summaryrefslogtreecommitdiffstats
path: root/luni/src/main/java/java/nio/charset/CharsetEncoderICU.java
blob: 76807b00c26617886cf6dfd2e0ebc2eaa8d114e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/**
*******************************************************************************
* Copyright (C) 1996-2006, International Business Machines Corporation and    *
* others. All Rights Reserved.                                                  *
*******************************************************************************
*
*******************************************************************************
*/
/**
 * A JNI interface for ICU converters.
 *
 *
 * @author Ram Viswanadha, IBM
 */
package java.nio.charset;

import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.util.HashMap;
import java.util.Map;
import libcore.icu.ICU;
import libcore.icu.NativeConverter;
import libcore.util.EmptyArray;

final class CharsetEncoderICU extends CharsetEncoder {
    private static final Map<String, byte[]> DEFAULT_REPLACEMENTS = new HashMap<String, byte[]>();
    static {
        // ICU has different default replacements to the RI in some cases. There are many
        // additional cases, but this covers all the charsets that Java guarantees will be
        // available, which is where compatibility seems most important. (The RI even uses
        // the byte corresponding to '?' in ASCII as the replacement byte for charsets where that
        // byte corresponds to an entirely different character.)
        // It's odd that UTF-8 doesn't use U+FFFD, given that (unlike ISO-8859-1 and US-ASCII) it
        // can represent it, but this is what the RI does...
        byte[] questionMark = new byte[] { (byte) '?' };
        DEFAULT_REPLACEMENTS.put("UTF-8",      questionMark);
        DEFAULT_REPLACEMENTS.put("ISO-8859-1", questionMark);
        DEFAULT_REPLACEMENTS.put("US-ASCII",   questionMark);
    }

    private static final int INPUT_OFFSET = 0;
    private static final int OUTPUT_OFFSET = 1;
    private static final int INVALID_CHARS = 2;
    /*
     * data[INPUT_OFFSET]   = on input contains the start of input and on output the number of input chars consumed
     * data[OUTPUT_OFFSET]  = on input contains the start of output and on output the number of output bytes written
     * data[INVALID_CHARS]  = number of invalid chars
     */
    private int[] data = new int[3];

    /* handle to the ICU converter that is opened */
    private long converterHandle=0;

    private char[] input = null;
    private byte[] output = null;

    private char[] allocatedInput = null;
    private byte[] allocatedOutput = null;

    // These instance variables are always assigned in the methods before being used. This class
    // is inherently thread-unsafe so we don't have to worry about synchronization.
    private int inEnd;
    private int outEnd;

    public static CharsetEncoderICU newInstance(Charset cs, String icuCanonicalName) {
        // This complexity is necessary to ensure that even if the constructor, superclass
        // constructor, or call to updateCallback throw, we still free the native peer.
        long address = 0;
        try {
            address = NativeConverter.openConverter(icuCanonicalName);
            float averageBytesPerChar = NativeConverter.getAveBytesPerChar(address);
            float maxBytesPerChar = NativeConverter.getMaxBytesPerChar(address);
            byte[] replacement = makeReplacement(icuCanonicalName, address);
            CharsetEncoderICU result = new CharsetEncoderICU(cs, averageBytesPerChar, maxBytesPerChar, replacement, address);
            address = 0; // CharsetEncoderICU has taken ownership; its finalizer will do the free.
            return result;
        } finally {
            if (address != 0) {
                NativeConverter.closeConverter(address);
            }
        }
    }

    private static byte[] makeReplacement(String icuCanonicalName, long address) {
        // We have our own map of RI-compatible default replacements (where ICU disagrees)...
        byte[] replacement = DEFAULT_REPLACEMENTS.get(icuCanonicalName);
        if (replacement != null) {
            return replacement.clone();
        }
        // ...but fall back to asking ICU.
        return NativeConverter.getSubstitutionBytes(address);
    }

    private CharsetEncoderICU(Charset cs, float averageBytesPerChar, float maxBytesPerChar, byte[] replacement, long address) {
        super(cs, averageBytesPerChar, maxBytesPerChar, replacement, true);
        // Our native peer needs to know what just happened...
        this.converterHandle = address;
        updateCallback();
    }

    @Override protected void implReplaceWith(byte[] newReplacement) {
        updateCallback();
    }

    @Override protected void implOnMalformedInput(CodingErrorAction newAction) {
        updateCallback();
    }

    @Override protected void implOnUnmappableCharacter(CodingErrorAction newAction) {
        updateCallback();
    }

    private void updateCallback() {
        NativeConverter.setCallbackEncode(converterHandle, this);
    }

    @Override protected void implReset() {
        NativeConverter.resetCharToByte(converterHandle);
        data[INPUT_OFFSET] = 0;
        data[OUTPUT_OFFSET] = 0;
        data[INVALID_CHARS] = 0;
        output = null;
        input = null;
        allocatedInput = null;
        allocatedOutput = null;
        inEnd = 0;
        outEnd = 0;
    }

    @Override protected CoderResult implFlush(ByteBuffer out) {
        try {
            // ICU needs to see an empty input.
            input = EmptyArray.CHAR;
            inEnd = 0;
            data[INPUT_OFFSET] = 0;

            data[OUTPUT_OFFSET] = getArray(out);
            data[INVALID_CHARS] = 0; // Make sure we don't see earlier errors.

            int error = NativeConverter.encode(converterHandle, input, inEnd, output, outEnd, data, true);
            if (ICU.U_FAILURE(error)) {
                if (error == ICU.U_BUFFER_OVERFLOW_ERROR) {
                    return CoderResult.OVERFLOW;
                } else if (error == ICU.U_TRUNCATED_CHAR_FOUND) {
                    if (data[INPUT_OFFSET] > 0) {
                        return CoderResult.malformedForLength(data[INPUT_OFFSET]);
                    }
                }
            }
            return CoderResult.UNDERFLOW;
        } finally {
            setPosition(out);
            implReset();
        }
    }

    @Override protected CoderResult encodeLoop(CharBuffer in, ByteBuffer out) {
        if (!in.hasRemaining()) {
            return CoderResult.UNDERFLOW;
        }

        data[INPUT_OFFSET] = getArray(in);
        data[OUTPUT_OFFSET]= getArray(out);
        data[INVALID_CHARS] = 0; // Make sure we don't see earlier errors.

        try {
            int error = NativeConverter.encode(converterHandle, input, inEnd, output, outEnd, data, false);
            if (ICU.U_FAILURE(error)) {
                if (error == ICU.U_BUFFER_OVERFLOW_ERROR) {
                    return CoderResult.OVERFLOW;
                } else if (error == ICU.U_INVALID_CHAR_FOUND) {
                    return CoderResult.unmappableForLength(data[INVALID_CHARS]);
                } else if (error == ICU.U_ILLEGAL_CHAR_FOUND) {
                    return CoderResult.malformedForLength(data[INVALID_CHARS]);
                } else {
                    throw new AssertionError(error);
                }
            }
            // Decoding succeeded: give us more data.
            return CoderResult.UNDERFLOW;
        } finally {
            setPosition(in);
            setPosition(out);
        }
    }

    public boolean canEncode(char c) {
        return canEncode((int) c);
    }

    public boolean canEncode(int codePoint) {
        return NativeConverter.canEncode(converterHandle, codePoint);
    }

    @Override protected void finalize() throws Throwable {
        try {
            NativeConverter.closeConverter(converterHandle);
            converterHandle=0;
        } finally {
            super.finalize();
        }
    }

    private int getArray(ByteBuffer out) {
        if (out.hasArray()) {
            output = out.array();
            outEnd = out.arrayOffset() + out.limit();
            return out.arrayOffset() + out.position();
        } else {
            outEnd = out.remaining();
            if (allocatedOutput == null || outEnd > allocatedOutput.length) {
                allocatedOutput = new byte[outEnd];
            }
            // The array's start position is 0
            output = allocatedOutput;
            return 0;
        }
    }

    private int getArray(CharBuffer in) {
        if (in.hasArray()) {
            input = in.array();
            inEnd = in.arrayOffset() + in.limit();
            return in.arrayOffset() + in.position();
        } else {
            inEnd = in.remaining();
            if (allocatedInput == null || inEnd > allocatedInput.length) {
                allocatedInput = new char[inEnd];
            }
            // Copy the input buffer into the allocated array.
            int pos = in.position();
            in.get(allocatedInput, 0, inEnd);
            in.position(pos);
            // The array's start position is 0
            input = allocatedInput;
            return 0;
        }
    }

    private void setPosition(ByteBuffer out) {
        if (out.hasArray()) {
            out.position(out.position() + data[OUTPUT_OFFSET] - out.arrayOffset());
        } else {
            out.put(output, 0, data[OUTPUT_OFFSET]);
        }
        // release reference to output array, which may not be ours
        output = null;
    }

    private void setPosition(CharBuffer in) {
        in.position(in.position() + data[INPUT_OFFSET] - data[INVALID_CHARS]);
        // release reference to input array, which may not be ours
        input = null;
    }
}