/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Backtracing functions for ARM. * * This implementation uses the exception unwinding tables provided by * the compiler to unwind call frames. Refer to the ARM Exception Handling ABI * documentation (EHABI) for more details about what's going on here. * * An ELF binary may contain an EXIDX section that provides an index to * the exception handling table of each function, sorted by program * counter address. * * This implementation also supports unwinding other processes via ptrace(). * In that case, the EXIDX section is found by reading the ELF section table * structures using ptrace(). * * Because the tables are used for exception handling, it can happen that * a given function will not have an exception handling table. In particular, * exceptions are assumed to only ever be thrown at call sites. Therefore, * by definition leaf functions will not have exception handling tables. * This may make unwinding impossible in some cases although we can still get * some idea of the call stack by examining the PC and LR registers. * * As we are only interested in backtrace information, we do not need * to perform all of the work of unwinding such as restoring register * state and running cleanup functions. Unwinding is performed virtually on * an abstract machine context consisting of just the ARM core registers. * Furthermore, we do not run generic "personality functions" because * we may not be in a position to execute arbitrary code, especially if * we are running in a signal handler or using ptrace()! */ #define LOG_TAG "Corkscrew" //#define LOG_NDEBUG 0 #include "../backtrace-arch.h" #include "../backtrace-helper.h" #include "../ptrace-arch.h" #include #include #include #include #include #include #include #include #include #if !defined(__BIONIC_HAVE_UCONTEXT_T) /* Old versions of the Android didn't define ucontext_t. */ #include /* Ensure 'struct sigcontext' is defined. */ /* Machine context at the time a signal was raised. */ typedef struct ucontext { uint32_t uc_flags; struct ucontext* uc_link; stack_t uc_stack; struct sigcontext uc_mcontext; uint32_t uc_sigmask; } ucontext_t; #endif /* !__BIONIC_HAVE_UCONTEXT_T */ /* Unwind state. */ typedef struct { uint32_t gregs[16]; } unwind_state_t; static const int R_SP = 13; static const int R_LR = 14; static const int R_PC = 15; /* Special EXIDX value that indicates that a frame cannot be unwound. */ static const uint32_t EXIDX_CANTUNWIND = 1; /* Get the EXIDX section start and size for the module that contains a * given program counter address. * * When the executable is statically linked, the EXIDX section can be * accessed by querying the values of the __exidx_start and __exidx_end * symbols. * * When the executable is dynamically linked, the linker exports a function * called dl_unwind_find_exidx that obtains the EXIDX section for a given * absolute program counter address. * * Bionic exports a helpful function called __gnu_Unwind_Find_exidx that * handles both cases, so we use that here. */ typedef long unsigned int* _Unwind_Ptr; extern _Unwind_Ptr __gnu_Unwind_Find_exidx(_Unwind_Ptr pc, int *pcount); static uintptr_t find_exidx(uintptr_t pc, size_t* out_exidx_size) { int count; uintptr_t start = (uintptr_t)__gnu_Unwind_Find_exidx((_Unwind_Ptr)pc, &count); *out_exidx_size = count; return start; } /* Transforms a 31-bit place-relative offset to an absolute address. * We assume the most significant bit is clear. */ static uintptr_t prel_to_absolute(uintptr_t place, uint32_t prel_offset) { return place + (((int32_t)(prel_offset << 1)) >> 1); } static uintptr_t get_exception_handler(const memory_t* memory, const map_info_t* map_info_list, uintptr_t pc) { if (!pc) { ALOGV("get_exception_handler: pc is zero, no handler"); return 0; } uintptr_t exidx_start; size_t exidx_size; const map_info_t* mi; if (memory->tid < 0) { mi = NULL; exidx_start = find_exidx(pc, &exidx_size); } else { mi = find_map_info(map_info_list, pc); if (mi && mi->data) { const map_info_data_t* data = (const map_info_data_t*)mi->data; exidx_start = data->exidx_start; exidx_size = data->exidx_size; } else { exidx_start = 0; exidx_size = 0; } } uintptr_t handler = 0; int32_t handler_index = -1; if (exidx_start) { uint32_t low = 0; uint32_t high = exidx_size; while (low < high) { uint32_t index = (low + high) / 2; uintptr_t entry = exidx_start + index * 8; uint32_t entry_prel_pc; ALOGV("XXX low=%u, high=%u, index=%u", low, high, index); if (!try_get_word(memory, entry, &entry_prel_pc)) { break; } uintptr_t entry_pc = prel_to_absolute(entry, entry_prel_pc); ALOGV("XXX entry_pc=0x%08x", entry_pc); if (pc < entry_pc) { high = index; continue; } if (index + 1 < exidx_size) { uintptr_t next_entry = entry + 8; uint32_t next_entry_prel_pc; if (!try_get_word(memory, next_entry, &next_entry_prel_pc)) { break; } uintptr_t next_entry_pc = prel_to_absolute(next_entry, next_entry_prel_pc); ALOGV("XXX next_entry_pc=0x%08x", next_entry_pc); if (pc >= next_entry_pc) { low = index + 1; continue; } } uintptr_t entry_handler_ptr = entry + 4; uint32_t entry_handler; if (!try_get_word(memory, entry_handler_ptr, &entry_handler)) { break; } if (entry_handler & (1L << 31)) { handler = entry_handler_ptr; // in-place handler data } else if (entry_handler != EXIDX_CANTUNWIND) { handler = prel_to_absolute(entry_handler_ptr, entry_handler); } handler_index = index; break; } } if (mi) { ALOGV("get_exception_handler: pc=0x%08x, module='%s', module_start=0x%08x, " "exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d", pc, mi->name, mi->start, exidx_start, exidx_size, handler, handler_index); } else { ALOGV("get_exception_handler: pc=0x%08x, " "exidx_start=0x%08x, exidx_size=%d, handler=0x%08x, handler_index=%d", pc, exidx_start, exidx_size, handler, handler_index); } return handler; } typedef struct { uintptr_t ptr; uint32_t word; } byte_stream_t; static bool try_next_byte(const memory_t* memory, byte_stream_t* stream, uint8_t* out_value) { uint8_t result; switch (stream->ptr & 3) { case 0: if (!try_get_word(memory, stream->ptr, &stream->word)) { *out_value = 0; return false; } *out_value = stream->word >> 24; break; case 1: *out_value = stream->word >> 16; break; case 2: *out_value = stream->word >> 8; break; default: *out_value = stream->word; break; } ALOGV("next_byte: ptr=0x%08x, value=0x%02x", stream->ptr, *out_value); stream->ptr += 1; return true; } static void set_reg(unwind_state_t* state, uint32_t reg, uint32_t value) { ALOGV("set_reg: reg=%d, value=0x%08x", reg, value); state->gregs[reg] = value; } static bool try_pop_registers(const memory_t* memory, unwind_state_t* state, uint32_t mask) { uint32_t sp = state->gregs[R_SP]; bool sp_updated = false; for (int i = 0; i < 16; i++) { if (mask & (1 << i)) { uint32_t value; if (!try_get_word(memory, sp, &value)) { return false; } if (i == R_SP) { sp_updated = true; } set_reg(state, i, value); sp += 4; } } if (!sp_updated) { set_reg(state, R_SP, sp); } return true; } /* Executes a built-in personality routine as defined in the EHABI. * Returns true if unwinding should continue. * * The data for the built-in personality routines consists of a sequence * of unwinding instructions, followed by a sequence of scope descriptors, * each of which has a length and offset encoded using 16-bit or 32-bit * values. * * We only care about the unwinding instructions. They specify the * operations of an abstract machine whose purpose is to transform the * virtual register state (including the stack pointer) such that * the call frame is unwound and the PC register points to the call site. */ static bool execute_personality_routine(const memory_t* memory, unwind_state_t* state, byte_stream_t* stream, int pr_index) { size_t size; switch (pr_index) { case 0: // Personality routine #0, short frame, descriptors have 16-bit scope. size = 3; break; case 1: // Personality routine #1, long frame, descriptors have 16-bit scope. case 2: { // Personality routine #2, long frame, descriptors have 32-bit scope. uint8_t size_byte; if (!try_next_byte(memory, stream, &size_byte)) { return false; } size = (uint32_t)size_byte * sizeof(uint32_t) + 2; break; } default: // Unknown personality routine. Stop here. return false; } bool pc_was_set = false; while (size--) { uint8_t op; if (!try_next_byte(memory, stream, &op)) { return false; } if ((op & 0xc0) == 0x00) { // "vsp = vsp + (xxxxxx << 2) + 4" set_reg(state, R_SP, state->gregs[R_SP] + ((op & 0x3f) << 2) + 4); } else if ((op & 0xc0) == 0x40) { // "vsp = vsp - (xxxxxx << 2) - 4" set_reg(state, R_SP, state->gregs[R_SP] - ((op & 0x3f) << 2) - 4); } else if ((op & 0xf0) == 0x80) { uint8_t op2; if (!(size--) || !try_next_byte(memory, stream, &op2)) { return false; } uint32_t mask = (((uint32_t)op & 0x0f) << 12) | ((uint32_t)op2 << 4); if (mask) { // "Pop up to 12 integer registers under masks {r15-r12}, {r11-r4}" if (!try_pop_registers(memory, state, mask)) { return false; } if (mask & (1 << R_PC)) { pc_was_set = true; } } else { // "Refuse to unwind" return false; } } else if ((op & 0xf0) == 0x90) { if (op != 0x9d && op != 0x9f) { // "Set vsp = r[nnnn]" set_reg(state, R_SP, state->gregs[op & 0x0f]); } else { // "Reserved as prefix for ARM register to register moves" // "Reserved as prefix for Intel Wireless MMX register to register moves" return false; } } else if ((op & 0xf8) == 0xa0) { // "Pop r4-r[4+nnn]" uint32_t mask = (0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0; if (!try_pop_registers(memory, state, mask)) { return false; } } else if ((op & 0xf8) == 0xa8) { // "Pop r4-r[4+nnn], r14" uint32_t mask = ((0x0ff0 >> (7 - (op & 0x07))) & 0x0ff0) | 0x4000; if (!try_pop_registers(memory, state, mask)) { return false; } } else if (op == 0xb0) { // "Finish" break; } else if (op == 0xb1) { uint8_t op2; if (!(size--) || !try_next_byte(memory, stream, &op2)) { return false; } if (op2 != 0x00 && (op2 & 0xf0) == 0x00) { // "Pop integer registers under mask {r3, r2, r1, r0}" if (!try_pop_registers(memory, state, op2)) { return false; } } else { // "Spare" return false; } } else if (op == 0xb2) { // "vsp = vsp + 0x204 + (uleb128 << 2)" uint32_t value = 0; uint32_t shift = 0; uint8_t op2; do { if (!(size--) || !try_next_byte(memory, stream, &op2)) { return false; } value |= (op2 & 0x7f) << shift; shift += 7; } while (op2 & 0x80); set_reg(state, R_SP, state->gregs[R_SP] + (value << 2) + 0x204); } else if (op == 0xb3) { // "Pop VFP double-precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDX" uint8_t op2; if (!(size--) || !try_next_byte(memory, stream, &op2)) { return false; } set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 12); } else if ((op & 0xf8) == 0xb8) { // "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDX" set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 12); } else if ((op & 0xf8) == 0xc0) { // "Intel Wireless MMX pop wR[10]-wR[10+nnn]" set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8); } else if (op == 0xc6) { // "Intel Wireless MMX pop wR[ssss]-wR[ssss+cccc]" uint8_t op2; if (!(size--) || !try_next_byte(memory, stream, &op2)) { return false; } set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8); } else if (op == 0xc7) { uint8_t op2; if (!(size--) || !try_next_byte(memory, stream, &op2)) { return false; } if (op2 != 0x00 && (op2 & 0xf0) == 0x00) { // "Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}" set_reg(state, R_SP, state->gregs[R_SP] + __builtin_popcount(op2) * 4); } else { // "Spare" return false; } } else if (op == 0xc8) { // "Pop VFP double precision registers D[16+ssss]-D[16+ssss+cccc] // saved (as if) by FSTMFD" uint8_t op2; if (!(size--) || !try_next_byte(memory, stream, &op2)) { return false; } set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8); } else if (op == 0xc9) { // "Pop VFP double precision registers D[ssss]-D[ssss+cccc] saved (as if) by FSTMFDD" uint8_t op2; if (!(size--) || !try_next_byte(memory, stream, &op2)) { return false; } set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op2 & 0x0f) * 8 + 8); } else if ((op == 0xf8) == 0xd0) { // "Pop VFP double-precision registers D[8]-D[8+nnn] saved (as if) by FSTMFDD" set_reg(state, R_SP, state->gregs[R_SP] + (uint32_t)(op & 0x07) * 8 + 8); } else { // "Spare" return false; } } if (!pc_was_set) { set_reg(state, R_PC, state->gregs[R_LR]); } return true; } static bool try_get_half_word(const memory_t* memory, uint32_t pc, uint16_t* out_value) { uint32_t word; if (try_get_word(memory, pc & ~2, &word)) { *out_value = pc & 2 ? word >> 16 : word & 0xffff; return true; } return false; } uintptr_t rewind_pc_arch(const memory_t* memory, uintptr_t pc) { if (pc & 1) { /* Thumb mode - need to check whether the bl(x) has long offset or not. * Examples: * * arm blx in the middle of thumb: * 187ae: 2300 movs r3, #0 * 187b0: f7fe ee1c blx 173ec * 187b4: 2c00 cmp r4, #0 * * arm bl in the middle of thumb: * 187d8: 1c20 adds r0, r4, #0 * 187da: f136 fd15 bl 14f208 * 187de: 2800 cmp r0, #0 * * pure thumb: * 18894: 189b adds r3, r3, r2 * 18896: 4798 blx r3 * 18898: b001 add sp, #4 */ uint16_t prev1, prev2; if (try_get_half_word(memory, pc - 5, &prev1) && ((prev1 & 0xf000) == 0xf000) && try_get_half_word(memory, pc - 3, &prev2) && ((prev2 & 0xe000) == 0xe000)) { pc -= 4; // long offset } else { pc -= 2; } } else { /* ARM mode, all instructions are 32bit. Yay! */ pc -= 4; } return pc; } static ssize_t unwind_backtrace_common(const memory_t* memory, const map_info_t* map_info_list, unwind_state_t* state, backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) { size_t ignored_frames = 0; size_t returned_frames = 0; for (size_t index = 0; returned_frames < max_depth; index++) { uintptr_t pc = index ? rewind_pc_arch(memory, state->gregs[R_PC]) : state->gregs[R_PC]; backtrace_frame_t* frame = add_backtrace_entry(pc, backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames); if (frame) { frame->stack_top = state->gregs[R_SP]; } uintptr_t handler = get_exception_handler(memory, map_info_list, pc); if (!handler) { // If there is no handler for the PC and this is the first frame, // then the program may have branched to an invalid address. // Try starting from the LR instead, otherwise stop unwinding. if (index == 0 && state->gregs[R_LR] && state->gregs[R_LR] != state->gregs[R_PC]) { set_reg(state, R_PC, state->gregs[R_LR]); continue; } else { break; } } byte_stream_t stream; stream.ptr = handler; uint8_t pr; if (!try_next_byte(memory, &stream, &pr)) { break; } if ((pr & 0xf0) != 0x80) { // The first word is a place-relative pointer to a generic personality // routine function. We don't support invoking such functions, so stop here. break; } // The first byte indicates the personality routine to execute. // Following bytes provide instructions to the personality routine. if (!execute_personality_routine(memory, state, &stream, pr & 0x0f)) { break; } if (frame && state->gregs[R_SP] > frame->stack_top) { frame->stack_size = state->gregs[R_SP] - frame->stack_top; } if (!state->gregs[R_PC]) { break; } } // Ran out of frames that we could unwind using handlers. // Add a final entry for the LR if it looks sane and call it good. if (returned_frames < max_depth && state->gregs[R_LR] && state->gregs[R_LR] != state->gregs[R_PC] && is_executable_map(map_info_list, state->gregs[R_LR])) { // We don't know where the stack for this extra frame starts so we // don't return any stack information for it. add_backtrace_entry(rewind_pc_arch(memory, state->gregs[R_LR]), backtrace, ignore_depth, max_depth, &ignored_frames, &returned_frames); } return returned_frames; } ssize_t unwind_backtrace_signal_arch(siginfo_t* siginfo, void* sigcontext, const map_info_t* map_info_list, backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) { const ucontext_t* uc = (const ucontext_t*)sigcontext; unwind_state_t state; state.gregs[0] = uc->uc_mcontext.arm_r0; state.gregs[1] = uc->uc_mcontext.arm_r1; state.gregs[2] = uc->uc_mcontext.arm_r2; state.gregs[3] = uc->uc_mcontext.arm_r3; state.gregs[4] = uc->uc_mcontext.arm_r4; state.gregs[5] = uc->uc_mcontext.arm_r5; state.gregs[6] = uc->uc_mcontext.arm_r6; state.gregs[7] = uc->uc_mcontext.arm_r7; state.gregs[8] = uc->uc_mcontext.arm_r8; state.gregs[9] = uc->uc_mcontext.arm_r9; state.gregs[10] = uc->uc_mcontext.arm_r10; state.gregs[11] = uc->uc_mcontext.arm_fp; state.gregs[12] = uc->uc_mcontext.arm_ip; state.gregs[13] = uc->uc_mcontext.arm_sp; state.gregs[14] = uc->uc_mcontext.arm_lr; state.gregs[15] = uc->uc_mcontext.arm_pc; memory_t memory; init_memory(&memory, map_info_list); return unwind_backtrace_common(&memory, map_info_list, &state, backtrace, ignore_depth, max_depth); } ssize_t unwind_backtrace_ptrace_arch(pid_t tid, const ptrace_context_t* context, backtrace_frame_t* backtrace, size_t ignore_depth, size_t max_depth) { struct pt_regs regs; if (ptrace(PTRACE_GETREGS, tid, 0, ®s)) { return -1; } unwind_state_t state; for (int i = 0; i < 16; i++) { state.gregs[i] = regs.uregs[i]; } memory_t memory; init_memory_ptrace(&memory, tid); return unwind_backtrace_common(&memory, context->map_info_list, &state, backtrace, ignore_depth, max_depth); }