/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mincrypt/rsa.h" #include "mincrypt/sha.h" #include "mincrypt/sha256.h" #include "fs_mgr_priv.h" #include "fs_mgr_priv_verity.h" #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" #define KEY_IN_FOOTER "footer" #define E2FSCK_BIN "/system/bin/e2fsck" #define F2FS_FSCK_BIN "/system/bin/fsck.f2fs" #define MKSWAP_BIN "/system/bin/mkswap" #define FSCK_LOG_FILE "/dev/fscklogs/log" #define ZRAM_CONF_DEV "/sys/block/zram0/disksize" #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a))) /* * gettime() - returns the time in seconds of the system's monotonic clock or * zero on error. */ static time_t gettime(void) { struct timespec ts; int ret; ret = clock_gettime(CLOCK_MONOTONIC, &ts); if (ret < 0) { ERROR("clock_gettime(CLOCK_MONOTONIC) failed: %s\n", strerror(errno)); return 0; } return ts.tv_sec; } static int wait_for_file(const char *filename, int timeout) { struct stat info; time_t timeout_time = gettime() + timeout; int ret = -1; while (gettime() < timeout_time && ((ret = stat(filename, &info)) < 0)) usleep(10000); return ret; } static void check_fs(char *blk_device, char *fs_type, char *target) { int status; int ret; long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID; char *tmpmnt_opts = "nomblk_io_submit,errors=remount-ro"; char *e2fsck_argv[] = { E2FSCK_BIN, "-y", blk_device }; /* Check for the types of filesystems we know how to check */ if (!strcmp(fs_type, "ext2") || !strcmp(fs_type, "ext3") || !strcmp(fs_type, "ext4")) { /* * First try to mount and unmount the filesystem. We do this because * the kernel is more efficient than e2fsck in running the journal and * processing orphaned inodes, and on at least one device with a * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes * to do what the kernel does in about a second. * * After mounting and unmounting the filesystem, run e2fsck, and if an * error is recorded in the filesystem superblock, e2fsck will do a full * check. Otherwise, it does nothing. If the kernel cannot mount the * filesytsem due to an error, e2fsck is still run to do a full check * fix the filesystem. */ ret = mount(blk_device, target, fs_type, tmpmnt_flags, tmpmnt_opts); INFO("%s(): mount(%s,%s,%s)=%d\n", __func__, blk_device, target, fs_type, ret); if (!ret) { umount(target); } /* * Some system images do not have e2fsck for licensing reasons * (e.g. recent SDK system images). Detect these and skip the check. */ if (access(E2FSCK_BIN, X_OK)) { INFO("Not running %s on %s (executable not in system image)\n", E2FSCK_BIN, blk_device); } else { INFO("Running %s on %s\n", E2FSCK_BIN, blk_device); ret = android_fork_execvp_ext(ARRAY_SIZE(e2fsck_argv), e2fsck_argv, &status, true, LOG_KLOG | LOG_FILE, true, FSCK_LOG_FILE); if (ret < 0) { /* No need to check for error in fork, we can't really handle it now */ ERROR("Failed trying to run %s\n", E2FSCK_BIN); } } } else if (!strcmp(fs_type, "f2fs")) { char *f2fs_fsck_argv[] = { F2FS_FSCK_BIN, blk_device }; INFO("Running %s on %s\n", F2FS_FSCK_BIN, blk_device); ret = android_fork_execvp_ext(ARRAY_SIZE(f2fs_fsck_argv), f2fs_fsck_argv, &status, true, LOG_KLOG | LOG_FILE, true, FSCK_LOG_FILE); if (ret < 0) { /* No need to check for error in fork, we can't really handle it now */ ERROR("Failed trying to run %s\n", F2FS_FSCK_BIN); } } return; } static void remove_trailing_slashes(char *n) { int len; len = strlen(n) - 1; while ((*(n + len) == '/') && len) { *(n + len) = '\0'; len--; } } /* * Mark the given block device as read-only, using the BLKROSET ioctl. * Return 0 on success, and -1 on error. */ static void fs_set_blk_ro(const char *blockdev) { int fd; int ON = 1; fd = open(blockdev, O_RDONLY); if (fd < 0) { // should never happen return; } ioctl(fd, BLKROSET, &ON); close(fd); } /* * __mount(): wrapper around the mount() system call which also * sets the underlying block device to read-only if the mount is read-only. * See "man 2 mount" for return values. */ static int __mount(const char *source, const char *target, const struct fstab_rec *rec) { unsigned long mountflags = rec->flags; int ret; int save_errno; /* We need this because sometimes we have legacy symlinks * that are lingering around and need cleaning up. */ struct stat info; if (!lstat(target, &info)) if ((info.st_mode & S_IFMT) == S_IFLNK) unlink(target); mkdir(target, 0755); ret = mount(source, target, rec->fs_type, mountflags, rec->fs_options); save_errno = errno; INFO("%s(source=%s,target=%s,type=%s)=%d\n", __func__, source, target, rec->fs_type, ret); if ((ret == 0) && (mountflags & MS_RDONLY) != 0) { fs_set_blk_ro(source); } errno = save_errno; return ret; } static int fs_match(char *in1, char *in2) { char *n1; char *n2; int ret; n1 = strdup(in1); n2 = strdup(in2); remove_trailing_slashes(n1); remove_trailing_slashes(n2); ret = !strcmp(n1, n2); free(n1); free(n2); return ret; } static int device_is_debuggable() { int ret = -1; char value[PROP_VALUE_MAX]; ret = __system_property_get("ro.debuggable", value); if (ret < 0) return ret; return strcmp(value, "1") ? 0 : 1; } static int device_is_secure() { int ret = -1; char value[PROP_VALUE_MAX]; ret = __system_property_get("ro.secure", value); /* If error, we want to fail secure */ if (ret < 0) return 1; return strcmp(value, "0") ? 1 : 0; } /* * Tries to mount any of the consecutive fstab entries that match * the mountpoint of the one given by fstab->recs[start_idx]. * * end_idx: On return, will be the last rec that was looked at. * attempted_idx: On return, will indicate which fstab rec * succeeded. In case of failure, it will be the start_idx. * Returns * -1 on failure with errno set to match the 1st mount failure. * 0 on success. */ static int mount_with_alternatives(struct fstab *fstab, int start_idx, int *end_idx, int *attempted_idx) { int i; int mount_errno = 0; int mounted = 0; if (!end_idx || !attempted_idx || start_idx >= fstab->num_entries) { errno = EINVAL; if (end_idx) *end_idx = start_idx; if (attempted_idx) *end_idx = start_idx; return -1; } /* Hunt down an fstab entry for the same mount point that might succeed */ for (i = start_idx; /* We required that fstab entries for the same mountpoint be consecutive */ i < fstab->num_entries && !strcmp(fstab->recs[start_idx].mount_point, fstab->recs[i].mount_point); i++) { /* * Don't try to mount/encrypt the same mount point again. * Deal with alternate entries for the same point which are required to be all following * each other. */ if (mounted) { ERROR("%s(): skipping fstab dup mountpoint=%s rec[%d].fs_type=%s already mounted as %s.\n", __func__, fstab->recs[i].mount_point, i, fstab->recs[i].fs_type, fstab->recs[*attempted_idx].fs_type); continue; } if (fstab->recs[i].fs_mgr_flags & MF_CHECK) { check_fs(fstab->recs[i].blk_device, fstab->recs[i].fs_type, fstab->recs[i].mount_point); } if (!__mount(fstab->recs[i].blk_device, fstab->recs[i].mount_point, &fstab->recs[i])) { *attempted_idx = i; mounted = 1; if (i != start_idx) { ERROR("%s(): Mounted %s on %s with fs_type=%s instead of %s\n", __func__, fstab->recs[i].blk_device, fstab->recs[i].mount_point, fstab->recs[i].fs_type, fstab->recs[start_idx].fs_type); } } else { /* back up errno for crypto decisions */ mount_errno = errno; } } /* Adjust i for the case where it was still withing the recs[] */ if (i < fstab->num_entries) --i; *end_idx = i; if (!mounted) { *attempted_idx = start_idx; errno = mount_errno; return -1; } return 0; } /* When multiple fstab records share the same mount_point, it will * try to mount each one in turn, and ignore any duplicates after a * first successful mount. * Returns -1 on error, and FS_MGR_MNTALL_* otherwise. */ int fs_mgr_mount_all(struct fstab *fstab) { int i = 0; int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; int error_count = 0; int mret = -1; int mount_errno = 0; int attempted_idx = -1; if (!fstab) { return -1; } for (i = 0; i < fstab->num_entries; i++) { /* Don't mount entries that are managed by vold */ if (fstab->recs[i].fs_mgr_flags & (MF_VOLDMANAGED | MF_RECOVERYONLY)) { continue; } /* Skip swap and raw partition entries such as boot, recovery, etc */ if (!strcmp(fstab->recs[i].fs_type, "swap") || !strcmp(fstab->recs[i].fs_type, "emmc") || !strcmp(fstab->recs[i].fs_type, "mtd")) { continue; } if (fstab->recs[i].fs_mgr_flags & MF_WAIT) { wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT); } if ((fstab->recs[i].fs_mgr_flags & MF_VERIFY) && device_is_secure()) { int rc = fs_mgr_setup_verity(&fstab->recs[i]); if (device_is_debuggable() && rc == FS_MGR_SETUP_VERITY_DISABLED) { INFO("Verity disabled"); } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { ERROR("Could not set up verified partition, skipping!\n"); continue; } } int last_idx_inspected; mret = mount_with_alternatives(fstab, i, &last_idx_inspected, &attempted_idx); i = last_idx_inspected; mount_errno = errno; /* Deal with encryptability. */ if (!mret) { /* If this is encryptable, need to trigger encryption */ if ((fstab->recs[attempted_idx].fs_mgr_flags & MF_FORCECRYPT)) { if (umount(fstab->recs[attempted_idx].mount_point) == 0) { if (encryptable == FS_MGR_MNTALL_DEV_NOT_ENCRYPTED) { ERROR("Will try to encrypt %s %s\n", fstab->recs[attempted_idx].mount_point, fstab->recs[attempted_idx].fs_type); encryptable = FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION; } else { ERROR("Only one encryptable/encrypted partition supported\n"); encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED; } } else { INFO("Could not umount %s - allow continue unencrypted\n", fstab->recs[attempted_idx].mount_point); continue; } } /* Success! Go get the next one */ continue; } /* mount(2) returned an error, check if it's encryptable and deal with it */ if (mret && mount_errno != EBUSY && mount_errno != EACCES && fs_mgr_is_encryptable(&fstab->recs[attempted_idx])) { if(partition_wiped(fstab->recs[attempted_idx].blk_device)) { ERROR("%s(): %s is wiped and %s %s is encryptable. Suggest recovery...\n", __func__, fstab->recs[attempted_idx].blk_device, fstab->recs[attempted_idx].mount_point, fstab->recs[attempted_idx].fs_type); encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; continue; } else { /* Need to mount a tmpfs at this mountpoint for now, and set * properties that vold will query later for decrypting */ ERROR("%s(): possibly an encryptable blkdev %s for mount %s type %s )\n", __func__, fstab->recs[attempted_idx].blk_device, fstab->recs[attempted_idx].mount_point, fstab->recs[attempted_idx].fs_type); if (fs_mgr_do_tmpfs_mount(fstab->recs[attempted_idx].mount_point) < 0) { ++error_count; continue; } } encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED; } else { ERROR("Failed to mount an un-encryptable or wiped partition on" "%s at %s options: %s error: %s\n", fstab->recs[attempted_idx].blk_device, fstab->recs[attempted_idx].mount_point, fstab->recs[attempted_idx].fs_options, strerror(mount_errno)); ++error_count; continue; } } if (error_count) { return -1; } else { return encryptable; } } /* If tmp_mount_point is non-null, mount the filesystem there. This is for the * tmp mount we do to check the user password * If multiple fstab entries are to be mounted on "n_name", it will try to mount each one * in turn, and stop on 1st success, or no more match. */ int fs_mgr_do_mount(struct fstab *fstab, char *n_name, char *n_blk_device, char *tmp_mount_point) { int i = 0; int ret = FS_MGR_DOMNT_FAILED; int mount_errors = 0; int first_mount_errno = 0; char *m; if (!fstab) { return ret; } for (i = 0; i < fstab->num_entries; i++) { if (!fs_match(fstab->recs[i].mount_point, n_name)) { continue; } /* We found our match */ /* If this swap or a raw partition, report an error */ if (!strcmp(fstab->recs[i].fs_type, "swap") || !strcmp(fstab->recs[i].fs_type, "emmc") || !strcmp(fstab->recs[i].fs_type, "mtd")) { ERROR("Cannot mount filesystem of type %s on %s\n", fstab->recs[i].fs_type, n_blk_device); goto out; } /* First check the filesystem if requested */ if (fstab->recs[i].fs_mgr_flags & MF_WAIT) { wait_for_file(n_blk_device, WAIT_TIMEOUT); } if (fstab->recs[i].fs_mgr_flags & MF_CHECK) { check_fs(n_blk_device, fstab->recs[i].fs_type, fstab->recs[i].mount_point); } if ((fstab->recs[i].fs_mgr_flags & MF_VERIFY) && device_is_secure()) { int rc = fs_mgr_setup_verity(&fstab->recs[i]); if (device_is_debuggable() && rc == FS_MGR_SETUP_VERITY_DISABLED) { INFO("Verity disabled"); } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { ERROR("Could not set up verified partition, skipping!\n"); continue; } } /* Now mount it where requested */ if (tmp_mount_point) { m = tmp_mount_point; } else { m = fstab->recs[i].mount_point; } if (__mount(n_blk_device, m, &fstab->recs[i])) { if (!first_mount_errno) first_mount_errno = errno; mount_errors++; continue; } else { ret = 0; goto out; } } if (mount_errors) { ERROR("Cannot mount filesystem on %s at %s. error: %s\n", n_blk_device, m, strerror(first_mount_errno)); if (first_mount_errno == EBUSY) { ret = FS_MGR_DOMNT_BUSY; } else { ret = FS_MGR_DOMNT_FAILED; } } else { /* We didn't find a match, say so and return an error */ ERROR("Cannot find mount point %s in fstab\n", fstab->recs[i].mount_point); } out: return ret; } /* * mount a tmpfs filesystem at the given point. * return 0 on success, non-zero on failure. */ int fs_mgr_do_tmpfs_mount(char *n_name) { int ret; ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV, CRYPTO_TMPFS_OPTIONS); if (ret < 0) { ERROR("Cannot mount tmpfs filesystem at %s\n", n_name); return -1; } /* Success */ return 0; } int fs_mgr_unmount_all(struct fstab *fstab) { int i = 0; int ret = 0; if (!fstab) { return -1; } while (fstab->recs[i].blk_device) { if (umount(fstab->recs[i].mount_point)) { ERROR("Cannot unmount filesystem at %s\n", fstab->recs[i].mount_point); ret = -1; } i++; } return ret; } /* This must be called after mount_all, because the mkswap command needs to be * available. */ int fs_mgr_swapon_all(struct fstab *fstab) { int i = 0; int flags = 0; int err = 0; int ret = 0; int status; char *mkswap_argv[2] = { MKSWAP_BIN, NULL }; if (!fstab) { return -1; } for (i = 0; i < fstab->num_entries; i++) { /* Skip non-swap entries */ if (strcmp(fstab->recs[i].fs_type, "swap")) { continue; } if (fstab->recs[i].zram_size > 0) { /* A zram_size was specified, so we need to configure the * device. There is no point in having multiple zram devices * on a system (all the memory comes from the same pool) so * we can assume the device number is 0. */ FILE *zram_fp; zram_fp = fopen(ZRAM_CONF_DEV, "r+"); if (zram_fp == NULL) { ERROR("Unable to open zram conf device %s\n", ZRAM_CONF_DEV); ret = -1; continue; } fprintf(zram_fp, "%d\n", fstab->recs[i].zram_size); fclose(zram_fp); } if (fstab->recs[i].fs_mgr_flags & MF_WAIT) { wait_for_file(fstab->recs[i].blk_device, WAIT_TIMEOUT); } /* Initialize the swap area */ mkswap_argv[1] = fstab->recs[i].blk_device; err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), mkswap_argv, &status, true, LOG_KLOG, false, NULL); if (err) { ERROR("mkswap failed for %s\n", fstab->recs[i].blk_device); ret = -1; continue; } /* If -1, then no priority was specified in fstab, so don't set * SWAP_FLAG_PREFER or encode the priority */ if (fstab->recs[i].swap_prio >= 0) { flags = (fstab->recs[i].swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK; flags |= SWAP_FLAG_PREFER; } else { flags = 0; } err = swapon(fstab->recs[i].blk_device, flags); if (err) { ERROR("swapon failed for %s\n", fstab->recs[i].blk_device); ret = -1; } } return ret; } /* * key_loc must be at least PROPERTY_VALUE_MAX bytes long * * real_blk_device must be at least PROPERTY_VALUE_MAX bytes long */ int fs_mgr_get_crypt_info(struct fstab *fstab, char *key_loc, char *real_blk_device, int size) { int i = 0; if (!fstab) { return -1; } /* Initialize return values to null strings */ if (key_loc) { *key_loc = '\0'; } if (real_blk_device) { *real_blk_device = '\0'; } /* Look for the encryptable partition to find the data */ for (i = 0; i < fstab->num_entries; i++) { /* Don't deal with vold managed enryptable partitions here */ if (fstab->recs[i].fs_mgr_flags & MF_VOLDMANAGED) { continue; } if (!(fstab->recs[i].fs_mgr_flags & (MF_CRYPT | MF_FORCECRYPT))) { continue; } /* We found a match */ if (key_loc) { strlcpy(key_loc, fstab->recs[i].key_loc, size); } if (real_blk_device) { strlcpy(real_blk_device, fstab->recs[i].blk_device, size); } break; } return 0; }