summaryrefslogtreecommitdiffstats
path: root/libcorkscrew/arch-arm/backtrace-arm.c
diff options
context:
space:
mode:
Diffstat (limited to 'libcorkscrew/arch-arm/backtrace-arm.c')
-rw-r--r--libcorkscrew/arch-arm/backtrace-arm.c589
1 files changed, 589 insertions, 0 deletions
diff --git a/libcorkscrew/arch-arm/backtrace-arm.c b/libcorkscrew/arch-arm/backtrace-arm.c
new file mode 100644
index 0000000..5b91164
--- /dev/null
+++ b/libcorkscrew/arch-arm/backtrace-arm.c
@@ -0,0 +1,589 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * Backtracing functions for ARM.
+ *
+ * This implementation uses the exception unwinding tables provided by
+ * the compiler to unwind call frames. Refer to the ARM Exception Handling ABI
+ * documentation (EHABI) for more details about what's going on here.
+ *
+ * An ELF binary may contain an EXIDX section that provides an index to
+ * the exception handling table of each function, sorted by program
+ * counter address.
+ *
+ * This implementation also supports unwinding other processes via ptrace().
+ * In that case, the EXIDX section is found by reading the ELF section table
+ * structures using ptrace().
+ *
+ * Because the tables are used for exception handling, it can happen that
+ * a given function will not have an exception handling table. In particular,
+ * exceptions are assumed to only ever be thrown at call sites. Therefore,
+ * by definition leaf functions will not have exception handling tables.
+ * This may make unwinding impossible in some cases although we can still get
+ * some idea of the call stack by examining the PC and LR registers.
+ *
+ * As we are only interested in backtrace information, we do not need
+ * to perform all of the work of unwinding such as restoring register
+ * state and running cleanup functions. Unwinding is performed virtually on
+ * an abstract machine context consisting of just the ARM core registers.
+ * Furthermore, we do not run generic "personality functions" because
+ * we may not be in a position to execute arbitrary code, especially if
+ * we are running in a signal handler or using ptrace()!
+ */
+
+#define LOG_TAG "Corkscrew"
+//#define LOG_NDEBUG 0
+
+#include "../backtrace-arch.h"
+#include "../backtrace-helper.h"
+#include "../ptrace-arch.h"
+#include <corkscrew/ptrace.h>
+
+#include <stdlib.h>
+#include <signal.h>
+#include <stdbool.h>
+#include <limits.h>
+#include <errno.h>
+#include <sys/ptrace.h>
+#include <sys/exec_elf.h>
+#include <cutils/log.h>
+
+/* Machine context at the time a signal was raised. */
+typedef struct ucontext {
+ uint32_t uc_flags;
+ struct ucontext* uc_link;
+ stack_t uc_stack;
+ struct sigcontext {
+ uint32_t trap_no;
+ uint32_t error_code;
+ uint32_t oldmask;
+ uint32_t gregs[16];
+ uint32_t arm_cpsr;
+ uint32_t fault_address;
+ } uc_mcontext;
+ uint32_t uc_sigmask;
+} ucontext_t;
+
+/* Unwind state. */
+typedef struct {
+ uint32_t gregs[16];
+} unwind_state_t;
+
+static const int R_SP = 13;
+static const int R_LR = 14;
+static const int R_PC = 15;
+
+/* Special EXIDX value that indicates that a frame cannot be unwound. */
+static const uint32_t EXIDX_CANTUNWIND = 1;
+
+/* Get the EXIDX section start and size for the module that contains a
+ * given program counter address.
+ *
+ * When the executable is statically linked, the EXIDX section can be
+ * accessed by querying the values of the __exidx_start and __exidx_end
+ * symbols.
+ *
+ * When the executable is dynamically linked, the linker exports a function
+ * called dl_unwind_find_exidx that obtains the EXIDX section for a given
+ * absolute program counter address.
+ *
+ * Bionic exports a helpful function called __gnu_Unwind_Find_exidx that
+ * handles both cases, so we use that here.
+ */
+typedef long unsigned int* _Unwind_Ptr;
+extern _Unwind_Ptr __gnu_Unwind_Find_exidx(_Unwind_Ptr pc, int *pcount);
+
+static uintptr_t find_exidx(uintptr_t pc, size_t* out_exidx_size) {
+ int count;
+ uintptr_t start = (uintptr_t)__gnu_Unwind_Find_exidx((_Unwind_Ptr)pc, &count);
+ *out_exidx_size = count;
+ return start;
+}
+
+/* Transforms a 31-bit place-relative offset to an absolute address.
+ * We assume the most significant bit is clear. */
+static uintptr_t prel_to_absolute(uintptr_t place, uint32_t prel_offset) {
+ return place + (((int32_t)(prel_offset << 1)) >> 1);
+}
+
+static uintptr_t get_exception_handler(const memory_t* memory,
+ const map_info_t* map_info_list, uintptr_t pc) {
+ if (!pc) {
+ ALOGV("get_exception_handler: pc is zero, no handler");
+ return 0;
+ }
+
+ uintptr_t exidx_start;
+ size_t exidx_size;
+ const map_info_t* mi;
+ if (memory->tid < 0) {
+ mi = NULL;
+ exidx_start = find_exidx(pc, &exidx_size);
+ } else {
+ mi = find_map_info(map_info_list, pc);
+ if (mi && mi->data) {
+ const map_info_data_t* data = (const map_info_data_t*)mi->data;
+ exidx_start = data->exidx_start;
+ exidx_size = data->exidx_size;
+ } else {
+ exidx_start = 0;
+ exidx_size = 0;
+ }
+ }
+
+ uintptr_t handler = 0;
+ int32_t handler_index = -1;
+ if (exidx_start) {
+ uint32_t low = 0;
+ uint32_t high = exidx_size;
+ while (low < high) {
+ uint32_t index = (low + high) / 2;
+ uintptr_t entry = exidx_start + index * 8;
+ uint32_t entry_prel_pc;
+ ALOGV("XXX low=%u, high=%u, index=%u", low, high, index);
+ if (!try_get_word(memory, entry, &entry_prel_pc)) {
+ break;
+ }
+ uintptr_t entry_pc = prel_to_absolute(entry, entry_prel_pc);
+ ALOGV("XXX entry_pc=0x%08x", entry_pc);
+ if (pc < entry_pc) {
+ high = index;
+ continue;
+ }
+ if (index + 1 < exidx_size) {
+ uintptr_t next_entry = entry + 8;
+ uint32_t next_entry_prel_pc;
+ if (!try_get_word(memory, next_entry, &next_entry_prel_pc)) {
+ break;
+ }
+ uintptr_t next_entry_pc = prel_to_absolute(next_entry, next_entry_prel_pc);
+ ALOGV("XXX next_entry_pc=0x%08x", next_entry_pc);
+ if (pc >= next_entry_pc) {
+ low = index + 1;
+ continue;
+ }
+ }
+
+ uintptr_t entry_handler_ptr = entry + 4;
+ uint32_t entry_handler;
+ if (!try_get_word(memory, entry_handler_ptr, &entry_handler)) {
+ break;
+ }
+ if (entry_handler & (1L << 31)) {
+ handler = entry_handler_ptr; // in-place handler data
+ } else if (entry_handler != EXIDX_CANTUNWIND) {
+ handler = prel_to_absolute(entry_handler_ptr, entry_handler);
+ }
+ handler_index = index;
+ break;
+ }
+ }
+ if (mi) {
+ ALOGV("get_exception_handler: pc=0x%08x, module='%s', module_start=0x%08x, "
+ "exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
+ pc, mi->name, mi->start, exidx_start, exidx_size, handler, handler_index);
+ } else {
+ ALOGV("get_exception_handler: pc=0x%08x, "
+ "exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d",
+ pc, exidx_start, exidx_size, handler, handler_index);
+ }
+ return handler;
+}
+
+typedef struct {
+ uintptr_t ptr;
+ uint32_t word;
+} byte_stream_t;
+
+static bool try_next_byte(const memory_t* memory, byte_stream_t* stream, uint8_t* out_value) {
+ uint8_t result;
+ switch (stream->ptr & 3) {
+ case 0:
+ if (!try_get_word(memory, stream->ptr, &stream->word)) {
+ *out_value = 0;
+ return false;
+ }
+ *out_value = stream->word >> 24;
+ break;
+
+ case 1:
+ *out_value = stream->word >> 16;
+ break;
+
+ case 2:
+ *out_value = stream->word >> 8;
+ break;
+
+ default:
+ *out_value = stream->word;
+ break;
+ }
+
+ ALOGV("next_byte: ptr=0x%08x, value=0x%02x", stream->ptr, *out_value);
+ stream->ptr += 1;
+ return true;
+}
+
+static void set_reg(unwind_state_t* state, uint32_t reg, uint32_t value) {
+ ALOGV("set_reg: reg=%d, value=0x%08x", reg, value);
+ state->gregs[reg] = value;
+}
+
+static bool try_pop_registers(const memory_t* memory, unwind_state_t* state, uint32_t mask) {
+ uint32_t sp = state->gregs[R_SP];
+ bool sp_updated = false;
+ for (int i = 0; i < 16; i++) {
+ if (mask & (1 << i)) {
+ uint32_t value;
+ if (!try_get_word(memory, sp, &value)) {
+ return false;
+ }
+ if (i == R_SP) {
+ sp_updated = true;
+ }
+ set_reg(state, i, value);
+ sp += 4;
+ }
+ }
+ if (!sp_updated) {
+ set_reg(state, R_SP, sp);
+ }
+ return true;
+}
+
+/* Executes a built-in personality routine as defined in the EHABI.
+ * Returns true if unwinding should continue.
+ *
+ * The data for the built-in personality routines consists of a sequence
+ * of unwinding instructions, followed by a sequence of scope descriptors,
+ * each of which has a length and offset encoded using 16-bit or 32-bit
+ * values.
+ *
+ * We only care about the unwinding instructions. They specify the
+ * operations of an abstract machine whose purpose is to transform the
+ * virtual register state (including the stack pointer) such that
+ * the call frame is unwound and the PC register points to the call site.
+ */
+static bool execute_personality_routine(const memory_t* memory,
+ unwind_state_t* state, byte_stream_t* stream, int pr_index) {
+ size_t size;
+ switch (pr_index) {
+ case 0: // Personality routine #0, short frame, descriptors have 16-bit scope.
+ size = 3;
+ break;
+ case 1: // Personality routine #1, long frame, descriptors have 16-bit scope.
+ case 2: { // Personality routine #2, long frame, descriptors have 32-bit scope.
+ uint8_t size_byte;
+ if (!try_next_byte(memory, stream, &size_byte)) {
+ return false;
+ }
+ size = (uint32_t)size_byte * sizeof(uint32_t) + 2;
+ break;
+ }
+ default: // Unknown personality routine. Stop here.
+ return false;
+ }
+
+ bool pc_was_set = false;
+ while (size--) {
+ uint8_t op;
+ if (!try_next_byte(memory, stream, &op)) {
+ return false;
+ }
+ if ((op & 0xc0) == 0x00) {
+ // "vsp = vsp + (xxxxxx << 2) + 4"
+ set_reg(state, R_SP, state->gregs[R_SP] + ((op & 0x3f) << 2) + 4);
+ } else if ((op & 0xc0) == 0x40) {
+ // "vsp = vsp - (xxxxxx << 2) - 4"
+ set_reg(state, R_SP, state->gregs[R_SP] - ((op & 0x3f) << 2) - 4);
+ } else if ((op & 0xf0) == 0x80) {
+ uint8_t op2;
+ if (!(size--) || !try_next_byte(memory, stream, &op2)) {
+ return false;
+ }
+ uint32_t mask = (((uint32_t)op & 0x0f) << 12) | ((uint32_t)op2 << 4);
+ if (mask) {
+ // "Pop up to 12 integer registers under masks {r15-r12}, {r11-r4}"
+ if (!try_pop_registers(memory, state, mask)) {
+ return false;
+ }
+ if (mask & (1 << R_PC)) {
+ pc_was_set = true;
+ }
+ } else {
+ // "Refuse to unwind"
+ return false;
+ }
+ } else if ((op & 0xf0) == 0x90) {
+ if (op != 0x9d && op != 0x9f) {
+ // "Set vsp = r[nnnn]"
+ set_reg(state, R_SP, state->gregs[op & 0x0f]);
+ } else {
+ // "Reserved as prefix for ARM register to register moves"
+ // "Reserved as prefix for Intel Wireless MMX register to register moves"
+ return false;
+ }
+ } else if ((op & 0xf8) == 0xa0) {
+ // "Pop r4-r[4+nnn]"
+ uint32_t mask = (0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0;
+ if (!try_pop_registers(memory, state, mask)) {
+ return false;
+ }
+ } else if ((op & 0xf8) == 0xa8) {
+ // "Pop r4-r[4+nnn], r14"
+ uint32_t mask = ((0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0) | 0x4000;
+ if (!try_pop_registers(memory, state, mask)) {
+ return false;
+ }
+ } else if (op == 0xb0) {
+ // "Finish"
+ break;
+ } else if (op == 0xb1) {
+ uint8_t op2;
+ if (!(size--) || !try_next_byte(memory, stream, &op2)) {
+ return false;
+ }
+ if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
+ // "Pop integer registers under mask {r3, r2, r1, r0}"
+ if (!try_pop_registers(memory, state, op2)) {
+ return false;
+ }
+ } else {
+ // "Spare"
+ return false;
+ }
+ } else if (op == 0xb2) {
+ // "vsp = vsp + 0x204 + (uleb128 << 2)"
+ uint32_t value = 0;
+ uint32_t shift = 0;
+ uint8_t op2;
+ do {
+ if (!(size--) || !try_next_byte(memory, stream, &op2)) {
+ return false;
+ }
+ value |= (op2 & 0x7f) << shift;
+ shift += 7;
+ } while (op2 & 0x80);
+ set_reg(state, R_SP, state->gregs[R_SP] + (value << 2) + 0x204);
+ } else if (op == 0xb3) {
+ // "Pop VFP double-precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDX"
+ uint8_t op2;
+ if (!(size--) || !try_next_byte(memory, stream, &op2)) {
+ return false;
+ }
+ set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 12);
+ } else if ((op & 0xf8) == 0xb8) {
+ // "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDX"
+ set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 12);
+ } else if ((op & 0xf8) == 0xc0) {
+ // "Intel Wireless MMX pop wR[10]-wR[10+nnn]"
+ set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
+ } else if (op == 0xc6) {
+ // "Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc]"
+ uint8_t op2;
+ if (!(size--) || !try_next_byte(memory, stream, &op2)) {
+ return false;
+ }
+ set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
+ } else if (op == 0xc7) {
+ uint8_t op2;
+ if (!(size--) || !try_next_byte(memory, stream, &op2)) {
+ return false;
+ }
+ if (op2 != 0x00 && (op2 & 0xf0) == 0x00) {
+ // "Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}"
+ set_reg(state, R_SP, state->gregs[R_SP] + __builtin_popcount(op2) * 4);
+ } else {
+ // "Spare"
+ return false;
+ }
+ } else if (op == 0xc8) {
+ // "Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc]
+ // saved (as if) by FSTMFD"
+ uint8_t op2;
+ if (!(size--) || !try_next_byte(memory, stream, &op2)) {
+ return false;
+ }
+ set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
+ } else if (op == 0xc9) {
+ // "Pop VFP double precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDD"
+ uint8_t op2;
+ if (!(size--) || !try_next_byte(memory, stream, &op2)) {
+ return false;
+ }
+ set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8);
+ } else if ((op == 0xf8) == 0xd0) {
+ // "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDD"
+ set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8);
+ } else {
+ // "Spare"
+ return false;
+ }
+ }
+ if (!pc_was_set) {
+ set_reg(state, R_PC, state->gregs[R_LR]);
+ }
+ return true;
+}
+
+static bool try_get_half_word(const memory_t* memory, uint32_t pc, uint16_t* out_value) {
+ uint32_t word;
+ if (try_get_word(memory, pc & ~2, &word)) {
+ *out_value = pc & 2 ? word >> 16 : word & 0xffff;
+ return true;
+ }
+ return false;
+}
+
+uintptr_t rewind_pc_arch(const memory_t* memory, uintptr_t pc) {
+ if (pc & 1) {
+ /* Thumb mode - need to check whether the bl(x) has long offset or not.
+ * Examples:
+ *
+ * arm blx in the middle of thumb:
+ * 187ae: 2300 movs r3, #0
+ * 187b0: f7fe ee1c blx 173ec
+ * 187b4: 2c00 cmp r4, #0
+ *
+ * arm bl in the middle of thumb:
+ * 187d8: 1c20 adds r0, r4, #0
+ * 187da: f136 fd15 bl 14f208
+ * 187de: 2800 cmp r0, #0
+ *
+ * pure thumb:
+ * 18894: 189b adds r3, r3, r2
+ * 18896: 4798 blx r3
+ * 18898: b001 add sp, #4
+ */
+ uint16_t prev1, prev2;
+ if (try_get_half_word(memory, pc - 5, &prev1)
+ && ((prev1 & 0xf000) == 0xf000)
+ && try_get_half_word(memory, pc - 3, &prev2)
+ && ((prev2 & 0xe000) == 0xe000)) {
+ pc -= 4; // long offset
+ } else {
+ pc -= 2;
+ }
+ } else {
+ /* ARM mode, all instructions are 32bit. Yay! */
+ pc -= 4;
+ }
+ return pc;
+}
+
+static ssize_t unwind_backtrace_common(const memory_t* memory,
+ const map_info_t* map_info_list,
+ unwind_state_t* state, backtrace_frame_t* backtrace,
+ size_t ignore_depth, size_t max_depth) {
+ size_t ignored_frames = 0;
+ size_t returned_frames = 0;
+
+ for (size_t index = 0; returned_frames < max_depth; index++) {
+ uintptr_t pc = index ? rewind_pc_arch(memory, state->gregs[R_PC])
+ : state->gregs[R_PC];
+ backtrace_frame_t* frame = add_backtrace_entry(pc,
+ backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
+ if (frame) {
+ frame->stack_top = state->gregs[R_SP];
+ }
+
+ uintptr_t handler = get_exception_handler(memory, map_info_list, pc);
+ if (!handler) {
+ // If there is no handler for the PC and this is the first frame,
+ // then the program may have branched to an invalid address.
+ // Try starting from the LR instead, otherwise stop unwinding.
+ if (index == 0 && state->gregs[R_LR]
+ && state->gregs[R_LR] != state->gregs[R_PC]) {
+ set_reg(state, R_PC, state->gregs[R_LR]);
+ continue;
+ } else {
+ break;
+ }
+ }
+
+ byte_stream_t stream;
+ stream.ptr = handler;
+ uint8_t pr;
+ if (!try_next_byte(memory, &stream, &pr)) {
+ break;
+ }
+ if ((pr & 0xf0) != 0x80) {
+ // The first word is a place-relative pointer to a generic personality
+ // routine function. We don't support invoking such functions, so stop here.
+ break;
+ }
+
+ // The first byte indicates the personality routine to execute.
+ // Following bytes provide instructions to the personality routine.
+ if (!execute_personality_routine(memory, state, &stream, pr & 0x0f)) {
+ break;
+ }
+ if (frame && state->gregs[R_SP] > frame->stack_top) {
+ frame->stack_size = state->gregs[R_SP] - frame->stack_top;
+ }
+ if (!state->gregs[R_PC]) {
+ break;
+ }
+ }
+
+ // Ran out of frames that we could unwind using handlers.
+ // Add a final entry for the LR if it looks sane and call it good.
+ if (returned_frames < max_depth
+ && state->gregs[R_LR]
+ && state->gregs[R_LR] != state->gregs[R_PC]
+ && is_executable_map(map_info_list, state->gregs[R_LR])) {
+ // We don't know where the stack for this extra frame starts so we
+ // don't return any stack information for it.
+ add_backtrace_entry(rewind_pc_arch(memory, state->gregs[R_LR]),
+ backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames);
+ }
+ return returned_frames;
+}
+
+ssize_t unwind_backtrace_signal_arch(siginfo_t* siginfo, void* sigcontext,
+ const map_info_t* map_info_list,
+ backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
+ const ucontext_t* uc = (const ucontext_t*)sigcontext;
+
+ unwind_state_t state;
+ for (int i = 0; i < 16; i++) {
+ state.gregs[i] = uc->uc_mcontext.gregs[i];
+ }
+
+ memory_t memory;
+ init_memory(&memory, map_info_list);
+ return unwind_backtrace_common(&memory, map_info_list, &state,
+ backtrace, ignore_depth, max_depth);
+}
+
+ssize_t unwind_backtrace_ptrace_arch(pid_t tid, const ptrace_context_t* context,
+ backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) {
+ struct pt_regs regs;
+ if (ptrace(PTRACE_GETREGS, tid, 0, &regs)) {
+ return -1;
+ }
+
+ unwind_state_t state;
+ for (int i = 0; i < 16; i++) {
+ state.gregs[i] = regs.uregs[i];
+ }
+
+ memory_t memory;
+ init_memory_ptrace(&memory, tid);
+ return unwind_backtrace_common(&memory, context->map_info_list, &state,
+ backtrace, ignore_depth, max_depth);
+}