summaryrefslogtreecommitdiffstats
path: root/libcorkscrew/arch-arm/backtrace-arm.c
diff options
context:
space:
mode:
Diffstat (limited to 'libcorkscrew/arch-arm/backtrace-arm.c')
-rw-r--r--libcorkscrew/arch-arm/backtrace-arm.c589
1 files changed, 0 insertions, 589 deletions
diff --git a/libcorkscrew/arch-arm/backtrace-arm.c b/libcorkscrew/arch-arm/backtrace-arm.c
deleted file mode 100644
index 751efbf..0000000
--- a/libcorkscrew/arch-arm/backtrace-arm.c
+++ /dev/null
@@ -1,589 +0,0 @@
-/*
- * Copyright (C) 2011 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-/*
- * Backtracing functions for ARM.
- *
- * This implementation uses the exception unwinding tables provided by
- * the compiler to unwind call frames. Refer to the ARM Exception Handling ABI
- * documentation (EHABI) for more details about what's going on here.
- *
- * An ELF binary may contain an EXIDX section that provides an index to
- * the exception handling table of each function, sorted by program
- * counter address.
- *
- * This implementation also supports unwinding other processes via ptrace().
- * In that case, the EXIDX section is found by reading the ELF section table
- * structures using ptrace().
- *
- * Because the tables are used for exception handling, it can happen that
- * a given function will not have an exception handling table. In particular,
- * exceptions are assumed to only ever be thrown at call sites. Therefore,
- * by definition leaf functions will not have exception handling tables.
- * This may make unwinding impossible in some cases although we can still get
- * some idea of the call stack by examining the PC and LR registers.
- *
- * As we are only interested in backtrace information, we do not need
- * to perform all of the work of unwinding such as restoring register
- * state and running cleanup functions. Unwinding is performed virtually on
- * an abstract machine context consisting of just the ARM core registers.
- * Furthermore, we do not run generic "personality functions" because
- * we may not be in a position to execute arbitrary code, especially if
- * we are running in a signal handler or using ptrace()!
- */
-
-#define LOG_TAG "Corkscrew"
-//#define LOG_NDEBUG 0
-
-#include "../backtrace-arch.h"
-#include "../backtrace-helper.h"
-#include "../ptrace-arch.h"
-#include <corkscrew/ptrace.h>
-
-#include <stdlib.h>
-#include <signal.h>
-#include <stdbool.h>
-#include <limits.h>
-#include <errno.h>
-#include <sys/ptrace.h>
-#include <elf.h>
-#include <cutils/log.h>
-
-#include <ucontext.h>
-
-/* Unwind state. */
-typedef struct {
- uint32_t gregs[16];
-} unwind_state_t;
-
-static const int R_SP = 13;
-static const int R_LR = 14;
-static const int R_PC = 15;
-
-/* Special EXIDX value that indicates that a frame cannot be unwound. */
-static const uint32_t EXIDX_CANTUNWIND = 1;
-
-/* Get the EXIDX section start and size for the module that contains a
- * given program counter address.
- *
- * When the executable is statically linked, the EXIDX section can be
- * accessed by querying the values of the __exidx_start and __exidx_end
- * symbols.
- *
- * When the executable is dynamically linked, the linker exports a function
- * called dl_unwind_find_exidx that obtains the EXIDX section for a given
- * absolute program counter address.
- *
- * Bionic exports a helpful function called __gnu_Unwind_Find_exidx that
- * handles both cases, so we use that here.
- */
-typedef long unsigned int* _Unwind_Ptr;
-extern _Unwind_Ptr __gnu_Unwind_Find_exidx(_Unwind_Ptr pc, int *pcount);
-
-static uintptr_t find_exidx(uintptr_t pc, size_t* out_exidx_size) {
- int count;
- uintptr_t start = (uintptr_t)__gnu_Unwind_Find_exidx((_Unwind_Ptr)pc, &count);
- *out_exidx_size = count;
- return start;
-}
-
-/* Transforms a 31-bit place-relative offset to an absolute address.
- * We assume the most significant bit is clear. */
-static uintptr_t prel_to_absolute(uintptr_t place, uint32_t prel_offset) {
- return place + (((int32_t)(prel_offset << 1)) >> 1);
-}
-
-static uintptr_t get_exception_handler(const memory_t* memory,
- const map_info_t* map_info_list, uintptr_t pc) {
- if (!pc) {
- ALOGV("get_exception_handler: pc is zero, no handler");
- return 0;
- }
-
- uintptr_t exidx_start;
- size_t exidx_size;
- const map_info_t* mi;
- if (memory->tid < 0) {
- mi = NULL;
- exidx_start = find_exidx(pc, &exidx_size);
- } else {
- mi = find_map_info(map_info_list, pc);
- if (mi && mi->data) {
- const map_info_data_t* data = (const map_info_data_t*)mi->data;
- exidx_start = data->exidx_start;
- exidx_size = data->exidx_size;
- } else {
- exidx_start = 0;
- exidx_size = 0;
- }
- }
-
- uintptr_t handler = 0;
- int32_t handler_index = -1;
- if (exidx_start) {
- uint32_t low = 0;
- uint32_t high = exidx_size;
- while (low < high) {
- uint32_t index = (low + high) / 2;
- uintptr_t entry = exidx_start + index * 8;
- uint32_t entry_prel_pc;
- ALOGV("XXX low=%u, high=%u, index=%u", low, high, index);
- if (!try_get_word(memory, entry, &entry_prel_pc)) {
- break;
- }
- uintptr_t entry_pc = prel_to_absolute(entry, entry_prel_pc);
- ALOGV("XXX entry_pc=0x%08x", entry_pc);
- if (pc < entry_pc) {
- high = index;
- continue;
- }
- if (index + 1 < exidx_size) {
- uintptr_t next_entry = entry + 8;
- uint32_t next_entry_prel_pc;
- if (!try_get_word(memory, next_entry, &next_entry_prel_pc)) {
- break;
- }
- uintptr_t next_entry_pc = prel_to_absolute(next_entry, next_entry_prel_pc);
- ALOGV("XXX next_entry_pc=0x%08x", next_entry_pc);
- if (pc >= next_entry_pc) {
- low = index + 1;
- continue;
- }
- }
-
- uintptr_t entry_handler_ptr = entry + 4;
- uint32_t entry_handler;
- if (!try_get_word(memory, entry_handler_ptr, &entry_handler)) {
- break;
- }
- if (entry_handler & (1L << 31)) {
- handler = entry_handler_ptr; // in-place handler data
- } else if (entry_handler != EXIDX_CANTUNWIND) {
- handler = prel_to_absolute(entry_handler_ptr, entry_handler);
- }
- handler_index = index;
- break;
- }
- }
- if (mi) {
- ALOGV("get_exception_handler: pc=0x%08x, module='%s', module_start=0x%08x, "
- "exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
- pc, mi->name, mi->start, exidx_start, exidx_size, handler, handler_index);
- } else {
- ALOGV("get_exception_handler: pc=0x%08x, "
- "exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
- pc, exidx_start, exidx_size, handler, handler_index);
- }
- return handler;
-}
-
-typedef struct {
- uintptr_t ptr;
- uint32_t word;
-} byte_stream_t;
-
-static bool try_next_byte(const memory_t* memory, byte_stream_t* stream, uint8_t* out_value) {
- uint8_t result;
- switch (stream->ptr & 3) {
- case 0:
- if (!try_get_word(memory, stream->ptr, &stream->word)) {
- *out_value = 0;
- return false;
- }
- *out_value = stream->word >> 24;
- break;
-
- case 1:
- *out_value = stream->word >> 16;
- break;
-
- case 2:
- *out_value = stream->word >> 8;
- break;
-
- default:
- *out_value = stream->word;
- break;
- }
-
- ALOGV("next_byte: ptr=0x%08x, value=0x%02x", stream->ptr, *out_value);
- stream->ptr += 1;
- return true;
-}
-
-static void set_reg(unwind_state_t* state, uint32_t reg, uint32_t value) {
- ALOGV("set_reg: reg=%d, value=0x%08x", reg, value);
- state->gregs[reg] = value;
-}
-
-static bool try_pop_registers(const memory_t* memory, unwind_state_t* state, uint32_t mask) {
- uint32_t sp = state->gregs[R_SP];
- bool sp_updated = false;
- for (int i = 0; i < 16; i++) {
- if (mask & (1 << i)) {
- uint32_t value;
- if (!try_get_word(memory, sp, &value)) {
- return false;
- }
- if (i == R_SP) {
- sp_updated = true;
- }
- set_reg(state, i, value);
- sp += 4;
- }
- }
- if (!sp_updated) {
- set_reg(state, R_SP, sp);
- }
- return true;
-}
-
-/* Executes a built-in personality routine as defined in the EHABI.
- * Returns true if unwinding should continue.
- *
- * The data for the built-in personality routines consists of a sequence
- * of unwinding instructions, followed by a sequence of scope descriptors,
- * each of which has a length and offset encoded using 16-bit or 32-bit
- * values.
- *
- * We only care about the unwinding instructions. They specify the
- * operations of an abstract machine whose purpose is to transform the
- * virtual register state (including the stack pointer) such that
- * the call frame is unwound and the PC register points to the call site.
- */
-static bool execute_personality_routine(const memory_t* memory,
- unwind_state_t* state, byte_stream_t* stream, int pr_index) {
- size_t size;
- switch (pr_index) {
- case 0: // Personality routine #0, short frame, descriptors have 16-bit scope.
- size = 3;
- break;
- case 1: // Personality routine #1, long frame, descriptors have 16-bit scope.
- case 2: { // Personality routine #2, long frame, descriptors have 32-bit scope.
- uint8_t size_byte;
- if (!try_next_byte(memory, stream, &size_byte)) {
- return false;
- }
- size = (uint32_t)size_byte * sizeof(uint32_t) + 2;
- break;
- }
- default: // Unknown personality routine. Stop here.
- return false;
- }
-
- bool pc_was_set = false;
- while (size--) {
- uint8_t op;
- if (!try_next_byte(memory, stream, &op)) {
- return false;
- }
- if ((op & 0xc0) == 0x00) {
- // "vsp = vsp + (xxxxxx << 2) + 4"
- set_reg(state, R_SP, state->gregs[R_SP] + ((op & 0x3f) << 2) + 4);
- } else if ((op & 0xc0) == 0x40) {
- // "vsp = vsp - (xxxxxx << 2) - 4"
- set_reg(state, R_SP, state->gregs[R_SP] - ((op & 0x3f) << 2) - 4);
- } else if ((op & 0xf0) == 0x80) {
- uint8_t op2;
- if (!(size--) || !try_next_byte(memory, stream, &op2)) {
- return false;
- }
- uint32_t mask = (((uint32_t)op & 0x0f) << 12) | ((uint32_t)op2 << 4);
- if (mask) {
- // "Pop up to 12 integer registers under masks {r15-r12}, {r11-r4}"
- if (!try_pop_registers(memory, state, mask)) {
- return false;
- }
- if (mask & (1 << R_PC)) {
- pc_was_set = true;
- }
- } else {
- // "Refuse to unwind"
- return false;
- }
- } else if ((op & 0xf0) == 0x90) {
- if (op != 0x9d && op != 0x9f) {
- // "Set vsp = r[nnnn]"
- set_reg(state, R_SP, state->gregs[op & 0x0f]);
- } else {
- // "Reserved as prefix for ARM register to register moves"
- // "Reserved as prefix for Intel Wireless MMX register to register moves"
- return false;
- }
- } else if ((op & 0xf8) == 0xa0) {
- // "Pop r4-r[4+nnn]"
- uint32_t mask = (0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0;
- if (!try_pop_registers(memory, state, mask)) {
- return false;
- }
- } else if ((op & 0xf8) == 0xa8) {
- // "Pop r4-r[4+nnn], r14"
- uint32_t mask = ((0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0) | 0x4000;
- if (!try_pop_registers(memory, state, mask)) {
- return false;
- }
- } else if (op == 0xb0) {
- // "Finish"
- break;
- } else if (op == 0xb1) {
- uint8_t op2;
- if (!(size--) || !try_next_byte(memory, stream, &op2)) {
- return false;
- }
- if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
- // "Pop integer registers under mask {r3, r2, r1, r0}"
- if (!try_pop_registers(memory, state, op2)) {
- return false;
- }
- } else {
- // "Spare"
- return false;
- }
- } else if (op == 0xb2) {
- // "vsp = vsp + 0x204 + (uleb128 << 2)"
- uint32_t value = 0;
- uint32_t shift = 0;
- uint8_t op2;
- do {
- if (!(size--) || !try_next_byte(memory, stream, &op2)) {
- return false;
- }
- value |= (op2 & 0x7f) << shift;
- shift += 7;
- } while (op2 & 0x80);
- set_reg(state, R_SP, state->gregs[R_SP] + (value << 2) + 0x204);
- } else if (op == 0xb3) {
- // "Pop VFP double-precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDX"
- uint8_t op2;
- if (!(size--) || !try_next_byte(memory, stream, &op2)) {
- return false;
- }
- set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 12);
- } else if ((op & 0xf8) == 0xb8) {
- // "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDX"
- set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 12);
- } else if ((op & 0xf8) == 0xc0) {
- // "Intel Wireless MMX pop wR[10]-wR[10+nnn]"
- set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
- } else if (op == 0xc6) {
- // "Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc]"
- uint8_t op2;
- if (!(size--) || !try_next_byte(memory, stream, &op2)) {
- return false;
- }
- set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
- } else if (op == 0xc7) {
- uint8_t op2;
- if (!(size--) || !try_next_byte(memory, stream, &op2)) {
- return false;
- }
- if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
- // "Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}"
- set_reg(state, R_SP, state->gregs[R_SP] + __builtin_popcount(op2) * 4);
- } else {
- // "Spare"
- return false;
- }
- } else if (op == 0xc8) {
- // "Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc]
- // saved (as if) by FSTMFD"
- uint8_t op2;
- if (!(size--) || !try_next_byte(memory, stream, &op2)) {
- return false;
- }
- set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
- } else if (op == 0xc9) {
- // "Pop VFP double precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDD"
- uint8_t op2;
- if (!(size--) || !try_next_byte(memory, stream, &op2)) {
- return false;
- }
- set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
- } else if ((op == 0xf8) == 0xd0) {
- // "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDD"
- set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
- } else {
- // "Spare"
- return false;
- }
- }
- if (!pc_was_set) {
- set_reg(state, R_PC, state->gregs[R_LR]);
- }
- return true;
-}
-
-static bool try_get_half_word(const memory_t* memory, uint32_t pc, uint16_t* out_value) {
- uint32_t word;
- if (try_get_word(memory, pc & ~2, &word)) {
- *out_value = pc & 2 ? word >> 16 : word & 0xffff;
- return true;
- }
- return false;
-}
-
-uintptr_t rewind_pc_arch(const memory_t* memory, uintptr_t pc) {
- if (pc & 1) {
- /* Thumb mode - need to check whether the bl(x) has long offset or not.
- * Examples:
- *
- * arm blx in the middle of thumb:
- * 187ae: 2300 movs r3, #0
- * 187b0: f7fe ee1c blx 173ec
- * 187b4: 2c00 cmp r4, #0
- *
- * arm bl in the middle of thumb:
- * 187d8: 1c20 adds r0, r4, #0
- * 187da: f136 fd15 bl 14f208
- * 187de: 2800 cmp r0, #0
- *
- * pure thumb:
- * 18894: 189b adds r3, r3, r2
- * 18896: 4798 blx r3
- * 18898: b001 add sp, #4
- */
- uint16_t prev1, prev2;
- if (try_get_half_word(memory, pc - 5, &prev1)
- && ((prev1 & 0xf000) == 0xf000)
- && try_get_half_word(memory, pc - 3, &prev2)
- && ((prev2 & 0xe000) == 0xe000)) {
- pc -= 4; // long offset
- } else {
- pc -= 2;
- }
- } else {
- /* ARM mode, all instructions are 32bit. Yay! */
- pc -= 4;
- }
- return pc;
-}
-
-static ssize_t unwind_backtrace_common(const memory_t* memory,
- const map_info_t* map_info_list,
- unwind_state_t* state, backtrace_frame_t* backtrace,
- size_t ignore_depth, size_t max_depth) {
- size_t ignored_frames = 0;
- size_t returned_frames = 0;
-
- for (size_t index = 0; returned_frames < max_depth; index++) {
- uintptr_t pc = index ? rewind_pc_arch(memory, state->gregs[R_PC])
- : state->gregs[R_PC];
- backtrace_frame_t* frame = add_backtrace_entry(pc,
- backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
- if (frame) {
- frame->stack_top = state->gregs[R_SP];
- }
-
- uintptr_t handler = get_exception_handler(memory, map_info_list, pc);
- if (!handler) {
- // If there is no handler for the PC and this is the first frame,
- // then the program may have branched to an invalid address.
- // Try starting from the LR instead, otherwise stop unwinding.
- if (index == 0 && state->gregs[R_LR]
- && state->gregs[R_LR] != state->gregs[R_PC]) {
- set_reg(state, R_PC, state->gregs[R_LR]);
- continue;
- } else {
- break;
- }
- }
-
- byte_stream_t stream;
- stream.ptr = handler;
- uint8_t pr;
- if (!try_next_byte(memory, &stream, &pr)) {
- break;
- }
- if ((pr & 0xf0) != 0x80) {
- // The first word is a place-relative pointer to a generic personality
- // routine function. We don't support invoking such functions, so stop here.
- break;
- }
-
- // The first byte indicates the personality routine to execute.
- // Following bytes provide instructions to the personality routine.
- if (!execute_personality_routine(memory, state, &stream, pr & 0x0f)) {
- break;
- }
- if (frame && state->gregs[R_SP] > frame->stack_top) {
- frame->stack_size = state->gregs[R_SP] - frame->stack_top;
- }
- if (!state->gregs[R_PC]) {
- break;
- }
- }
-
- // Ran out of frames that we could unwind using handlers.
- // Add a final entry for the LR if it looks sane and call it good.
- if (returned_frames < max_depth
- && state->gregs[R_LR]
- && state->gregs[R_LR] != state->gregs[R_PC]
- && is_executable_map(map_info_list, state->gregs[R_LR])) {
- // We don't know where the stack for this extra frame starts so we
- // don't return any stack information for it.
- add_backtrace_entry(rewind_pc_arch(memory, state->gregs[R_LR]),
- backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
- }
- return returned_frames;
-}
-
-ssize_t unwind_backtrace_signal_arch(siginfo_t* siginfo, void* sigcontext,
- const map_info_t* map_info_list,
- backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
- const ucontext_t* uc = (const ucontext_t*)sigcontext;
-
- unwind_state_t state;
-
- state.gregs[0] = uc->uc_mcontext.arm_r0;
- state.gregs[1] = uc->uc_mcontext.arm_r1;
- state.gregs[2] = uc->uc_mcontext.arm_r2;
- state.gregs[3] = uc->uc_mcontext.arm_r3;
- state.gregs[4] = uc->uc_mcontext.arm_r4;
- state.gregs[5] = uc->uc_mcontext.arm_r5;
- state.gregs[6] = uc->uc_mcontext.arm_r6;
- state.gregs[7] = uc->uc_mcontext.arm_r7;
- state.gregs[8] = uc->uc_mcontext.arm_r8;
- state.gregs[9] = uc->uc_mcontext.arm_r9;
- state.gregs[10] = uc->uc_mcontext.arm_r10;
- state.gregs[11] = uc->uc_mcontext.arm_fp;
- state.gregs[12] = uc->uc_mcontext.arm_ip;
- state.gregs[13] = uc->uc_mcontext.arm_sp;
- state.gregs[14] = uc->uc_mcontext.arm_lr;
- state.gregs[15] = uc->uc_mcontext.arm_pc;
-
- memory_t memory;
- init_memory(&memory, map_info_list);
- return unwind_backtrace_common(&memory, map_info_list, &state,
- backtrace, ignore_depth, max_depth);
-}
-
-ssize_t unwind_backtrace_ptrace_arch(pid_t tid, const ptrace_context_t* context,
- backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
- struct pt_regs regs;
- if (ptrace(PTRACE_GETREGS, tid, 0, &regs)) {
- return -1;
- }
-
- unwind_state_t state;
- for (int i = 0; i < 16; i++) {
- state.gregs[i] = regs.uregs[i];
- }
-
- memory_t memory;
- init_memory_ptrace(&memory, tid);
- return unwind_backtrace_common(&memory, context->map_info_list, &state,
- backtrace, ignore_depth, max_depth);
-}