/* * Copyright (c) 2009-2013, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Google, Inc. nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "partitions.h" #include "debug.h" #include "utils.h" #include "protocol.h" #define BLKRRPART _IO(0x12,95) /* re-read partition table */ #define BLKSSZGET _IO(0x12,104) #define DIV_ROUND_UP(x, y) (((x) + (y) - 1)/(y)) #define ALIGN(x, y) ((y) * DIV_ROUND_UP((x), (y))) #define ALIGN_DOWN(x, y) ((y) * ((x) / (y))) const uint8_t partition_type_uuid[16] = { 0xa2, 0xa0, 0xd0, 0xeb, 0xe5, 0xb9, 0x33, 0x44, 0x87, 0xc0, 0x68, 0xb6, 0xb7, 0x26, 0x99, 0xc7, }; //TODO: There is assumption that we are using little endian static void GPT_entry_clear(struct GPT_entry_raw *entry) { memset(entry, 0, sizeof(*entry)); } /* * returns mapped location to choosen area * mapped_ptr is pointer to whole area mapped (it can be bigger then requested) */ int gpt_mmap(struct GPT_mapping *mapping, uint64_t location, int size, int fd) { unsigned int location_diff = location & ~PAGE_MASK; mapping->size = ALIGN(size + location_diff, PAGE_SIZE); uint64_t sz = get_file_size64(fd); if (sz < size + location) { D(ERR, "the location of mapping area is outside of the device size %" PRId64, sz); return 1; } location = ALIGN_DOWN(location, PAGE_SIZE); mapping->map_ptr = mmap64(NULL, mapping->size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, location); if (mapping->map_ptr == MAP_FAILED) { mapping->ptr = MAP_FAILED; D(ERR, "map failed: %s", strerror(errno)); return 1; } mapping->ptr = (void *)((char *) mapping->map_ptr + location_diff); return 0; } void gpt_unmap(struct GPT_mapping *mapping) { munmap(mapping->map_ptr, mapping->size); } #define LBA_ADDR(table, value) ((uint64_t) (table)->sector_size * (value)) int GPT_map_from_content(struct GPT_entry_table *table, const struct GPT_content *content) { // Mapping header if (gpt_mmap(&table->header_map, LBA_ADDR(table, content->header.current_lba), table->sector_size, table->fd)) { D(ERR, "unable to map header:%s\n", strerror(errno)); goto error_header; } table->header = (struct GPT_header *) table->header_map.ptr; table->partition_table_size = ROUND_UP(content->header.entries_count * sizeof(*table->entries), table->sector_size); // Mapping entry table if (gpt_mmap(&table->entries_map, LBA_ADDR(table, content->header.entries_lba), table->partition_table_size, table->fd)) { D(ERR, "unable to map entries"); goto error_signature; } table->entries = (struct GPT_entry_raw *) table->entries_map.ptr; // Mapping secondary header if (gpt_mmap(&table->sec_header_map, LBA_ADDR(table, content->header.backup_lba), table->sector_size, table->fd)) { D(ERR, "unable to map backup gpt header"); goto error_sec_header; } // Mapping secondary entries table if (gpt_mmap(&table->sec_entries_map, LBA_ADDR(table, content->header.backup_lba) - table->partition_table_size, table->partition_table_size, table->fd)) { D(ERR, "unable to map secondary gpt table"); goto error_sec_entries; } table->second_header = (struct GPT_header *) table->sec_header_map.ptr; table->second_entries = (struct GPT_entry_raw *) table->sec_entries_map.ptr; table->second_valid = strcmp("EFI PART", (char *) table->second_header->signature) == 0; return 0; error_sec_entries: gpt_unmap(&table->sec_header_map); error_sec_header: gpt_unmap(&table->entries_map); error_signature: gpt_unmap(&table->header_map); error_header: return 1; } int GPT_map(struct GPT_entry_table *table, unsigned header_lba) { struct GPT_content content; struct GPT_mapping mapping; struct GPT_header *header; if (gpt_mmap(&mapping, LBA_ADDR(table, header_lba), table->sector_size, table->fd)) { D(ERR, "unable to map header: %s", strerror(errno)); goto error_header; } header = (struct GPT_header *) mapping.ptr; if (strcmp("EFI PART", (char *) header->signature)) { D(ERR, "GPT entry not valid"); goto error_signature; } content.header = *header; gpt_unmap(&mapping); return GPT_map_from_content(table, &content); error_signature: gpt_unmap(&table->header_map); error_header: return 1; } struct GPT_entry_table* GPT_get_device(const char *path, unsigned header_lba) { struct GPT_entry_table *table; size_t sector_bytes; table = (struct GPT_entry_table *) malloc(sizeof(*table)); table->fd = open(path, O_RDWR); if (table->fd < 0) { D(ERR, "unable to open file %s:%s\n", path, strerror(errno)); return NULL; } if (!ioctl(table->fd, BLKSSZGET, §or_bytes)) { table->sector_size = (unsigned) sector_bytes; D(INFO, "Got sector size %d", table->sector_size); } else { D(WARN, "unable to get sector size, assuming 512"); table->sector_size = 512; } if (GPT_map(table, header_lba)) { D(ERR, "Could not map gpt"); return NULL; } return table; } static struct GPT_entry_table* GPT_get_from_content(const char *path, const struct GPT_content *content) { struct GPT_entry_table *table; size_t sector_bytes; table = (struct GPT_entry_table *) malloc(sizeof(*table)); table->fd = open(path, O_RDWR); if (table->fd < 0) { D(ERR, "unable to open file %s:%s\n", path, strerror(errno)); return NULL; } if (!ioctl(table->fd, BLKSSZGET, §or_bytes)) { table->sector_size = (unsigned) sector_bytes; D(INFO, "Got sector size %d", table->sector_size); } else { D(WARN, "unable to get sector size %s, assuming 512", strerror(errno)); table->sector_size = 512; } if (GPT_map_from_content(table, content)) { D(ERR, "Could not map gpt"); return NULL; } return table; } void GPT_release_device(struct GPT_entry_table *table) { gpt_unmap(&table->header_map); gpt_unmap(&table->entries_map); gpt_unmap(&table->sec_header_map); gpt_unmap(&table->sec_entries_map); close(table->fd); free(table); } static int GPT_check_overlap(struct GPT_entry_table *table, struct GPT_entry_raw *entry); static int GPT_check_overlap_except(struct GPT_entry_table *table, struct GPT_entry_raw *entry, struct GPT_entry_raw *exclude); void GPT_edit_entry(struct GPT_entry_table *table, struct GPT_entry_raw *old_entry, struct GPT_entry_raw *new_entry) { struct GPT_entry_raw *current_entry = GPT_get_pointer(table, old_entry); if (GPT_check_overlap_except(table, new_entry, current_entry)) { D(ERR, "Couldn't add overlaping partition"); return; } if (current_entry == NULL) { D(ERR, "Couldn't find entry"); return; } *current_entry = *new_entry; } int GPT_delete_entry(struct GPT_entry_table *table, struct GPT_entry_raw *entry) { struct GPT_entry_raw *raw = GPT_get_pointer(table, entry); if (raw == NULL) { D(ERR, "could not find entry"); return 1; } D(DEBUG, "Deleting gpt entry '%s'\n", raw->partition_guid); // Entry in the middle of table may become empty GPT_entry_clear(raw); return 0; } void GPT_add_entry(struct GPT_entry_table *table, struct GPT_entry_raw *entry) { unsigned i; int inserted = 0; if (GPT_check_overlap(table, entry)) { D(ERR, "Couldn't add overlaping partition"); return; } if (GPT_get_pointer(table, entry) != NULL) { D(WARN, "Add entry fault, this entry already exists"); return; } struct GPT_entry_raw *entries = table->entries; for (i = 0; i < table->header->entries_count; ++i) { if (!entries[i].type_guid[0]) { inserted = 1; D(DEBUG, "inserting"); memcpy(&entries[i], entry, sizeof(entries[i])); break; } } if (!inserted) { D(ERR, "Unable to find empty partion entry"); } } struct GPT_entry_raw *GPT_get_pointer_by_UTFname(struct GPT_entry_table *table, const uint16_t *name); struct GPT_entry_raw *GPT_get_pointer(struct GPT_entry_table *table, struct GPT_entry_raw *entry) { if (entry->partition_guid[0] != 0) return GPT_get_pointer_by_guid(table, (const char *) entry->partition_guid); else if (entry->name[0] != 0) return GPT_get_pointer_by_UTFname(table, entry->name); D(WARN, "Name or guid needed to find entry"); return NULL; } struct GPT_entry_raw *GPT_get_pointer_by_guid(struct GPT_entry_table *table, const char *name) { int current = (int) table->header->entries_count; for (current = current - 1; current >= 0; --current) { if (strncmp((char *) name, (char *) table->entries[current].partition_guid, 16) == 0) { return &table->entries[current]; } } return NULL; } int strncmp_UTF16_char(const uint16_t *s1, const char *s2, size_t n) { if (n == 0) return (0); do { if (((*s1) & 127) != *s2++) return (((unsigned char) ((*s1) & 127)) - *(unsigned char *)--s2); if (*s1++ == 0) break; } while (--n != 0); return (0); } int strncmp_UTF16(const uint16_t *s1, const uint16_t *s2, size_t n) { if (n == 0) return (0); do { if ((*s1) != *s2++) return (*s1 - *--s2); if (*s1++ == 0) break; } while (--n != 0); return (0); } struct GPT_entry_raw *GPT_get_pointer_by_name(struct GPT_entry_table *table, const char *name) { int count = (int) table->header->entries_count; int current; for (current = 0; current < count; ++current) { if (strncmp_UTF16_char(table->entries[current].name, (char *) name, 16) == 0) { return &table->entries[current]; } } return NULL; } struct GPT_entry_raw *GPT_get_pointer_by_UTFname(struct GPT_entry_table *table, const uint16_t *name) { int count = (int) table->header->entries_count; int current; for (current = 0; current < count; ++current) { if (strncmp_UTF16(table->entries[current].name, name, GPT_NAMELEN) == 0) { return &table->entries[current]; } } return NULL; } void GPT_sync(struct GPT_entry_table *table) { uint32_t crc; //calculate crc32 crc = crc32(0, Z_NULL, 0); crc = crc32(crc, (void*) table->entries, table->header->entries_count * sizeof(*table->entries)); table->header->partition_array_checksum = crc; table->header->header_checksum = 0; crc = crc32(0, Z_NULL, 0); crc = crc32(crc, (void*) table->header, table->header->header_size); table->header->header_checksum = crc; //sync secondary partion if (table->second_valid) { memcpy((void *)table->second_entries, (void *) table->entries, table->partition_table_size); memcpy((void *)table->second_header, (void *)table->header, sizeof(*table->header)); } if(!ioctl(table->fd, BLKRRPART, NULL)) { D(WARN, "Unable to force kernel to refresh partition table"); } } void GPT_to_UTF16(uint16_t *to, const char *from, int n) { int i; for (i = 0; i < (n - 1) && (to[i] = from[i]) != '\0'; ++i); to[i] = '\0'; } void GPT_from_UTF16(char *to, const uint16_t *from, int n) { int i; for (i = 0; i < (n - 1) && (to[i] = from[i] & 127) != '\0'; ++i); to[i] = '\0'; } static int GPT_check_overlap_except(struct GPT_entry_table *table, struct GPT_entry_raw *entry, struct GPT_entry_raw *exclude) { int current = (int) table->header->entries_count; int dontcheck; struct GPT_entry_raw *current_entry; if (entry->last_lba < entry->first_lba) { D(WARN, "Start address have to be less than end address"); return 1; } for (current = current - 1; current >= 0; --current) { current_entry = &table->entries[current]; dontcheck = strncmp((char *) entry->partition_guid, (char *) current_entry->partition_guid , 16) == 0; dontcheck |= current_entry->type_guid[0] == 0; dontcheck |= current_entry == exclude; if (!dontcheck && ((entry->last_lba >= current_entry->first_lba && entry->first_lba < current_entry->last_lba ))) { return 1; } } return 0; } static int GPT_check_overlap(struct GPT_entry_table *table, struct GPT_entry_raw *entry) { return GPT_check_overlap_except(table, entry, NULL); } static char *get_key_value(char *ptr, char **key, char **value) { *key = ptr; ptr = strchr(ptr, '='); if (ptr == NULL) return NULL; *ptr++ = '\0'; *value = ptr; ptr = strchr(ptr, ';'); if (ptr == NULL) ptr = *value + strlen(*value); else *ptr = '\0'; *key = strip(*key); *value = strip(*value); return ptr; } //TODO: little endian? static int add_key_value(const char *key, const char *value, struct GPT_entry_raw *entry) { char *endptr; if (!strcmp(key, "type")) { strncpy((char *) entry->type_guid, value, 16); entry->type_guid[15] = 0; } else if (!strcmp(key, "guid")) { strncpy((char *) entry->partition_guid, value, 16); entry->type_guid[15] = 0; } else if (!strcmp(key, "firstlba")) { entry->first_lba = strtoul(value, &endptr, 10); if (*endptr != '\0') goto error; } else if (!strcmp(key, "lastlba")) { entry->last_lba = strtoul(value, &endptr, 10); if (*endptr != '\0') goto error; } else if (!strcmp(key, "flags")) { entry->flags = strtoul(value, &endptr, 16); if (*endptr != '\0') goto error; } else if (!strcmp(key, "name")) { GPT_to_UTF16(entry->name, value, GPT_NAMELEN); } else { goto error; } return 0; error: D(ERR, "Could not find key or parse value: %s,%s", key, value); return 1; } int GPT_parse_entry(char *string, struct GPT_entry_raw *entry) { char *ptr = string; char *key = NULL; char *value = NULL; while ((ptr = get_key_value(ptr, &key, &value)) != NULL) { if (add_key_value(key, value, entry)) { D(WARN, "key or value not valid: %s %s", key, value); return 1; } } return 0; } void entry_set_guid(int n, uint8_t *guid) { int fd; fd = open("/dev/urandom", O_RDONLY); read(fd, guid, 16); close(fd); //rfc4122 guid[8] = (guid[8] & 0x3F) | 0x80; guid[7] = (guid[7] & 0x0F) | 0x40; } void GPT_default_content(struct GPT_content *content, struct GPT_entry_table *table) { if (table != NULL) { memcpy(&content->header, table->header, sizeof(content->header)); content->header.header_size = sizeof(content->header); content->header.entry_size = sizeof(struct GPT_entry_raw); } else { D(WARN, "Could not locate old gpt table, using default values"); memset(&content->header, 0, sizeof(content->header) / sizeof(int)); content->header = (struct GPT_header) { .revision = 0x10000, .header_size = sizeof(content->header), .header_checksum = 0, .reserved_zeros = 0, .current_lba = 1, .backup_lba = 1, .entry_size = sizeof(struct GPT_entry_raw), .partition_array_checksum = 0 }; strncpy((char *)content->header.signature, "EFI PART", 8); strncpy((char *)content->header.disk_guid, "ANDROID MMC DISK", 16); } } static int get_config_uint64(cnode *node, uint64_t *ptr, const char *name) { const char *tmp; uint64_t val; char *endptr; if ((tmp = config_str(node, name, NULL))) { val = strtoull(tmp, &endptr, 10); if (*endptr != '\0') { D(WARN, "Value for %s is not a number: %s", name, tmp); return 1; } *ptr = val; return 0; } return 1; } static int get_config_string(cnode *node, char *ptr, int max_len, const char *name) { size_t begin, end; const char *value = config_str(node, name, NULL); if (!value) return -1; begin = strcspn(value, "\"") + 1; end = strcspn(&value[begin], "\""); if ((int) end > max_len) { D(WARN, "Identifier \"%s\" too long", value); return -1; } strncpy(ptr, &value[begin], end); if((int) end < max_len) ptr[end] = 0; return 0; } static void GPT_parse_header(cnode *node, struct GPT_content *content) { get_config_uint64(node, &content->header.current_lba, "header_lba"); get_config_uint64(node, &content->header.backup_lba, "backup_lba"); get_config_uint64(node, &content->header.first_usable_lba, "first_lba"); get_config_uint64(node, &content->header.last_usable_lba, "last_lba"); get_config_uint64(node, &content->header.entries_lba, "entries_lba"); get_config_string(node, (char *) content->header.disk_guid, 16, "guid"); } static int GPT_parse_partitions(cnode *node, struct GPT_content *content) { cnode *current; int i; uint64_t partition_size; struct GPT_entry_raw *entry; for (i = 0, current = node->first_child; current; current = current->next, ++i) { entry = &content->entries[i]; entry_set_guid(i, content->entries[i].partition_guid); memcpy(&content->entries[i].type_guid, partition_type_uuid, 16); if (get_config_uint64(current, &entry->first_lba, "first_lba")) { D(ERR, "first_lba not specified"); return 1; } if (get_config_uint64(current, &partition_size, "partition_size")) { D(ERR, "partition_size not specified"); return 1; } if (config_str(current, "system", NULL)) { entry->flags |= GPT_FLAG_SYSTEM; } if (config_str(current, "bootable", NULL)) { entry->flags |= GPT_FLAG_BOOTABLE; } if (config_str(current, "readonly", NULL)) { entry->flags |= GPT_FLAG_READONLY; } if (config_str(current, "automount", NULL)) { entry->flags |= GPT_FLAG_DOAUTOMOUNT; } get_config_uint64(current, &content->entries[i].flags, "flags"); content->entries[i].last_lba = content->entries[i].first_lba + partition_size - 1; GPT_to_UTF16(content->entries[i].name, current->name, 16); } return 0; } static inline int cnode_count(cnode *node) { int i; cnode *current; for (i = 0, current = node->first_child; current; current = current->next, ++i) ; return i; } static int GPT_parse_cnode(cnode *root, struct GPT_content *content) { cnode *partnode; if (!(partnode = config_find(root, "partitions"))) { D(ERR, "Could not find partition table"); return 0; } GPT_parse_header(root, content); content->header.entries_count = cnode_count(partnode); content->entries = malloc(content->header.entries_count * sizeof(struct GPT_entry_raw)); if (GPT_parse_partitions(partnode, content)) { D(ERR, "Could not parse partitions"); return 0; } return 1; } int GPT_parse_file(int fd, struct GPT_content *content) { char *data; int size; int ret; cnode *root = config_node("", ""); size = get_file_size(fd); data = (char *) mmap(NULL, size + 1, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); if (data == NULL) { if (size == 0) D(ERR, "config file empty"); else D(ERR, "Out of memory"); return 0; } data[size - 1] = 0; config_load(root, data); if (root->first_child == NULL) { D(ERR, "Could not read config file"); return 0; } ret = GPT_parse_cnode(root, content); munmap(data, size); return ret; } void GPT_release_content(struct GPT_content *content) { free(content->entries); } int GPT_write_content(const char *device, struct GPT_content *content) { struct GPT_entry_table *maptable; maptable = GPT_get_from_content(device, content); if (maptable == NULL) { D(ERR, "could not map device"); return 0; } memcpy(maptable->header, &content->header, sizeof(*maptable->header)); memcpy(maptable->entries, content->entries, content->header.entries_count * sizeof(*maptable->entries)); GPT_sync(maptable); GPT_release_device(maptable); return 1; }