/* rsa.c ** ** Copyright 2012, The Android Open Source Project ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** * Neither the name of Google Inc. nor the names of its contributors may ** be used to endorse or promote products derived from this software ** without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO ** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mincrypt/rsa.h" #include "mincrypt/sha.h" #include "mincrypt/sha256.h" // a[] -= mod static void subM(const RSAPublicKey* key, uint32_t* a) { int64_t A = 0; int i; for (i = 0; i < key->len; ++i) { A += (uint64_t)a[i] - key->n[i]; a[i] = (uint32_t)A; A >>= 32; } } // return a[] >= mod static int geM(const RSAPublicKey* key, const uint32_t* a) { int i; for (i = key->len; i;) { --i; if (a[i] < key->n[i]) return 0; if (a[i] > key->n[i]) return 1; } return 1; // equal } // montgomery c[] += a * b[] / R % mod static void montMulAdd(const RSAPublicKey* key, uint32_t* c, const uint32_t a, const uint32_t* b) { uint64_t A = (uint64_t)a * b[0] + c[0]; uint32_t d0 = (uint32_t)A * key->n0inv; uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; int i; for (i = 1; i < key->len; ++i) { A = (A >> 32) + (uint64_t)a * b[i] + c[i]; B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; c[i - 1] = (uint32_t)B; } A = (A >> 32) + (B >> 32); c[i - 1] = (uint32_t)A; if (A >> 32) { subM(key, c); } } // montgomery c[] = a[] * b[] / R % mod static void montMul(const RSAPublicKey* key, uint32_t* c, const uint32_t* a, const uint32_t* b) { int i; for (i = 0; i < key->len; ++i) { c[i] = 0; } for (i = 0; i < key->len; ++i) { montMulAdd(key, c, a[i], b); } } // In-place public exponentiation. // Input and output big-endian byte array in inout. static void modpow(const RSAPublicKey* key, uint8_t* inout) { uint32_t a[RSANUMWORDS]; uint32_t aR[RSANUMWORDS]; uint32_t aaR[RSANUMWORDS]; uint32_t* aaa = 0; int i; // Convert from big endian byte array to little endian word array. for (i = 0; i < key->len; ++i) { uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) | (inout[((key->len - 1 - i) * 4) + 1] << 16) | (inout[((key->len - 1 - i) * 4) + 2] << 8) | (inout[((key->len - 1 - i) * 4) + 3] << 0); a[i] = tmp; } if (key->exponent == 65537) { aaa = aaR; // Re-use location. montMul(key, aR, a, key->rr); // aR = a * RR / R mod M for (i = 0; i < 16; i += 2) { montMul(key, aaR, aR, aR); // aaR = aR * aR / R mod M montMul(key, aR, aaR, aaR); // aR = aaR * aaR / R mod M } montMul(key, aaa, aR, a); // aaa = aR * a / R mod M } else if (key->exponent == 3) { aaa = aR; // Re-use location. montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ montMul(key, aaa, aaR, a); /* aaa = aaR * a / R mod M */ } // Make sure aaa < mod; aaa is at most 1x mod too large. if (geM(key, aaa)) { subM(key, aaa); } // Convert to bigendian byte array for (i = key->len - 1; i >= 0; --i) { uint32_t tmp = aaa[i]; *inout++ = tmp >> 24; *inout++ = tmp >> 16; *inout++ = tmp >> 8; *inout++ = tmp >> 0; } } // Expected PKCS1.5 signature padding bytes, for a keytool RSA signature. // Has the 0-length optional parameter encoded in the ASN1 (as opposed to the // other flavor which omits the optional parameter entirely). This code does not // accept signatures without the optional parameter. /* static const uint8_t sha_padding[RSANUMBYTES] = { 0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14, // 20 bytes of hash go here. 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; */ // SHA-1 of PKCS1.5 signature sha_padding for 2048 bit, as above. // At the location of the bytes of the hash all 00 are hashed. static const uint8_t kExpectedPadShaRsa2048[SHA_DIGEST_SIZE] = { 0xdc, 0xbd, 0xbe, 0x42, 0xd5, 0xf5, 0xa7, 0x2e, 0x6e, 0xfc, 0xf5, 0x5d, 0xaf, 0x9d, 0xea, 0x68, 0x7c, 0xfb, 0xf1, 0x67 }; /* static const uint8_t sha256_padding[RSANUMBYTES] = { 0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20, // 32 bytes of hash go here. 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, }; */ // SHA-256 of PKCS1.5 signature sha256_padding for 2048 bit, as above. // At the location of the bytes of the hash all 00 are hashed. static const uint8_t kExpectedPadSha256Rsa2048[SHA256_DIGEST_SIZE] = { 0xab, 0x28, 0x8d, 0x8a, 0xd7, 0xd9, 0x59, 0x92, 0xba, 0xcc, 0xf8, 0x67, 0x20, 0xe1, 0x15, 0x2e, 0x39, 0x8d, 0x80, 0x36, 0xd6, 0x6f, 0xf0, 0xfd, 0x90, 0xe8, 0x7d, 0x8b, 0xe1, 0x7c, 0x87, 0x59, }; // Verify a 2048-bit RSA PKCS1.5 signature against an expected hash. // Both e=3 and e=65537 are supported. hash_len may be // SHA_DIGEST_SIZE (== 20) to indicate a SHA-1 hash, or // SHA256_DIGEST_SIZE (== 32) to indicate a SHA-256 hash. No other // values are supported. // // Returns 1 on successful verification, 0 on failure. int RSA_verify(const RSAPublicKey *key, const uint8_t *signature, const int len, const uint8_t *hash, const int hash_len) { uint8_t buf[RSANUMBYTES]; int i; const uint8_t* padding_hash; if (key->len != RSANUMWORDS) { return 0; // Wrong key passed in. } if (len != sizeof(buf)) { return 0; // Wrong input length. } if (hash_len != SHA_DIGEST_SIZE && hash_len != SHA256_DIGEST_SIZE) { return 0; // Unsupported hash. } if (key->exponent != 3 && key->exponent != 65537) { return 0; // Unsupported exponent. } for (i = 0; i < len; ++i) { // Copy input to local workspace. buf[i] = signature[i]; } modpow(key, buf); // In-place exponentiation. // Xor sha portion, so it all becomes 00 iff equal. for (i = len - hash_len; i < len; ++i) { buf[i] ^= *hash++; } // Hash resulting buf, in-place. switch (hash_len) { case SHA_DIGEST_SIZE: padding_hash = kExpectedPadShaRsa2048; SHA_hash(buf, len, buf); break; case SHA256_DIGEST_SIZE: padding_hash = kExpectedPadSha256Rsa2048; SHA256_hash(buf, len, buf); break; default: return 0; } // Compare against expected hash value. for (i = 0; i < hash_len; ++i) { if (buf[i] != padding_hash[i]) { return 0; } } return 1; // All checked out OK. }