/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #ifdef HAVE_WIN32_THREADS #include #else #include #endif /*****************************************************************************/ #if defined(HAVE_MACOSX_IPC) #include void android_atomic_write(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (OSAtomicCompareAndSwap32Barrier(oldValue, value, (int32_t*)addr) == 0); } int32_t android_atomic_inc(volatile int32_t* addr) { return OSAtomicIncrement32Barrier((int32_t*)addr)-1; } int32_t android_atomic_dec(volatile int32_t* addr) { return OSAtomicDecrement32Barrier((int32_t*)addr)+1; } int32_t android_atomic_add(int32_t value, volatile int32_t* addr) { return OSAtomicAdd32Barrier(value, (int32_t*)addr)-value; } int32_t android_atomic_and(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (OSAtomicCompareAndSwap32Barrier(oldValue, oldValue&value, (int32_t*)addr) == 0); return oldValue; } int32_t android_atomic_or(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (OSAtomicCompareAndSwap32Barrier(oldValue, oldValue|value, (int32_t*)addr) == 0); return oldValue; } int32_t android_atomic_swap(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, value, addr)); return oldValue; } int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr) { return OSAtomicCompareAndSwap32Barrier(oldvalue, newvalue, (int32_t*)addr) == 0; } #if defined(__ppc__) \ || defined(__PPC__) \ || defined(__powerpc__) \ || defined(__powerpc) \ || defined(__POWERPC__) \ || defined(_M_PPC) \ || defined(__PPC) #define NEED_QUASIATOMICS 1 #else int android_quasiatomic_cmpxchg_64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { return OSAtomicCompareAndSwap64Barrier(oldvalue, newvalue, (int64_t*)addr) == 0; } int64_t android_quasiatomic_swap_64(int64_t value, volatile int64_t* addr) { int64_t oldValue; do { oldValue = *addr; } while (android_quasiatomic_cmpxchg_64(oldValue, value, addr)); return oldValue; } int64_t android_quasiatomic_read_64(volatile int64_t* addr) { return OSAtomicAdd64Barrier(0, addr); } #endif /*****************************************************************************/ #elif defined(__i386__) || defined(__x86_64__) void android_atomic_write(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, value, addr)); } int32_t android_atomic_inc(volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue+1, addr)); return oldValue; } int32_t android_atomic_dec(volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue-1, addr)); return oldValue; } int32_t android_atomic_add(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue+value, addr)); return oldValue; } int32_t android_atomic_and(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue&value, addr)); return oldValue; } int32_t android_atomic_or(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, oldValue|value, addr)); return oldValue; } int32_t android_atomic_swap(int32_t value, volatile int32_t* addr) { int32_t oldValue; do { oldValue = *addr; } while (android_atomic_cmpxchg(oldValue, value, addr)); return oldValue; } int android_atomic_cmpxchg(int32_t oldvalue, int32_t newvalue, volatile int32_t* addr) { int xchg; asm volatile ( " lock; cmpxchg %%ecx, (%%edx);" " setne %%al;" " andl $1, %%eax" : "=a" (xchg) : "a" (oldvalue), "c" (newvalue), "d" (addr) ); return xchg; } #define NEED_QUASIATOMICS 1 /*****************************************************************************/ #elif __arm__ // Most of the implementation is in atomic-android-arm.s. // on the device, we implement the 64-bit atomic operations through // mutex locking. normally, this is bad because we must initialize // a pthread_mutex_t before being able to use it, and this means // having to do an initialization check on each function call, and // that's where really ugly things begin... // // BUT, as a special twist, we take advantage of the fact that in our // pthread library, a mutex is simply a volatile word whose value is always // initialized to 0. In other words, simply declaring a static mutex // object initializes it ! // // another twist is that we use a small array of mutexes to dispatch // the contention locks from different memory addresses // #include #define SWAP_LOCK_COUNT 32U static pthread_mutex_t _swap_locks[SWAP_LOCK_COUNT]; #define SWAP_LOCK(addr) \ &_swap_locks[((unsigned)(void*)(addr) >> 3U) % SWAP_LOCK_COUNT] int64_t android_quasiatomic_swap_64(int64_t value, volatile int64_t* addr) { int64_t oldValue; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); oldValue = *addr; *addr = value; pthread_mutex_unlock(lock); return oldValue; } int android_quasiatomic_cmpxchg_64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { int result; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); if (*addr == oldvalue) { *addr = newvalue; result = 0; } else { result = 1; } pthread_mutex_unlock(lock); return result; } int64_t android_quasiatomic_read_64(volatile int64_t* addr) { int64_t result; pthread_mutex_t* lock = SWAP_LOCK(addr); pthread_mutex_lock(lock); result = *addr; pthread_mutex_unlock(lock); return result; } #else #error "Unsupported atomic operations for this platform" #endif #if NEED_QUASIATOMICS /* Note that a spinlock is *not* a good idea in general * since they can introduce subtle issues. For example, * a real-time thread trying to acquire a spinlock already * acquired by another thread will never yeld, making the * CPU loop endlessly! * * However, this code is only used on the Linux simulator * so it's probably ok for us. * * The alternative is to use a pthread mutex, but * these must be initialized before being used, and * then you have the problem of lazily initializing * a mutex without any other synchronization primitive. */ /* global spinlock for all 64-bit quasiatomic operations */ static int32_t quasiatomic_spinlock = 0; int android_quasiatomic_cmpxchg_64(int64_t oldvalue, int64_t newvalue, volatile int64_t* addr) { int result; while (android_atomic_cmpxchg(0, 1, &quasiatomic_spinlock)) { #ifdef HAVE_WIN32_THREADS Sleep(0); #else sched_yield(); #endif } if (*addr == oldvalue) { *addr = newvalue; result = 0; } else { result = 1; } android_atomic_swap(0, &quasiatomic_spinlock); return result; } int64_t android_quasiatomic_read_64(volatile int64_t* addr) { int64_t result; while (android_atomic_cmpxchg(0, 1, &quasiatomic_spinlock)) { #ifdef HAVE_WIN32_THREADS Sleep(0); #else sched_yield(); #endif } result = *addr; android_atomic_swap(0, &quasiatomic_spinlock); return result; } int64_t android_quasiatomic_swap_64(int64_t value, volatile int64_t* addr) { int64_t result; while (android_atomic_cmpxchg(0, 1, &quasiatomic_spinlock)) { #ifdef HAVE_WIN32_THREADS Sleep(0); #else sched_yield(); #endif } result = *addr; *addr = value; android_atomic_swap(0, &quasiatomic_spinlock); return result; } #endif