/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "thread_utils.h" // Number of microseconds per milliseconds. #define US_PER_MSEC 1000 // Number of nanoseconds in a second. #define NS_PER_SEC 1000000000ULL // Number of simultaneous dumping operations to perform. #define NUM_THREADS 20 // Number of simultaneous threads running in our forked process. #define NUM_PTRACE_THREADS 5 typedef struct { pid_t tid; int32_t state; pthread_t threadId; } thread_t; typedef struct { thread_t thread; backtrace_context_t context; int32_t* now; int32_t done; } dump_thread_t; extern "C" { // Prototypes for functions in the test library. int test_level_one(int, int, int, int, void (*)(void*), void*); int test_recursive_call(int, void (*)(void*), void*); } uint64_t NanoTime() { struct timespec t = { 0, 0 }; clock_gettime(CLOCK_MONOTONIC, &t); return static_cast(t.tv_sec * NS_PER_SEC + t.tv_nsec); } void DumpFrames(const backtrace_context_t* context) { if (context->backtrace->num_frames == 0) { printf(" No frames to dump\n"); } else { char line[512]; for (size_t i = 0; i < context->backtrace->num_frames; i++) { backtrace_format_frame_data(context, i, line, sizeof(line)); printf(" %s\n", line); } } } void WaitForStop(pid_t pid) { uint64_t start = NanoTime(); siginfo_t si; while (ptrace(PTRACE_GETSIGINFO, pid, 0, &si) < 0 && (errno == EINTR || errno == ESRCH)) { if ((NanoTime() - start) > NS_PER_SEC) { printf("The process did not get to a stopping point in 1 second.\n"); break; } usleep(US_PER_MSEC); } } bool ReadyLevelBacktrace(const backtrace_t* backtrace) { // See if test_level_four is in the backtrace. bool found = false; for (size_t i = 0; i < backtrace->num_frames; i++) { if (backtrace->frames[i].func_name != NULL && strcmp(backtrace->frames[i].func_name, "test_level_four") == 0) { found = true; break; } } return found; } void VerifyLevelDump(const backtrace_t* backtrace) { ASSERT_GT(backtrace->num_frames, static_cast(0)); ASSERT_LT(backtrace->num_frames, static_cast(MAX_BACKTRACE_FRAMES)); // Look through the frames starting at the highest to find the // frame we want. size_t frame_num = 0; for (size_t i = backtrace->num_frames-1; i > 2; i--) { if (backtrace->frames[i].func_name != NULL && strcmp(backtrace->frames[i].func_name, "test_level_one") == 0) { frame_num = i; break; } } ASSERT_GT(frame_num, static_cast(0)); ASSERT_TRUE(NULL != backtrace->frames[frame_num].func_name); ASSERT_STREQ(backtrace->frames[frame_num].func_name, "test_level_one"); ASSERT_TRUE(NULL != backtrace->frames[frame_num-1].func_name); ASSERT_STREQ(backtrace->frames[frame_num-1].func_name, "test_level_two"); ASSERT_TRUE(NULL != backtrace->frames[frame_num-2].func_name); ASSERT_STREQ(backtrace->frames[frame_num-2].func_name, "test_level_three"); ASSERT_TRUE(NULL != backtrace->frames[frame_num-3].func_name); ASSERT_STREQ(backtrace->frames[frame_num-3].func_name, "test_level_four"); } void VerifyLevelBacktrace(void*) { backtrace_context_t context; ASSERT_TRUE(backtrace_create_context(&context, -1, -1, 0)); VerifyLevelDump(context.backtrace); backtrace_destroy_context(&context); } bool ReadyMaxBacktrace(const backtrace_t* backtrace) { return (backtrace->num_frames == MAX_BACKTRACE_FRAMES); } void VerifyMaxDump(const backtrace_t* backtrace) { ASSERT_EQ(backtrace->num_frames, static_cast(MAX_BACKTRACE_FRAMES)); // Verify that the last frame is our recursive call. ASSERT_TRUE(NULL != backtrace->frames[MAX_BACKTRACE_FRAMES-1].func_name); ASSERT_STREQ(backtrace->frames[MAX_BACKTRACE_FRAMES-1].func_name, "test_recursive_call"); } void VerifyMaxBacktrace(void*) { backtrace_context_t context; ASSERT_TRUE(backtrace_create_context(&context, -1, -1, 0)); VerifyMaxDump(context.backtrace); backtrace_destroy_context(&context); } void ThreadSetState(void* data) { thread_t* thread = reinterpret_cast(data); android_atomic_acquire_store(1, &thread->state); volatile int i = 0; while (thread->state) { i++; } } void VerifyThreadTest(pid_t tid, void (*VerifyFunc)(const backtrace_t*)) { backtrace_context_t context; backtrace_create_context(&context, getpid(), tid, 0); VerifyFunc(context.backtrace); backtrace_destroy_context(&context); } bool WaitForNonZero(int32_t* value, uint64_t seconds) { uint64_t start = NanoTime(); do { if (android_atomic_acquire_load(value)) { return true; } } while ((NanoTime() - start) < seconds * NS_PER_SEC); return false; } TEST(libbacktrace, local_trace) { ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelBacktrace, NULL), 0); } void VerifyIgnoreFrames( const backtrace_t* bt_all, const backtrace_t* bt_ign1, const backtrace_t* bt_ign2, const char* cur_proc) { EXPECT_EQ(bt_all->num_frames, bt_ign1->num_frames + 1); EXPECT_EQ(bt_all->num_frames, bt_ign2->num_frames + 2); // Check all of the frames are the same > the current frame. bool check = (cur_proc == NULL); for (size_t i = 0; i < bt_ign2->num_frames; i++) { if (check) { EXPECT_EQ(bt_ign2->frames[i].pc, bt_ign1->frames[i+1].pc); EXPECT_EQ(bt_ign2->frames[i].sp, bt_ign1->frames[i+1].sp); EXPECT_EQ(bt_ign2->frames[i].stack_size, bt_ign1->frames[i+1].stack_size); EXPECT_EQ(bt_ign2->frames[i].pc, bt_all->frames[i+2].pc); EXPECT_EQ(bt_ign2->frames[i].sp, bt_all->frames[i+2].sp); EXPECT_EQ(bt_ign2->frames[i].stack_size, bt_all->frames[i+2].stack_size); } if (!check && bt_ign2->frames[i].func_name && strcmp(bt_ign2->frames[i].func_name, cur_proc) == 0) { check = true; } } } void VerifyLevelIgnoreFrames(void*) { backtrace_context_t all; ASSERT_TRUE(backtrace_create_context(&all, -1, -1, 0)); ASSERT_TRUE(all.backtrace != NULL); backtrace_context_t ign1; ASSERT_TRUE(backtrace_create_context(&ign1, -1, -1, 1)); ASSERT_TRUE(ign1.backtrace != NULL); backtrace_context_t ign2; ASSERT_TRUE(backtrace_create_context(&ign2, -1, -1, 2)); ASSERT_TRUE(ign2.backtrace != NULL); VerifyIgnoreFrames(all.backtrace, ign1.backtrace, ign2.backtrace, "VerifyLevelIgnoreFrames"); backtrace_destroy_context(&all); backtrace_destroy_context(&ign1); backtrace_destroy_context(&ign2); } TEST(libbacktrace, local_trace_ignore_frames) { ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelIgnoreFrames, NULL), 0); } TEST(libbacktrace, local_max_trace) { ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxBacktrace, NULL), 0); } void VerifyProcTest(pid_t pid, pid_t tid, bool (*ReadyFunc)(const backtrace_t*), void (*VerifyFunc)(const backtrace_t*)) { pid_t ptrace_tid; if (tid < 0) { ptrace_tid = pid; } else { ptrace_tid = tid; } uint64_t start = NanoTime(); bool verified = false; do { usleep(US_PER_MSEC); if (ptrace(PTRACE_ATTACH, ptrace_tid, 0, 0) == 0) { // Wait for the process to get to a stopping point. WaitForStop(ptrace_tid); backtrace_context_t context; ASSERT_TRUE(backtrace_create_context(&context, pid, tid, 0)); if (ReadyFunc(context.backtrace)) { VerifyFunc(context.backtrace); verified = true; } backtrace_destroy_context(&context); ASSERT_TRUE(ptrace(PTRACE_DETACH, ptrace_tid, 0, 0) == 0); } // If 5 seconds have passed, then we are done. } while (!verified && (NanoTime() - start) <= 5 * NS_PER_SEC); ASSERT_TRUE(verified); } TEST(libbacktrace, ptrace_trace) { pid_t pid; if ((pid = fork()) == 0) { ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); exit(1); } VerifyProcTest(pid, -1, ReadyLevelBacktrace, VerifyLevelDump); kill(pid, SIGKILL); int status; ASSERT_EQ(waitpid(pid, &status, 0), pid); } TEST(libbacktrace, ptrace_max_trace) { pid_t pid; if ((pid = fork()) == 0) { ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, NULL, NULL), 0); exit(1); } VerifyProcTest(pid, -1, ReadyMaxBacktrace, VerifyMaxDump); kill(pid, SIGKILL); int status; ASSERT_EQ(waitpid(pid, &status, 0), pid); } void VerifyProcessIgnoreFrames(const backtrace_t* bt_all) { pid_t pid = bt_all->pid; backtrace_context_t ign1; ASSERT_TRUE(backtrace_create_context(&ign1, pid, -1, 1)); ASSERT_TRUE(ign1.backtrace != NULL); backtrace_context_t ign2; ASSERT_TRUE(backtrace_create_context(&ign2, pid, -1, 2)); ASSERT_TRUE(ign2.backtrace != NULL); VerifyIgnoreFrames(bt_all, ign1.backtrace, ign2.backtrace, NULL); backtrace_destroy_context(&ign1); backtrace_destroy_context(&ign2); } TEST(libbacktrace, ptrace_ignore_frames) { pid_t pid; if ((pid = fork()) == 0) { ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); exit(1); } VerifyProcTest(pid, -1, ReadyLevelBacktrace, VerifyProcessIgnoreFrames); kill(pid, SIGKILL); int status; ASSERT_EQ(waitpid(pid, &status, 0), pid); } // Create a process with multiple threads and dump all of the threads. void* PtraceThreadLevelRun(void*) { EXPECT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); return NULL; } void GetThreads(pid_t pid, std::vector* threads) { // Get the list of tasks. char task_path[128]; snprintf(task_path, sizeof(task_path), "/proc/%d/task", pid); DIR* tasks_dir = opendir(task_path); ASSERT_TRUE(tasks_dir != NULL); struct dirent* entry; while ((entry = readdir(tasks_dir)) != NULL) { char* end; pid_t tid = strtoul(entry->d_name, &end, 10); if (*end == '\0') { threads->push_back(tid); } } closedir(tasks_dir); } TEST(libbacktrace, ptrace_threads) { pid_t pid; if ((pid = fork()) == 0) { for (size_t i = 0; i < NUM_PTRACE_THREADS; i++) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); pthread_t thread; ASSERT_TRUE(pthread_create(&thread, &attr, PtraceThreadLevelRun, NULL) == 0); } ASSERT_NE(test_level_one(1, 2, 3, 4, NULL, NULL), 0); exit(1); } // Check to see that all of the threads are running before unwinding. std::vector threads; uint64_t start = NanoTime(); do { usleep(US_PER_MSEC); threads.clear(); GetThreads(pid, &threads); } while ((threads.size() != NUM_PTRACE_THREADS + 1) && ((NanoTime() - start) <= 5 * NS_PER_SEC)); ASSERT_EQ(threads.size(), static_cast(NUM_PTRACE_THREADS + 1)); ASSERT_TRUE(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); WaitForStop(pid); for (std::vector::const_iterator it = threads.begin(); it != threads.end(); ++it) { // Skip the current forked process, we only care about the threads. if (pid == *it) { continue; } VerifyProcTest(pid, *it, ReadyLevelBacktrace, VerifyLevelDump); } ASSERT_TRUE(ptrace(PTRACE_DETACH, pid, 0, 0) == 0); kill(pid, SIGKILL); int status; ASSERT_EQ(waitpid(pid, &status, 0), pid); } void VerifyLevelThread(void*) { backtrace_context_t context; ASSERT_TRUE(backtrace_create_context(&context, getpid(), gettid(), 0)); VerifyLevelDump(context.backtrace); backtrace_destroy_context(&context); } TEST(libbacktrace, thread_current_level) { ASSERT_NE(test_level_one(1, 2, 3, 4, VerifyLevelThread, NULL), 0); } void VerifyMaxThread(void*) { backtrace_context_t context; ASSERT_TRUE(backtrace_create_context(&context, getpid(), gettid(), 0)); VerifyMaxDump(context.backtrace); backtrace_destroy_context(&context); } TEST(libbacktrace, thread_current_max) { ASSERT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, VerifyMaxThread, NULL), 0); } void* ThreadLevelRun(void* data) { thread_t* thread = reinterpret_cast(data); thread->tid = gettid(); EXPECT_NE(test_level_one(1, 2, 3, 4, ThreadSetState, data), 0); return NULL; } TEST(libbacktrace, thread_level_trace) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); thread_t thread_data = { 0, 0, 0 }; pthread_t thread; ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); // Wait up to 2 seconds for the tid to be set. ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); // Save the current signal action and make sure it is restored afterwards. struct sigaction cur_action; ASSERT_TRUE(sigaction(SIGURG, NULL, &cur_action) == 0); backtrace_context_t context; ASSERT_TRUE(backtrace_create_context(&context, getpid(), thread_data.tid,0)); VerifyLevelDump(context.backtrace); backtrace_destroy_context(&context); // Tell the thread to exit its infinite loop. android_atomic_acquire_store(0, &thread_data.state); // Verify that the old action was restored. struct sigaction new_action; ASSERT_TRUE(sigaction(SIGURG, NULL, &new_action) == 0); EXPECT_EQ(cur_action.sa_sigaction, new_action.sa_sigaction); EXPECT_EQ(cur_action.sa_flags, new_action.sa_flags); } TEST(libbacktrace, thread_ignore_frames) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); thread_t thread_data = { 0, 0, 0 }; pthread_t thread; ASSERT_TRUE(pthread_create(&thread, &attr, ThreadLevelRun, &thread_data) == 0); // Wait up to 2 seconds for the tid to be set. ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); backtrace_context_t all; ASSERT_TRUE(backtrace_create_context(&all, getpid(), thread_data.tid, 0)); backtrace_context_t ign1; ASSERT_TRUE(backtrace_create_context(&ign1, getpid(), thread_data.tid, 1)); backtrace_context_t ign2; ASSERT_TRUE(backtrace_create_context(&ign2, getpid(), thread_data.tid, 2)); VerifyIgnoreFrames(all.backtrace, ign1.backtrace, ign2.backtrace, NULL); backtrace_destroy_context(&all); backtrace_destroy_context(&ign1); backtrace_destroy_context(&ign2); // Tell the thread to exit its infinite loop. android_atomic_acquire_store(0, &thread_data.state); } void* ThreadMaxRun(void* data) { thread_t* thread = reinterpret_cast(data); thread->tid = gettid(); EXPECT_NE(test_recursive_call(MAX_BACKTRACE_FRAMES+10, ThreadSetState, data), 0); return NULL; } TEST(libbacktrace, thread_max_trace) { pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); thread_t thread_data = { 0, 0, 0 }; pthread_t thread; ASSERT_TRUE(pthread_create(&thread, &attr, ThreadMaxRun, &thread_data) == 0); // Wait for the tid to be set. ASSERT_TRUE(WaitForNonZero(&thread_data.state, 2)); backtrace_context_t context; ASSERT_TRUE(backtrace_create_context(&context, getpid(), thread_data.tid, 0)); VerifyMaxDump(context.backtrace); backtrace_destroy_context(&context); // Tell the thread to exit its infinite loop. android_atomic_acquire_store(0, &thread_data.state); } void* ThreadDump(void* data) { dump_thread_t* dump = reinterpret_cast(data); while (true) { if (android_atomic_acquire_load(dump->now)) { break; } } dump->context.data = NULL; dump->context.backtrace = NULL; // The status of the actual unwind will be checked elsewhere. backtrace_create_context(&dump->context, getpid(), dump->thread.tid, 0); android_atomic_acquire_store(1, &dump->done); return NULL; } TEST(libbacktrace, thread_multiple_dump) { // Dump NUM_THREADS simultaneously. std::vector runners(NUM_THREADS); std::vector dumpers(NUM_THREADS); pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); for (size_t i = 0; i < NUM_THREADS; i++) { // Launch the runners, they will spin in hard loops doing nothing. runners[i].tid = 0; runners[i].state = 0; ASSERT_TRUE(pthread_create(&runners[i].threadId, &attr, ThreadMaxRun, &runners[i]) == 0); } // Wait for tids to be set. for (std::vector::iterator it = runners.begin(); it != runners.end(); ++it) { ASSERT_TRUE(WaitForNonZero(&it->state, 10)); } // Start all of the dumpers at once, they will spin until they are signalled // to begin their dump run. int32_t dump_now = 0; for (size_t i = 0; i < NUM_THREADS; i++) { dumpers[i].thread.tid = runners[i].tid; dumpers[i].thread.state = 0; dumpers[i].done = 0; dumpers[i].now = &dump_now; ASSERT_TRUE(pthread_create(&dumpers[i].thread.threadId, &attr, ThreadDump, &dumpers[i]) == 0); } // Start all of the dumpers going at once. android_atomic_acquire_store(1, &dump_now); for (size_t i = 0; i < NUM_THREADS; i++) { ASSERT_TRUE(WaitForNonZero(&dumpers[i].done, 10)); // Tell the runner thread to exit its infinite loop. android_atomic_acquire_store(0, &runners[i].state); ASSERT_TRUE(dumpers[i].context.backtrace != NULL); VerifyMaxDump(dumpers[i].context.backtrace); backtrace_destroy_context(&dumpers[i].context); } } TEST(libbacktrace, format_test) { backtrace_context_t context; ASSERT_TRUE(backtrace_create_context(&context, -1, -1, 0)); ASSERT_TRUE(context.backtrace != NULL); backtrace_frame_data_t* frame = &context.backtrace->frames[1]; backtrace_frame_data_t save_frame = *frame; memset(frame, 0, sizeof(backtrace_frame_data_t)); char buf[512]; backtrace_format_frame_data(&context, 1, buf, sizeof(buf)); #if defined(__LP64__) EXPECT_STREQ(buf, "#01 pc 0000000000000000 "); #else EXPECT_STREQ(buf, "#01 pc 00000000 "); #endif frame->pc = 0x12345678; frame->map_name = "MapFake"; backtrace_format_frame_data(&context, 1, buf, sizeof(buf)); #if defined(__LP64__) EXPECT_STREQ(buf, "#01 pc 0000000012345678 MapFake"); #else EXPECT_STREQ(buf, "#01 pc 12345678 MapFake"); #endif frame->func_name = "ProcFake"; backtrace_format_frame_data(&context, 1, buf, sizeof(buf)); #if defined(__LP64__) EXPECT_STREQ(buf, "#01 pc 0000000012345678 MapFake (ProcFake)"); #else EXPECT_STREQ(buf, "#01 pc 12345678 MapFake (ProcFake)"); #endif frame->func_offset = 645; backtrace_format_frame_data(&context, 1, buf, sizeof(buf)); #if defined(__LP64__) EXPECT_STREQ(buf, "#01 pc 0000000012345678 MapFake (ProcFake+645)"); #else EXPECT_STREQ(buf, "#01 pc 12345678 MapFake (ProcFake+645)"); #endif *frame = save_frame; backtrace_destroy_context(&context); }