime();
+ nanos -= now - last;
+ last = now;
+ }
+ postBlock();
+ break;
+ }
+ }
+ }
+
+ /**
+ * If necessary, compensates for blocker, and blocks.
+ */
+ private void awaitBlocker(ManagedBlocker blocker)
+ throws InterruptedException {
+ while (!blocker.isReleasable()) {
+ if (tryPreBlock()) {
+ try {
+ do {} while (!blocker.isReleasable() && !blocker.block());
+ } finally {
+ postBlock();
+ }
+ break;
+ }
+ }
+ }
+
+ // Creating, registering and deregistring workers
+
+ /**
+ * Tries to create and start a worker; minimally rolls back counts
+ * on failure.
+ */
+ private void addWorker() {
+ Throwable ex = null;
+ ForkJoinWorkerThread t = null;
+ try {
+ t = factory.newThread(this);
+ } catch (Throwable e) {
+ ex = e;
+ }
+ if (t == null) { // null or exceptional factory return
+ long c; // adjust counts
+ do {} while (!UNSAFE.compareAndSwapLong
+ (this, ctlOffset, c = ctl,
+ (((c - AC_UNIT) & AC_MASK) |
+ ((c - TC_UNIT) & TC_MASK) |
+ (c & ~(AC_MASK|TC_MASK)))));
+ // Propagate exception if originating from an external caller
+ if (!tryTerminate(false) && ex != null &&
+ !(Thread.currentThread() instanceof ForkJoinWorkerThread))
+ SneakyThrow.sneakyThrow(ex); // android-changed
+ }
+ else
+ t.start();
+ }
+
+ /**
+ * Callback from ForkJoinWorkerThread constructor to assign a
+ * public name
+ */
+ final String nextWorkerName() {
+ for (int n;;) {
+ if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
+ n = nextWorkerNumber, ++n))
+ return workerNamePrefix + n;
+ }
+ }
+
+ /**
+ * Callback from ForkJoinWorkerThread constructor to
+ * determine its poolIndex and record in workers array.
+ *
+ * @param w the worker
+ * @return the worker's pool index
+ */
+ final int registerWorker(ForkJoinWorkerThread w) {
+ /*
+ * In the typical case, a new worker acquires the lock, uses
+ * next available index and returns quickly. Since we should
+ * not block callers (ultimately from signalWork or
+ * tryPreBlock) waiting for the lock needed to do this, we
+ * instead help release other workers while waiting for the
+ * lock.
+ */
+ for (int g;;) {
+ ForkJoinWorkerThread[] ws;
+ if (((g = scanGuard) & SG_UNIT) == 0 &&
+ UNSAFE.compareAndSwapInt(this, scanGuardOffset,
+ g, g | SG_UNIT)) {
+ int k = nextWorkerIndex;
+ try {
+ if ((ws = workers) != null) { // ignore on shutdown
+ int n = ws.length;
+ if (k < 0 || k >= n || ws[k] != null) {
+ for (k = 0; k < n && ws[k] != null; ++k)
+ ;
+ if (k == n)
+ ws = workers = Arrays.copyOf(ws, n << 1);
+ }
+ ws[k] = w;
+ nextWorkerIndex = k + 1;
+ int m = g & SMASK;
+ g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
+ }
+ } finally {
+ scanGuard = g;
+ }
+ return k;
+ }
+ else if ((ws = workers) != null) { // help release others
+ for (ForkJoinWorkerThread u : ws) {
+ if (u != null && u.queueBase != u.queueTop) {
+ if (tryReleaseWaiter())
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ /**
+ * Final callback from terminating worker. Removes record of
+ * worker from array, and adjusts counts. If pool is shutting
+ * down, tries to complete termination.
+ *
+ * @param w the worker
+ */
+ final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
+ int idx = w.poolIndex;
+ int sc = w.stealCount;
+ int steps = 0;
+ // Remove from array, adjust worker counts and collect steal count.
+ // We can intermix failed removes or adjusts with steal updates
+ do {
+ long s, c;
+ int g;
+ if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
+ UNSAFE.compareAndSwapInt(this, scanGuardOffset,
+ g, g |= SG_UNIT)) {
+ ForkJoinWorkerThread[] ws = workers;
+ if (ws != null && idx >= 0 &&
+ idx < ws.length && ws[idx] == w)
+ ws[idx] = null; // verify
+ nextWorkerIndex = idx;
+ scanGuard = g + SG_UNIT;
+ steps = 1;
+ }
+ if (steps == 1 &&
+ UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
+ (((c - AC_UNIT) & AC_MASK) |
+ ((c - TC_UNIT) & TC_MASK) |
+ (c & ~(AC_MASK|TC_MASK)))))
+ steps = 2;
+ if (sc != 0 &&
+ UNSAFE.compareAndSwapLong(this, stealCountOffset,
+ s = stealCount, s + sc))
+ sc = 0;
+ } while (steps != 2 || sc != 0);
+ if (!tryTerminate(false)) {
+ if (ex != null) // possibly replace if died abnormally
+ signalWork();
+ else
+ tryReleaseWaiter();
+ }
+ }
+
+ // Shutdown and termination
+
+ /**
+ * Possibly initiates and/or completes termination.
+ *
+ * @param now if true, unconditionally terminate, else only
+ * if shutdown and empty queue and no active workers
+ * @return true if now terminating or terminated
+ */
+ private boolean tryTerminate(boolean now) {
+ long c;
+ while (((c = ctl) & STOP_BIT) == 0) {
+ if (!now) {
+ if ((int)(c >> AC_SHIFT) != -parallelism)
+ return false;
+ if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
+ queueBase != queueTop) {
+ if (ctl == c) // staleness check
+ return false;
+ continue;
+ }
+ }
+ if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
+ startTerminating();
+ }
+ if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
+ final ReentrantLock lock = this.submissionLock;
+ lock.lock();
+ try {
+ termination.signalAll();
+ } finally {
+ lock.unlock();
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Runs up to three passes through workers: (0) Setting
+ * termination status for each worker, followed by wakeups up to
+ * queued workers; (1) helping cancel tasks; (2) interrupting
+ * lagging threads (likely in external tasks, but possibly also
+ * blocked in joins). Each pass repeats previous steps because of
+ * potential lagging thread creation.
+ */
+ private void startTerminating() {
+ cancelSubmissions();
+ for (int pass = 0; pass < 3; ++pass) {
+ ForkJoinWorkerThread[] ws = workers;
+ if (ws != null) {
+ for (ForkJoinWorkerThread w : ws) {
+ if (w != null) {
+ w.terminate = true;
+ if (pass > 0) {
+ w.cancelTasks();
+ if (pass > 1 && !w.isInterrupted()) {
+ try {
+ w.interrupt();
+ } catch (SecurityException ignore) {
+ }
+ }
+ }
+ }
+ }
+ terminateWaiters();
+ }
+ }
+ }
+
+ /**
+ * Polls and cancels all submissions. Called only during termination.
+ */
+ private void cancelSubmissions() {
+ while (queueBase != queueTop) {
+ ForkJoinTask<?> task = pollSubmission();
+ if (task != null) {
+ try {
+ task.cancel(false);
+ } catch (Throwable ignore) {
+ }
+ }
+ }
+ }
+
+ /**
+ * Tries to set the termination status of waiting workers, and
+ * then wakes them up (after which they will terminate).
+ */
+ private void terminateWaiters() {
+ ForkJoinWorkerThread[] ws = workers;
+ if (ws != null) {
+ ForkJoinWorkerThread w; long c; int i, e;
+ int n = ws.length;
+ while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
+ (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
+ if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
+ (long)(w.nextWait & E_MASK) |
+ ((c + AC_UNIT) & AC_MASK) |
+ (c & (TC_MASK|STOP_BIT)))) {
+ w.terminate = true;
+ w.eventCount = e + EC_UNIT;
+ if (w.parked)
+ UNSAFE.unpark(w);
+ }
+ }
+ }
+ }
+
+ // misc ForkJoinWorkerThread support
+
+ /**
+ * Increments or decrements quiescerCount. Needed only to prevent
+ * triggering shutdown if a worker is transiently inactive while
+ * checking quiescence.
+ *
+ * @param delta 1 for increment, -1 for decrement
+ */
+ final void addQuiescerCount(int delta) {
+ int c;
+ do {} while (!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
+ c = quiescerCount, c + delta));
+ }
+
+ /**
+ * Directly increments or decrements active count without queuing.
+ * This method is used to transiently assert inactivation while
+ * checking quiescence.
+ *
+ * @param delta 1 for increment, -1 for decrement
+ */
+ final void addActiveCount(int delta) {
+ long d = (long)delta << AC_SHIFT;
+ long c;
+ do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,
+ c = ctl, c + d));
+ }
+
+ /**
+ * Returns the approximate (non-atomic) number of idle threads per
+ * active thread.
+ */
+ final int idlePerActive() {
+ // Approximate at powers of two for small values, saturate past 4
+ int p = parallelism;
+ int a = p + (int)(ctl >> AC_SHIFT);
+ return (a > (p >>>= 1) ? 0 :
+ a > (p >>>= 1) ? 1 :
+ a > (p >>>= 1) ? 2 :
+ a > (p >>>= 1) ? 4 :
+ 8);
+ }
+
+ // Exported methods
+
+ // Constructors
+
+ /**
+ * Creates a {@code ForkJoinPool} with parallelism equal to {@link
+ * java.lang.Runtime#availableProcessors}, using the {@linkplain
+ * #defaultForkJoinWorkerThreadFactory default thread factory},
+ * no UncaughtExceptionHandler, and non-async LIFO processing mode.
+ */
+ public ForkJoinPool() {
+ this(Runtime.getRuntime().availableProcessors(),
+ defaultForkJoinWorkerThreadFactory, null, false);
+ }
+
+ /**
+ * Creates a {@code ForkJoinPool} with the indicated parallelism
+ * level, the {@linkplain
+ * #defaultForkJoinWorkerThreadFactory default thread factory},
+ * no UncaughtExceptionHandler, and non-async LIFO processing mode.
+ *
+ * @param parallelism the parallelism level
+ * @throws IllegalArgumentException if parallelism less than or
+ * equal to zero, or greater than implementation limit
+ */
+ public ForkJoinPool(int parallelism) {
+ this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
+ }
+
+ /**
+ * Creates a {@code ForkJoinPool} with the given parameters.
+ *
+ * @param parallelism the parallelism level. For default value,
+ * use {@link java.lang.Runtime#availableProcessors}.
+ * @param factory the factory for creating new threads. For default value,
+ * use {@link #defaultForkJoinWorkerThreadFactory}.
+ * @param handler the handler for internal worker threads that
+ * terminate due to unrecoverable errors encountered while executing
+ * tasks. For default value, use {@code null}.
+ * @param asyncMode if true,
+ * establishes local first-in-first-out scheduling mode for forked
+ * tasks that are never joined. This mode may be more appropriate
+ * than default locally stack-based mode in applications in which
+ * worker threads only process event-style asynchronous tasks.
+ * For default value, use {@code false}.
+ * @throws IllegalArgumentException if parallelism less than or
+ * equal to zero, or greater than implementation limit
+ * @throws NullPointerException if the factory is null
+ */
+ public ForkJoinPool(int parallelism,
+ ForkJoinWorkerThreadFactory factory,
+ Thread.UncaughtExceptionHandler handler,
+ boolean asyncMode) {
+ checkPermission();
+ if (factory == null)
+ throw new NullPointerException();
+ if (parallelism <= 0 || parallelism > MAX_ID)
+ throw new IllegalArgumentException();
+ this.parallelism = parallelism;
+ this.factory = factory;
+ this.ueh = handler;
+ this.locallyFifo = asyncMode;
+ long np = (long)(-parallelism); // offset ctl counts
+ this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
+ this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
+ // initialize workers array with room for 2*parallelism if possible
+ int n = parallelism << 1;
+ if (n >= MAX_ID)
+ n = MAX_ID;
+ else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
+ n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
+ }
+ workers = new ForkJoinWorkerThread[n + 1];
+ this.submissionLock = new ReentrantLock();
+ this.termination = submissionLock.newCondition();
+ StringBuilder sb = new StringBuilder("ForkJoinPool-");
+ sb.append(poolNumberGenerator.incrementAndGet());
+ sb.append("-worker-");
+ this.workerNamePrefix = sb.toString();
+ }
+
+ // Execution methods
+
+ /**
+ * Performs the given task, returning its result upon completion.
+ * If the computation encounters an unchecked Exception or Error,
+ * it is rethrown as the outcome of this invocation. Rethrown
+ * exceptions behave in the same way as regular exceptions, but,
+ * when possible, contain stack traces (as displayed for example
+ * using {@code ex.printStackTrace()}) of both the current thread
+ * as well as the thread actually encountering the exception;
+ * minimally only the latter.
+ *
+ * @param task the task
+ * @return the task's result
+ * @throws NullPointerException if the task is null
+ * @throws RejectedExecutionException if the task cannot be
+ * scheduled for execution
+ */
+ public <T> T invoke(ForkJoinTask<T> task) {
+ Thread t = Thread.currentThread();
+ if (task == null)
+ throw new NullPointerException();
+ if (shutdown)
+ throw new RejectedExecutionException();
+ if ((t instanceof ForkJoinWorkerThread) &&
+ ((ForkJoinWorkerThread)t).pool == this)
+ return task.invoke(); // bypass submit if in same pool
+ else {
+ addSubmission(task);
+ return task.join();
+ }
+ }
+
+ /**
+ * Unless terminating, forks task if within an ongoing FJ
+ * computation in the current pool, else submits as external task.
+ */
+ private <T> void forkOrSubmit(ForkJoinTask<T> task) {
+ ForkJoinWorkerThread w;
+ Thread t = Thread.currentThread();
+ if (shutdown)
+ throw new RejectedExecutionException();
+ if ((t instanceof ForkJoinWorkerThread) &&
+ (w = (ForkJoinWorkerThread)t).pool == this)
+ w.pushTask(task);
+ else
+ addSubmission(task);
+ }
+
+ /**
+ * Arranges for (asynchronous) execution of the given task.
+ *
+ * @param task the task
+ * @throws NullPointerException if the task is null
+ * @throws RejectedExecutionException if the task cannot be
+ * scheduled for execution
+ */
+ public void execute(ForkJoinTask<?> task) {
+ if (task == null)
+ throw new NullPointerException();
+ forkOrSubmit(task);
+ }
+
+ // AbstractExecutorService methods
+
+ /**
+ * @throws NullPointerException if the task is null
+ * @throws RejectedExecutionException if the task cannot be
+ * scheduled for execution
+ */
+ public void execute(Runnable task) {
+ if (task == null)
+ throw new NullPointerException();
+ ForkJoinTask<?> job;
+ if (task instanceof ForkJoinTask<?>) // avoid re-wrap
+ job = (ForkJoinTask<?>) task;
+ else
+ job = ForkJoinTask.adapt(task, null);
+ forkOrSubmit(job);
+ }
+
+ /**
+ * Submits a ForkJoinTask for execution.
+ *
+ * @param task the task to submit
+ * @return the task
+ * @throws NullPointerException if the task is null
+ * @throws RejectedExecutionException if the task cannot be
+ * scheduled for execution
+ */
+ public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
+ if (task == null)
+ throw new NullPointerException();
+ forkOrSubmit(task);
+ return task;
+ }
+
+ /**
+ * @throws NullPointerException if the task is null
+ * @throws RejectedExecutionException if the task cannot be
+ * scheduled for execution
+ */
+ public <T> ForkJoinTask<T> submit(Callable<T> task) {
+ if (task == null)
+ throw new NullPointerException();
+ ForkJoinTask<T> job = ForkJoinTask.adapt(task);
+ forkOrSubmit(job);
+ return job;
+ }
+
+ /**
+ * @throws NullPointerException if the task is null
+ * @throws RejectedExecutionException if the task cannot be
+ * scheduled for execution
+ */
+ public <T> ForkJoinTask<T> submit(Runnable task, T result) {
+ if (task == null)
+ throw new NullPointerException();
+ ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
+ forkOrSubmit(job);
+ return job;
+ }
+
+ /**
+ * @throws NullPointerException if the task is null
+ * @throws RejectedExecutionException if the task cannot be
+ * scheduled for execution
+ */
+ public ForkJoinTask<?> submit(Runnable task) {
+ if (task == null)
+ throw new NullPointerException();
+ ForkJoinTask<?> job;
+ if (task instanceof ForkJoinTask<?>) // avoid re-wrap
+ job = (ForkJoinTask<?>) task;
+ else
+ job = ForkJoinTask.adapt(task, null);
+ forkOrSubmit(job);
+ return job;
+ }
+
+ /**
+ * @throws NullPointerException {@inheritDoc}
+ * @throws RejectedExecutionException {@inheritDoc}
+ */
+ public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
+ ArrayList<ForkJoinTask<T>> forkJoinTasks =
+ new ArrayList<ForkJoinTask<T>>(tasks.size());
+ for (Callable<T> task : tasks)
+ forkJoinTasks.add(ForkJoinTask.adapt(task));
+ invoke(new InvokeAll<T>(forkJoinTasks));
+
+ @SuppressWarnings({"unchecked", "rawtypes"})
+ List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
+ return futures;
+ }
+
+ static final class InvokeAll<T> extends RecursiveAction {
+ final ArrayList<ForkJoinTask<T>> tasks;
+ InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
+ public void compute() {
+ try { invokeAll(tasks); }
+ catch (Exception ignore) {}
+ }
+ private static final long serialVersionUID = -7914297376763021607L;
+ }
+
+ /**
+ * Returns the factory used for constructing new workers.
+ *
+ * @return the factory used for constructing new workers
+ */
+ public ForkJoinWorkerThreadFactory getFactory() {
+ return factory;
+ }
+
+ /**
+ * Returns the handler for internal worker threads that terminate
+ * due to unrecoverable errors encountered while executing tasks.
+ *
+ * @return the handler, or {@code null} if none
+ */
+ public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
+ return ueh;
+ }
+
+ /**
+ * Returns the targeted parallelism level of this pool.
+ *
+ * @return the targeted parallelism level of this pool
+ */
+ public int getParallelism() {
+ return parallelism;
+ }
+
+ /**
+ * Returns the number of worker threads that have started but not
+ * yet terminated. The result returned by this method may differ
+ * from {@link #getParallelism} when threads are created to
+ * maintain parallelism when others are cooperatively blocked.
+ *
+ * @return the number of worker threads
+ */
+ public int getPoolSize() {
+ return parallelism + (short)(ctl >>> TC_SHIFT);
+ }
+
+ /**
+ * Returns {@code true} if this pool uses local first-in-first-out
+ * scheduling mode for forked tasks that are never joined.
+ *
+ * @return {@code true} if this pool uses async mode
+ */
+ public boolean getAsyncMode() {
+ return locallyFifo;
+ }
+
+ /**
+ * Returns an estimate of the number of worker threads that are
+ * not blocked waiting to join tasks or for other managed
+ * synchronization. This method may overestimate the
+ * number of running threads.
+ *
+ * @return the number of worker threads
+ */
+ public int getRunningThreadCount() {
+ int r = parallelism + (int)(ctl >> AC_SHIFT);
+ return (r <= 0) ? 0 : r; // suppress momentarily negative values
+ }
+
+ /**
+ * Returns an estimate of the number of threads that are currently
+ * stealing or executing tasks. This method may overestimate the
+ * number of active threads.
+ *
+ * @return the number of active threads
+ */
+ public int getActiveThreadCount() {
+ int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
+ return (r <= 0) ? 0 : r; // suppress momentarily negative values
+ }
+
+ /**
+ * Returns {@code true} if all worker threads are currently idle.
+ * An idle worker is one that cannot obtain a task to execute
+ * because none are available to steal from other threads, and
+ * there are no pending submissions to the pool. This method is
+ * conservative; it might not return {@code true} immediately upon
+ * idleness of all threads, but will eventually become true if
+ * threads remain inactive.
+ *
+ * @return {@code true} if all threads are currently idle
+ */
+ public boolean isQuiescent() {
+ return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
+ }
+
+ /**
+ * Returns an estimate of the total number of tasks stolen from
+ * one thread's work queue by another. The reported value
+ * underestimates the actual total number of steals when the pool
+ * is not quiescent. This value may be useful for monitoring and
+ * tuning fork/join programs: in general, steal counts should be
+ * high enough to keep threads busy, but low enough to avoid
+ * overhead and contention across threads.
+ *
+ * @return the number of steals
+ */
+ public long getStealCount() {
+ return stealCount;
+ }
+
+ /**
+ * Returns an estimate of the total number of tasks currently held
+ * in queues by worker threads (but not including tasks submitted
+ * to the pool that have not begun executing). This value is only
+ * an approximation, obtained by iterating across all threads in
+ * the pool. This method may be useful for tuning task
+ * granularities.
+ *
+ * @return the number of queued tasks
+ */
+ public long getQueuedTaskCount() {
+ long count = 0;
+ ForkJoinWorkerThread[] ws;
+ if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
+ (ws = workers) != null) {
+ for (ForkJoinWorkerThread w : ws)
+ if (w != null)
+ count -= w.queueBase - w.queueTop; // must read base first
+ }
+ return count;
+ }
+
+ /**
+ * Returns an estimate of the number of tasks submitted to this
+ * pool that have not yet begun executing. This method may take
+ * time proportional to the number of submissions.
+ *
+ * @return the number of queued submissions
+ */
+ public int getQueuedSubmissionCount() {
+ return -queueBase + queueTop;
+ }
+
+ /**
+ * Returns {@code true} if there are any tasks submitted to this
+ * pool that have not yet begun executing.
+ *
+ * @return {@code true} if there are any queued submissions
+ */
+ public boolean hasQueuedSubmissions() {
+ return queueBase != queueTop;
+ }
+
+ /**
+ * Removes and returns the next unexecuted submission if one is
+ * available. This method may be useful in extensions to this
+ * class that re-assign work in systems with multiple pools.
+ *
+ * @return the next submission, or {@code null} if none
+ */
+ protected ForkJoinTask<?> pollSubmission() {
+ ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
+ while ((b = queueBase) != queueTop &&
+ (q = submissionQueue) != null &&
+ (i = (q.length - 1) & b) >= 0) {
+ long u = (i << ASHIFT) + ABASE;
+ if ((t = q[i]) != null &&
+ queueBase == b &&
+ UNSAFE.compareAndSwapObject(q, u, t, null)) {
+ queueBase = b + 1;
+ return t;
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Removes all available unexecuted submitted and forked tasks
+ * from scheduling queues and adds them to the given collection,
+ * without altering their execution status. These may include
+ * artificially generated or wrapped tasks. This method is
+ * designed to be invoked only when the pool is known to be
+ * quiescent. Invocations at other times may not remove all
+ * tasks. A failure encountered while attempting to add elements
+ * to collection {@code c} may result in elements being in
+ * neither, either or both collections when the associated
+ * exception is thrown. The behavior of this operation is
+ * undefined if the specified collection is modified while the
+ * operation is in progress.
+ *
+ * @param c the collection to transfer elements into
+ * @return the number of elements transferred
+ */
+ protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
+ int count = 0;
+ while (queueBase != queueTop) {
+ ForkJoinTask<?> t = pollSubmission();
+ if (t != null) {
+ c.add(t);
+ ++count;
+ }
+ }
+ ForkJoinWorkerThread[] ws;
+ if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
+ (ws = workers) != null) {
+ for (ForkJoinWorkerThread w : ws)
+ if (w != null)
+ count += w.drainTasksTo(c);
+ }
+ return count;
+ }
+
+ /**
+ * Returns a string identifying this pool, as well as its state,
+ * including indications of run state, parallelism level, and
+ * worker and task counts.
+ *
+ * @return a string identifying this pool, as well as its state
+ */
+ public String toString() {
+ long st = getStealCount();
+ long qt = getQueuedTaskCount();
+ long qs = getQueuedSubmissionCount();
+ int pc = parallelism;
+ long c = ctl;
+ int tc = pc + (short)(c >>> TC_SHIFT);
+ int rc = pc + (int)(c >> AC_SHIFT);
+ if (rc < 0) // ignore transient negative
+ rc = 0;
+ int ac = rc + blockedCount;
+ String level;
+ if ((c & STOP_BIT) != 0)
+ level = (tc == 0) ? "Terminated" : "Terminating";
+ else
+ level = shutdown ? "Shutting down" : "Running";
+ return super.toString() +
+ "[" + level +
+ ", parallelism = " + pc +
+ ", size = " + tc +
+ ", active = " + ac +
+ ", running = " + rc +
+ ", steals = " + st +
+ ", tasks = " + qt +
+ ", submissions = " + qs +
+ "]";
+ }
+
+ /**
+ * Initiates an orderly shutdown in which previously submitted
+ * tasks are executed, but no new tasks will be accepted.
+ * Invocation has no additional effect if already shut down.
+ * Tasks that are in the process of being submitted concurrently
+ * during the course of this method may or may not be rejected.
+ */
+ public void shutdown() {
+ checkPermission();
+ shutdown = true;
+ tryTerminate(false);
+ }
+
+ /**
+ * Attempts to cancel and/or stop all tasks, and reject all
+ * subsequently submitted tasks. Tasks that are in the process of
+ * being submitted or executed concurrently during the course of
+ * this method may or may not be rejected. This method cancels
+ * both existing and unexecuted tasks, in order to permit
+ * termination in the presence of task dependencies. So the method
+ * always returns an empty list (unlike the case for some other
+ * Executors).
+ *
+ * @return an empty list
+ */
+ public List<Runnable> shutdownNow() {
+ checkPermission();
+ shutdown = true;
+ tryTerminate(true);
+ return Collections.emptyList();
+ }
+
+ /**
+ * Returns {@code true} if all tasks have completed following shut down.
+ *
+ * @return {@code true} if all tasks have completed following shut down
+ */
+ public boolean isTerminated() {
+ long c = ctl;
+ return ((c & STOP_BIT) != 0L &&
+ (short)(c >>> TC_SHIFT) == -parallelism);
+ }
+
+ /**
+ * Returns {@code true} if the process of termination has
+ * commenced but not yet completed. This method may be useful for
+ * debugging. A return of {@code true} reported a sufficient
+ * period after shutdown may indicate that submitted tasks have
+ * ignored or suppressed interruption, or are waiting for IO,
+ * causing this executor not to properly terminate. (See the
+ * advisory notes for class {@link ForkJoinTask} stating that
+ * tasks should not normally entail blocking operations. But if
+ * they do, they must abort them on interrupt.)
+ *
+ * @return {@code true} if terminating but not yet terminated
+ */
+ public boolean isTerminating() {
+ long c = ctl;
+ return ((c & STOP_BIT) != 0L &&
+ (short)(c >>> TC_SHIFT) != -parallelism);
+ }
+
+ /**
+ * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
+ */
+ final boolean isAtLeastTerminating() {
+ return (ctl & STOP_BIT) != 0L;
+ }
+
+ /**
+ * Returns {@code true} if this pool has been shut down.
+ *
+ * @return {@code true} if this pool has been shut down
+ */
+ public boolean isShutdown() {
+ return shutdown;
+ }
+
+ /**
+ * Blocks until all tasks have completed execution after a shutdown
+ * request, or the timeout occurs, or the current thread is
+ * interrupted, whichever happens first.
+ *
+ * @param timeout the maximum time to wait
+ * @param unit the time unit of the timeout argument
+ * @return {@code true} if this executor terminated and
+ * {@code false} if the timeout elapsed before termination
+ * @throws InterruptedException if interrupted while waiting
+ */
+ public boolean awaitTermination(long timeout, TimeUnit unit)
+ throws InterruptedException {
+ long nanos = unit.toNanos(timeout);
+ final ReentrantLock lock = this.submissionLock;
+ lock.lock();
+ try {
+ for (;;) {
+ if (isTerminated())
+ return true;
+ if (nanos <= 0)
+ return false;
+ nanos = termination.awaitNanos(nanos);
+ }
+ } finally {
+ lock.unlock();
+ }
+ }
+
+ /**
+ * Interface for extending managed parallelism for tasks running
+ * in {@link ForkJoinPool}s.
+ *
+ * <p>A {@code ManagedBlocker} provides two methods. Method
+ * {@code isReleasable} must return {@code true} if blocking is
+ * not necessary. Method {@code block} blocks the current thread
+ * if necessary (perhaps internally invoking {@code isReleasable}
+ * before actually blocking). These actions are performed by any
+ * thread invoking {@link ForkJoinPool#managedBlock}. The
+ * unusual methods in this API accommodate synchronizers that may,
+ * but don't usually, block for long periods. Similarly, they
+ * allow more efficient internal handling of cases in which
+ * additional workers may be, but usually are not, needed to
+ * ensure sufficient parallelism. Toward this end,
+ * implementations of method {@code isReleasable} must be amenable
+ * to repeated invocation.
+ *
+ * <p>For example, here is a ManagedBlocker based on a
+ * ReentrantLock:
+ * <pre> {@code
+ * class ManagedLocker implements ManagedBlocker {
+ * final ReentrantLock lock;
+ * boolean hasLock = false;
+ * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
+ * public boolean block() {
+ * if (!hasLock)
+ * lock.lock();
+ * return true;
+ * }
+ * public boolean isReleasable() {
+ * return hasLock || (hasLock = lock.tryLock());
+ * }
+ * }}</pre>
+ *
+ * <p>Here is a class that possibly blocks waiting for an
+ * item on a given queue:
+ * <pre> {@code
+ * class QueueTaker<E> implements ManagedBlocker {
+ * final BlockingQueue<E> queue;
+ * volatile E item = null;
+ * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
+ * public boolean block() throws InterruptedException {
+ * if (item == null)
+ * item = queue.take();
+ * return true;
+ * }
+ * public boolean isReleasable() {
+ * return item != null || (item = queue.poll()) != null;
+ * }
+ * public E getItem() { // call after pool.managedBlock completes
+ * return item;
+ * }
+ * }}</pre>
+ */
+ public static interface ManagedBlocker {
+ /**
+ * Possibly blocks the current thread, for example waiting for
+ * a lock or condition.
+ *
+ * @return {@code true} if no additional blocking is necessary
+ * (i.e., if isReleasable would return true)
+ * @throws InterruptedException if interrupted while waiting
+ * (the method is not required to do so, but is allowed to)
+ */
+ boolean block() throws InterruptedException;
+
+ /**
+ * Returns {@code true} if blocking is unnecessary.
+ */
+ boolean isReleasable();
+ }
+
+ /**
+ * Blocks in accord with the given blocker. If the current thread
+ * is a {@link ForkJoinWorkerThread}, this method possibly
+ * arranges for a spare thread to be activated if necessary to
+ * ensure sufficient parallelism while the current thread is blocked.
+ *
+ * <p>If the caller is not a {@link ForkJoinTask}, this method is
+ * behaviorally equivalent to
+ * <pre> {@code
+ * while (!blocker.isReleasable())
+ * if (blocker.block())
+ * return;
+ * }</pre>
+ *
+ * If the caller is a {@code ForkJoinTask}, then the pool may
+ * first be expanded to ensure parallelism, and later adjusted.
+ *
+ * @param blocker the blocker
+ * @throws InterruptedException if blocker.block did so
+ */
+ public static void managedBlock(ManagedBlocker blocker)
+ throws InterruptedException {
+ Thread t = Thread.currentThread();
+ if (t instanceof ForkJoinWorkerThread) {
+ ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
+ w.pool.awaitBlocker(blocker);
+ }
+ else {
+ do {} while (!blocker.isReleasable() && !blocker.block());
+ }
+ }
+
+ // AbstractExecutorService overrides. These rely on undocumented
+ // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
+ // implement RunnableFuture.
+
+ protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
+ return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
+ }
+
+ protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
+ return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
+ }
+
+ // Unsafe mechanics
+ private static final sun.misc.Unsafe UNSAFE;
+ private static final long ctlOffset;
+ private static final long stealCountOffset;
+ private static final long blockedCountOffset;
+ private static final long quiescerCountOffset;
+ private static final long scanGuardOffset;
+ private static final long nextWorkerNumberOffset;
+ private static final long ABASE;
+ private static final int ASHIFT;
+
+ static {
+ poolNumberGenerator = new AtomicInteger();
+ workerSeedGenerator = new Random();
+ modifyThreadPermission = new RuntimePermission("modifyThread");
+ defaultForkJoinWorkerThreadFactory =
+ new DefaultForkJoinWorkerThreadFactory();
+ try {
+ UNSAFE = sun.misc.Unsafe.getUnsafe();
+ Class<?> k = ForkJoinPool.class;
+ ctlOffset = UNSAFE.objectFieldOffset
+ (k.getDeclaredField("ctl"));
+ stealCountOffset = UNSAFE.objectFieldOffset
+ (k.getDeclaredField("stealCount"));
+ blockedCountOffset = UNSAFE.objectFieldOffset
+ (k.getDeclaredField("blockedCount"));
+ quiescerCountOffset = UNSAFE.objectFieldOffset
+ (k.getDeclaredField("quiescerCount"));
+ scanGuardOffset = UNSAFE.objectFieldOffset
+ (k.getDeclaredField("scanGuard"));
+ nextWorkerNumberOffset = UNSAFE.objectFieldOffset
+ (k.getDeclaredField("nextWorkerNumber"));
+ } catch (Exception e) {
+ throw new Error(e);
+ }
+ Class<?> a = ForkJoinTask[].class;
+ ABASE = UNSAFE.arrayBaseOffset(a);
+ int s = UNSAFE.arrayIndexScale(a);
+ if ((s & (s-1)) != 0)
+ throw new Error("data type scale not a power of two");
+ ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
+ }
+
+}