summaryrefslogtreecommitdiffstats
path: root/luni/src/main/java/java/util/concurrent/package-info.java
blob: 155d1b81d7cbd8c2e5cc64e193e12c94d5c04b77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

// BEGIN android-note
// omit links to ForkJoinPool, ForkJoinTask, LinkedTransferQueue, PHaser, TransferQueue
// END android-note

/**
 * Utility classes commonly useful in concurrent programming.  This
 * package includes a few small standardized extensible frameworks, as
 * well as some classes that provide useful functionality and are
 * otherwise tedious or difficult to implement.  Here are brief
 * descriptions of the main components.  See also the
 * {@link java.util.concurrent.locks} and
 * {@link java.util.concurrent.atomic} packages.
 *
 * <h2>Executors</h2>
 *
 * <b>Interfaces.</b>
 *
 * {@link java.util.concurrent.Executor} is a simple standardized
 * interface for defining custom thread-like subsystems, including
 * thread pools, asynchronous IO, and lightweight task frameworks.
 * Depending on which concrete Executor class is being used, tasks may
 * execute in a newly created thread, an existing task-execution thread,
 * or the thread calling {@link java.util.concurrent.Executor#execute
 * execute}, and may execute sequentially or concurrently.
 *
 * {@link java.util.concurrent.ExecutorService} provides a more
 * complete asynchronous task execution framework.  An
 * ExecutorService manages queuing and scheduling of tasks,
 * and allows controlled shutdown.
 *
 * The {@link java.util.concurrent.ScheduledExecutorService}
 * subinterface and associated interfaces add support for
 * delayed and periodic task execution.  ExecutorServices
 * provide methods arranging asynchronous execution of any
 * function expressed as {@link java.util.concurrent.Callable},
 * the result-bearing analog of {@link java.lang.Runnable}.
 *
 * A {@link java.util.concurrent.Future} returns the results of
 * a function, allows determination of whether execution has
 * completed, and provides a means to cancel execution.
 *
 * A {@link java.util.concurrent.RunnableFuture} is a {@code Future}
 * that possesses a {@code run} method that upon execution,
 * sets its results.
 *
 * <p>
 *
 * <b>Implementations.</b>
 *
 * Classes {@link java.util.concurrent.ThreadPoolExecutor} and
 * {@link java.util.concurrent.ScheduledThreadPoolExecutor}
 * provide tunable, flexible thread pools.
 *
 * The {@link java.util.concurrent.Executors} class provides
 * factory methods for the most common kinds and configurations
 * of Executors, as well as a few utility methods for using
 * them.  Other utilities based on {@code Executors} include the
 * concrete class {@link java.util.concurrent.FutureTask}
 * providing a common extensible implementation of Futures, and
 * {@link java.util.concurrent.ExecutorCompletionService}, that
 * assists in coordinating the processing of groups of
 * asynchronous tasks.
 *
 * <h2>Queues</h2>
 *
 * The {@link java.util.concurrent.ConcurrentLinkedQueue} class
 * supplies an efficient scalable thread-safe non-blocking FIFO
 * queue.
 *
 * <p>Five implementations in {@code java.util.concurrent} support
 * the extended {@link java.util.concurrent.BlockingQueue}
 * interface, that defines blocking versions of put and take:
 * {@link java.util.concurrent.LinkedBlockingQueue},
 * {@link java.util.concurrent.ArrayBlockingQueue},
 * {@link java.util.concurrent.SynchronousQueue},
 * {@link java.util.concurrent.PriorityBlockingQueue}, and
 * {@link java.util.concurrent.DelayQueue}.
 * The different classes cover the most common usage contexts
 * for producer-consumer, messaging, parallel tasking, and
 * related concurrent designs.
 *
 * <p>The {@link java.util.concurrent.BlockingDeque} interface
 * extends {@code BlockingQueue} to support both FIFO and LIFO
 * (stack-based) operations.
 * Class {@link java.util.concurrent.LinkedBlockingDeque}
 * provides an implementation.
 *
 * <h2>Timing</h2>
 *
 * The {@link java.util.concurrent.TimeUnit} class provides
 * multiple granularities (including nanoseconds) for
 * specifying and controlling time-out based operations.  Most
 * classes in the package contain operations based on time-outs
 * in addition to indefinite waits.  In all cases that
 * time-outs are used, the time-out specifies the minimum time
 * that the method should wait before indicating that it
 * timed-out.  Implementations make a &quot;best effort&quot;
 * to detect time-outs as soon as possible after they occur.
 * However, an indefinite amount of time may elapse between a
 * time-out being detected and a thread actually executing
 * again after that time-out.  All methods that accept timeout
 * parameters treat values less than or equal to zero to mean
 * not to wait at all.  To wait "forever", you can use a value
 * of {@code Long.MAX_VALUE}.
 *
 * <h2>Synchronizers</h2>
 *
 * Four classes aid common special-purpose synchronization idioms.
 * <ul>
 *
 * <li>{@link java.util.concurrent.Semaphore} is a classic concurrency tool.
 *
 * <li>{@link java.util.concurrent.CountDownLatch} is a very simple yet
 * very common utility for blocking until a given number of signals,
 * events, or conditions hold.
 *
 * <li>A {@link java.util.concurrent.CyclicBarrier} is a resettable
 * multiway synchronization point useful in some styles of parallel
 * programming.
 *
 * <li>An {@link java.util.concurrent.Exchanger} allows two threads to
 * exchange objects at a rendezvous point, and is useful in several
 * pipeline designs.
 *
 * </ul>
 *
 * <h2>Concurrent Collections</h2>
 *
 * Besides Queues, this package supplies Collection implementations
 * designed for use in multithreaded contexts:
 * {@link java.util.concurrent.ConcurrentHashMap},
 * {@link java.util.concurrent.ConcurrentSkipListMap},
 * {@link java.util.concurrent.ConcurrentSkipListSet},
 * {@link java.util.concurrent.CopyOnWriteArrayList}, and
 * {@link java.util.concurrent.CopyOnWriteArraySet}.
 * When many threads are expected to access a given collection, a
 * {@code ConcurrentHashMap} is normally preferable to a synchronized
 * {@code HashMap}, and a {@code ConcurrentSkipListMap} is normally
 * preferable to a synchronized {@code TreeMap}.
 * A {@code CopyOnWriteArrayList} is preferable to a synchronized
 * {@code ArrayList} when the expected number of reads and traversals
 * greatly outnumber the number of updates to a list.
 *
 * <p>The "Concurrent" prefix used with some classes in this package
 * is a shorthand indicating several differences from similar
 * "synchronized" classes.  For example {@code java.util.Hashtable} and
 * {@code Collections.synchronizedMap(new HashMap())} are
 * synchronized.  But {@link
 * java.util.concurrent.ConcurrentHashMap} is "concurrent".  A
 * concurrent collection is thread-safe, but not governed by a
 * single exclusion lock.  In the particular case of
 * ConcurrentHashMap, it safely permits any number of
 * concurrent reads as well as a tunable number of concurrent
 * writes.  "Synchronized" classes can be useful when you need
 * to prevent all access to a collection via a single lock, at
 * the expense of poorer scalability.  In other cases in which
 * multiple threads are expected to access a common collection,
 * "concurrent" versions are normally preferable.  And
 * unsynchronized collections are preferable when either
 * collections are unshared, or are accessible only when
 * holding other locks.
 *
 * <p>Most concurrent Collection implementations (including most
 * Queues) also differ from the usual java.util conventions in that
 * their Iterators provide <em>weakly consistent</em> rather than
 * fast-fail traversal.  A weakly consistent iterator is thread-safe,
 * but does not necessarily freeze the collection while iterating, so
 * it may (or may not) reflect any updates since the iterator was
 * created.
 *
 * <h2><a name="MemoryVisibility">Memory Consistency Properties</a></h2>
 *
 * <a href="http://java.sun.com/docs/books/jls/third_edition/html/memory.html">
 * Chapter 17 of the Java Language Specification</a> defines the
 * <i>happens-before</i> relation on memory operations such as reads and
 * writes of shared variables.  The results of a write by one thread are
 * guaranteed to be visible to a read by another thread only if the write
 * operation <i>happens-before</i> the read operation.  The
 * {@code synchronized} and {@code volatile} constructs, as well as the
 * {@code Thread.start()} and {@code Thread.join()} methods, can form
 * <i>happens-before</i> relationships.  In particular:
 *
 * <ul>
 *   <li>Each action in a thread <i>happens-before</i> every action in that
 *   thread that comes later in the program's order.
 *
 *   <li>An unlock ({@code synchronized} block or method exit) of a
 *   monitor <i>happens-before</i> every subsequent lock ({@code synchronized}
 *   block or method entry) of that same monitor.  And because
 *   the <i>happens-before</i> relation is transitive, all actions
 *   of a thread prior to unlocking <i>happen-before</i> all actions
 *   subsequent to any thread locking that monitor.
 *
 *   <li>A write to a {@code volatile} field <i>happens-before</i> every
 *   subsequent read of that same field.  Writes and reads of
 *   {@code volatile} fields have similar memory consistency effects
 *   as entering and exiting monitors, but do <em>not</em> entail
 *   mutual exclusion locking.
 *
 *   <li>A call to {@code start} on a thread <i>happens-before</i> any
 *   action in the started thread.
 *
 *   <li>All actions in a thread <i>happen-before</i> any other thread
 *   successfully returns from a {@code join} on that thread.
 *
 * </ul>
 *
 *
 * The methods of all classes in {@code java.util.concurrent} and its
 * subpackages extend these guarantees to higher-level
 * synchronization.  In particular:
 *
 * <ul>
 *
 *   <li>Actions in a thread prior to placing an object into any concurrent
 *   collection <i>happen-before</i> actions subsequent to the access or
 *   removal of that element from the collection in another thread.
 *
 *   <li>Actions in a thread prior to the submission of a {@code Runnable}
 *   to an {@code Executor} <i>happen-before</i> its execution begins.
 *   Similarly for {@code Callables} submitted to an {@code ExecutorService}.
 *
 *   <li>Actions taken by the asynchronous computation represented by a
 *   {@code Future} <i>happen-before</i> actions subsequent to the
 *   retrieval of the result via {@code Future.get()} in another thread.
 *
 *   <li>Actions prior to "releasing" synchronizer methods such as
 *   {@code Lock.unlock}, {@code Semaphore.release}, and
 *   {@code CountDownLatch.countDown} <i>happen-before</i> actions
 *   subsequent to a successful "acquiring" method such as
 *   {@code Lock.lock}, {@code Semaphore.acquire},
 *   {@code Condition.await}, and {@code CountDownLatch.await} on the
 *   same synchronizer object in another thread.
 *
 *   <li>For each pair of threads that successfully exchange objects via
 *   an {@code Exchanger}, actions prior to the {@code exchange()}
 *   in each thread <i>happen-before</i> those subsequent to the
 *   corresponding {@code exchange()} in another thread.
 *
 *   <li>Actions prior to calling {@code CyclicBarrier.await} and
 *   {@code Phaser.awaitAdvance} (as well as its variants)
 *   <i>happen-before</i> actions performed by the barrier action, and
 *   actions performed by the barrier action <i>happen-before</i> actions
 *   subsequent to a successful return from the corresponding {@code await}
 *   in other threads.
 *
 * </ul>
 *
 * @since 1.5
 */
package java.util.concurrent;