/* libs/pixelflinger/scanline.cpp ** ** Copyright 2006-2011, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "pixelflinger" #include #include #include #include #include #include #ifdef __arm__ #include #endif #include "buffer.h" #include "scanline.h" #include "codeflinger/CodeCache.h" #if defined(__i386__) || defined(__x86_64__) #include "codeflinger/x86/GGLX86Assembler.h" #include "codeflinger/x86/X86Assembler.h" #else #include "codeflinger/GGLAssembler.h" #endif #if defined(__arm__) #include "codeflinger/ARMAssembler.h" #elif defined(__aarch64__) #include "codeflinger/Arm64Assembler.h" #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6 #include "codeflinger/MIPSAssembler.h" #endif //#include "codeflinger/ARMAssemblerOptimizer.h" // ---------------------------------------------------------------------------- #define ANDROID_CODEGEN_GENERIC 0 // force generic pixel pipeline #define ANDROID_CODEGEN_C 1 // hand-written C, fallback generic #define ANDROID_CODEGEN_ASM 2 // hand-written asm, fallback generic #define ANDROID_CODEGEN_GENERATED 3 // hand-written asm, fallback codegen #ifdef NDEBUG # define ANDROID_RELEASE # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED #else # define ANDROID_DEBUG # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED #endif #if defined(__arm__) || (defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6) || defined(__aarch64__) # define ANDROID_ARM_CODEGEN 1 #elif defined(__i386__) # define ANDROID_IA32_CODEGEN 1 #else # define ANDROID_ARM_CODEGEN 0 #endif #define DEBUG__CODEGEN_ONLY 0 /* Set to 1 to dump to the log the states that need a new * code-generated scanline callback, i.e. those that don't * have a corresponding shortcut function. */ #define DEBUG_NEEDS 0 #if defined( __mips__) && !defined(__LP64__) && __mips_isa_rev < 6 #define ASSEMBLY_SCRATCH_SIZE 4096 #elif defined(__aarch64__) #define ASSEMBLY_SCRATCH_SIZE 8192 #else #define ASSEMBLY_SCRATCH_SIZE 2048 #endif // ---------------------------------------------------------------------------- namespace android { // ---------------------------------------------------------------------------- static void init_y(context_t*, int32_t); static void init_y_noop(context_t*, int32_t); static void init_y_packed(context_t*, int32_t); static void init_y_error(context_t*, int32_t); static void step_y__generic(context_t* c); static void step_y__nop(context_t*); static void step_y__smooth(context_t* c); static void step_y__tmu(context_t* c); static void step_y__w(context_t* c); static void scanline(context_t* c); static void scanline_perspective(context_t* c); static void scanline_perspective_single(context_t* c); static void scanline_t32cb16blend(context_t* c); static void scanline_t32cb16blend_dither(context_t* c); static void scanline_t32cb16blend_srca(context_t* c); static void scanline_t32cb16blend_clamp(context_t* c); static void scanline_t32cb16blend_clamp_dither(context_t* c); static void scanline_t32cb16blend_clamp_mod(context_t* c); static void scanline_x32cb16blend_clamp_mod(context_t* c); static void scanline_t32cb16blend_clamp_mod_dither(context_t* c); static void scanline_x32cb16blend_clamp_mod_dither(context_t* c); static void scanline_t32cb16(context_t* c); static void scanline_t32cb16_dither(context_t* c); static void scanline_t32cb16_clamp(context_t* c); static void scanline_t32cb16_clamp_dither(context_t* c); static void scanline_col32cb16blend(context_t* c); static void scanline_t16cb16_clamp(context_t* c); static void scanline_t16cb16blend_clamp_mod(context_t* c); static void scanline_memcpy(context_t* c); static void scanline_memset8(context_t* c); static void scanline_memset16(context_t* c); static void scanline_memset32(context_t* c); static void scanline_noop(context_t* c); static void scanline_set(context_t* c); static void scanline_clear(context_t* c); static void rect_generic(context_t* c, size_t yc); static void rect_memcpy(context_t* c, size_t yc); #if defined( __arm__) extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t); extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct); extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct); extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct); #elif defined(__aarch64__) extern "C" void scanline_t32cb16blend_arm64(uint16_t*, uint32_t*, size_t); extern "C" void scanline_col32cb16blend_arm64(uint16_t *dst, uint32_t col, size_t ct); #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6 extern "C" void scanline_t32cb16blend_mips(uint16_t*, uint32_t*, size_t); #endif // ---------------------------------------------------------------------------- static inline uint16_t convertAbgr8888ToRgb565(uint32_t pix) { return uint16_t( ((pix << 8) & 0xf800) | ((pix >> 5) & 0x07e0) | ((pix >> 19) & 0x001f) ); } struct shortcut_t { needs_filter_t filter; const char* desc; void (*scanline)(context_t*); void (*init_y)(context_t*, int32_t); }; // Keep in sync with needs /* To understand the values here, have a look at: * system/core/include/private/pixelflinger/ggl_context.h * * Especially the lines defining and using GGL_RESERVE_NEEDS * * Quick reminders: * - the last nibble of the first value is the destination buffer format. * - the last nibble of the third value is the source texture format * - formats: 4=rgb565 1=abgr8888 2=xbgr8888 * * In the descriptions below: * * SRC means we copy the source pixels to the destination * * SRC_OVER means we blend the source pixels to the destination * with dstFactor = 1-srcA, srcFactor=1 (premultiplied source). * This mode is otherwise called 'blend'. * * SRCA_OVER means we blend the source pixels to the destination * with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source). * This mode is otherwise called 'blend_srca' * * clamp means we fetch source pixels from a texture with u/v clamping * * mod means the source pixels are modulated (multiplied) by the * a/r/g/b of the current context's color. Typically used for * fade-in / fade-out. * * dither means we dither 32 bit values to 16 bits */ static shortcut_t shortcuts[] = { { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop }, { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop }, /* same as first entry, but with dithering */ { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop }, /* same as second entry, but with dithering */ { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop }, /* this is used during the boot animation - CHEAT: ignore dithering */ { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop }, /* special case for arbitrary texture coordinates (think scaling) */ { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y }, { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y }, /* another case used during emulation */ { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y }, /* and this */ { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y }, { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y }, { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y }, { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y }, { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y }, { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y }, { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y }, { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y }, { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y }, { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } }, "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed }, { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } }, "(nop) alpha test", scanline_noop, init_y_noop }, { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } }, "(nop) depth test", scanline_noop, init_y_noop }, { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } }, "(nop) logic_op", scanline_noop, init_y_noop }, { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } }, "(nop) color mask", scanline_noop, init_y_noop }, { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, "(set) logic_op", scanline_set, init_y_noop }, { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, "(clear) logic_op", scanline_clear, init_y_noop }, { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } }, "(clear) blending 0/0", scanline_clear, init_y_noop }, { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } }, "(error) invalid color-buffer format", scanline_noop, init_y_error }, }; static const needs_filter_t noblend1to1 = { // (disregard dithering, see below) { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } }, { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } } }; static const needs_filter_t fill16noblend = { { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } } }; // ---------------------------------------------------------------------------- #if ANDROID_ARM_CODEGEN || ANDROID_IA32_CODEGEN #if defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6 static CodeCache gCodeCache(32 * 1024); #elif defined(__aarch64__) static CodeCache gCodeCache(48 * 1024); #else static CodeCache gCodeCache(12 * 1024); #endif class ScanlineAssembly : public Assembly { AssemblyKey mKey; public: ScanlineAssembly(needs_t needs, size_t size) : Assembly(size), mKey(needs) { } const AssemblyKey& key() const { return mKey; } }; #endif // ---------------------------------------------------------------------------- void ggl_init_scanline(context_t* c) { c->init_y = init_y; c->step_y = step_y__generic; c->scanline = scanline; } void ggl_uninit_scanline(context_t* c) { if (c->state.buffers.coverage) free(c->state.buffers.coverage); #if ANDROID_ARM_CODEGEN || ANDROID_IA32_CODEGEN if (c->scanline_as) c->scanline_as->decStrong(c); #endif } // ---------------------------------------------------------------------------- static void pick_scanline(context_t* c) { #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0)) #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC c->init_y = init_y; c->step_y = step_y__generic; c->scanline = scanline; return; #endif //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n", // c->state.needs.n, c->state.needs.p, // c->state.needs.t[0], c->state.needs.t[1]); // first handle the special case that we cannot test with a filter const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n); if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) { if (c->state.needs.match(noblend1to1)) { // this will match regardless of dithering state, since both // src and dest have the same format anyway, there is no dithering // to be done. const GGLFormat* f = &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]); if ((f->components == GGL_RGB) || (f->components == GGL_RGBA) || (f->components == GGL_LUMINANCE) || (f->components == GGL_LUMINANCE_ALPHA)) { // format must have all of RGB components // (so the current color doesn't show through) c->scanline = scanline_memcpy; c->init_y = init_y_noop; return; } } } if (c->state.needs.match(fill16noblend)) { c->init_y = init_y_packed; switch (c->formats[cb_format].size) { case 1: c->scanline = scanline_memset8; return; case 2: c->scanline = scanline_memset16; return; case 4: c->scanline = scanline_memset32; return; } } const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t); for (int i=0 ; istate.needs.match(shortcuts[i].filter)) { c->scanline = shortcuts[i].scanline; c->init_y = shortcuts[i].init_y; return; } } #if DEBUG_NEEDS ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x", c->state.needs.n, c->state.needs.p, c->state.needs.t[0], c->state.needs.t[1]); #endif #endif // DEBUG__CODEGEN_ONLY c->init_y = init_y; c->step_y = step_y__generic; #if ANDROID_ARM_CODEGEN // we're going to have to generate some code... // here, generate code for our pixel pipeline const AssemblyKey key(c->state.needs); sp assembly = gCodeCache.lookup(key); if (assembly == 0) { // create a new assembly region sp a = new ScanlineAssembly(c->state.needs, ASSEMBLY_SCRATCH_SIZE); // initialize our assembler #if defined(__arm__) GGLAssembler assembler( new ARMAssembler(a) ); //GGLAssembler assembler( // new ARMAssemblerOptimizer(new ARMAssembler(a)) ); #endif #if defined(__mips__) GGLAssembler assembler( new ArmToMipsAssembler(a) ); #elif defined(__aarch64__) GGLAssembler assembler( new ArmToArm64Assembler(a) ); #endif // generate the scanline code for the given needs bool err = assembler.scanline(c->state.needs, c) != 0; if (ggl_likely(!err)) { // finally, cache this assembly err = gCodeCache.cache(a->key(), a) < 0; } if (ggl_unlikely(err)) { ALOGE("error generating or caching assembly. Reverting to NOP."); c->scanline = scanline_noop; c->init_y = init_y_noop; c->step_y = step_y__nop; return; } assembly = a; } // release the previous assembly if (c->scanline_as) { c->scanline_as->decStrong(c); } //ALOGI("using generated pixel-pipeline"); c->scanline_as = assembly.get(); c->scanline_as->incStrong(c); // hold on to assembly c->scanline = (void(*)(context_t* c))assembly->base(); #elif ANDROID_IA32_CODEGEN const AssemblyKey key(c->state.needs); sp assembly = gCodeCache.lookup(key); if (assembly == 0) { // create a new assembly region sp a = new ScanlineAssembly(c->state.needs, ASSEMBLY_SCRATCH_SIZE); // initialize our assembler GGLX86Assembler assembler( a ); // generate the scanline code for the given needs int err = assembler.scanline(c->state.needs, c); if (ggl_likely(!err)) { // finally, cache this assembly err = gCodeCache.cache(a->key(), a); } if (ggl_unlikely(err)) { ALOGE("error generating or caching assembly. Reverting to NOP. cache_err: %d \n", err); c->scanline = scanline_noop; c->init_y = init_y_noop; c->step_y = step_y__nop; return; } assembly = a; } // release the previous assembly if (c->scanline_as) { c->scanline_as->decStrong(c); } c->scanline_as = assembly.get(); c->scanline_as->incStrong(c); // hold on to assembly c->scanline = (void(*)(context_t* c))assembly->base(); #else // ALOGW("using generic (slow) pixel-pipeline"); c->scanline = scanline; #endif } void ggl_pick_scanline(context_t* c) { pick_scanline(c); if ((c->state.enables & GGL_ENABLE_W) && (c->state.enables & GGL_ENABLE_TMUS)) { c->span = c->scanline; c->scanline = scanline_perspective; if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) { // only one TMU enabled c->scanline = scanline_perspective_single; } } } // ---------------------------------------------------------------------------- static void blending(context_t* c, pixel_t* fragment, pixel_t* fb); static void blend_factor(context_t* c, pixel_t* r, uint32_t factor, const pixel_t* src, const pixel_t* dst); static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv); #if (ANDROID_ARM_CODEGEN || ANDROID_IA32_CODEGEN) && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) // no need to compile the generic-pipeline, it can't be reached void scanline(context_t*) { } #else void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv) { if (su && sv) { if (su > sv) { v = ggl_expand(v, sv, su); sv = su; } else if (su < sv) { u = ggl_expand(u, su, sv); su = sv; } } } void blending(context_t* c, pixel_t* fragment, pixel_t* fb) { rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]); rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]); rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]); rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]); pixel_t sf, df; blend_factor(c, &sf, c->state.blend.src, fragment, fb); blend_factor(c, &df, c->state.blend.dst, fragment, fb); fragment->c[1] = gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1])); fragment->c[2] = gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2])); fragment->c[3] = gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3])); if (c->state.blend.alpha_separate) { blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb); blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb); } fragment->c[0] = gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0])); // clamp to 1.0 if (fragment->c[0] >= (1LU<s[0])) fragment->c[0] = (1<s[0])-1; if (fragment->c[1] >= (1LU<s[1])) fragment->c[1] = (1<s[1])-1; if (fragment->c[2] >= (1LU<s[2])) fragment->c[2] = (1<s[2])-1; if (fragment->c[3] >= (1LU<s[3])) fragment->c[3] = (1<s[3])-1; } static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0) { if (!size) return def; // scale to 16 bits if (size > 16) { x >>= (size - 16); } else if (size < 16) { x = ggl_expand(x, size, 16); } x += x >> 15; return x; } void blend_factor(context_t* /*c*/, pixel_t* r, uint32_t factor, const pixel_t* src, const pixel_t* dst) { switch (factor) { case GGL_ZERO: r->c[1] = r->c[2] = r->c[3] = r->c[0] = 0; break; case GGL_ONE: r->c[1] = r->c[2] = r->c[3] = r->c[0] = FIXED_ONE; break; case GGL_DST_COLOR: r->c[1] = blendfactor(dst->c[1], dst->s[1]); r->c[2] = blendfactor(dst->c[2], dst->s[2]); r->c[3] = blendfactor(dst->c[3], dst->s[3]); r->c[0] = blendfactor(dst->c[0], dst->s[0]); break; case GGL_SRC_COLOR: r->c[1] = blendfactor(src->c[1], src->s[1]); r->c[2] = blendfactor(src->c[2], src->s[2]); r->c[3] = blendfactor(src->c[3], src->s[3]); r->c[0] = blendfactor(src->c[0], src->s[0]); break; case GGL_ONE_MINUS_DST_COLOR: r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]); r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]); r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]); r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]); break; case GGL_ONE_MINUS_SRC_COLOR: r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]); r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]); r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]); r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]); break; case GGL_SRC_ALPHA: r->c[1] = r->c[2] = r->c[3] = r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE); break; case GGL_ONE_MINUS_SRC_ALPHA: r->c[1] = r->c[2] = r->c[3] = r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE); break; case GGL_DST_ALPHA: r->c[1] = r->c[2] = r->c[3] = r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE); break; case GGL_ONE_MINUS_DST_ALPHA: r->c[1] = r->c[2] = r->c[3] = r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE); break; case GGL_SRC_ALPHA_SATURATE: // XXX: GGL_SRC_ALPHA_SATURATE break; } } static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap) { GGLfixed d; if (tx_wrap == GGL_REPEAT) { d = (uint32_t(coord)>>16) * size; } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics const GGLfixed clamp_min = FIXED_HALF; const GGLfixed clamp_max = (size << 16) - FIXED_HALF; if (coord < clamp_min) coord = clamp_min; if (coord > clamp_max) coord = clamp_max; d = coord; } else { // 1:1 const GGLfixed clamp_min = 0; const GGLfixed clamp_max = (size << 16); if (coord < clamp_min) coord = clamp_min; if (coord > clamp_max) coord = clamp_max; d = coord; } return d; } static inline GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len) { const int32_t end = dvdx * (len-1) + v; if (end < 0) v -= end; v &= ~(v>>31); return v; } void scanline(context_t* c) { const uint32_t enables = c->state.enables; const int xs = c->iterators.xl; const int x1 = c->iterators.xr; int xc = x1 - xs; const int16_t* covPtr = c->state.buffers.coverage + xs; // All iterated values are sampled at the pixel center // reset iterators for that scanline... GGLcolor r, g, b, a; iterators_t& ci = c->iterators; if (enables & GGL_ENABLE_SMOOTH) { r = (xs * c->shade.drdx) + ci.ydrdy; g = (xs * c->shade.dgdx) + ci.ydgdy; b = (xs * c->shade.dbdx) + ci.ydbdy; a = (xs * c->shade.dadx) + ci.ydady; r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc); g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc); b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc); a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc); } else { r = ci.ydrdy; g = ci.ydgdy; b = ci.ydbdy; a = ci.ydady; } // z iterators are 1.31 GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy; GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy; struct { GGLfixed s, t; } tc[GGL_TEXTURE_UNIT_COUNT]; if (enables & GGL_ENABLE_TMUS) { for (int i=0 ; istate.texture[i].enable) { texture_iterators_t& ti = c->state.texture[i].iterators; if (enables & GGL_ENABLE_W) { tc[i].s = ti.ydsdy; tc[i].t = ti.ydtdy; } else { tc[i].s = (xs * ti.dsdx) + ti.ydsdy; tc[i].t = (xs * ti.dtdx) + ti.ydtdy; } } } } pixel_t fragment; pixel_t texel; pixel_t fb; uint32_t x = xs; uint32_t y = c->iterators.y; while (xc--) { { // just a scope // read color (convert to 8 bits by keeping only the integer part) fragment.s[1] = fragment.s[2] = fragment.s[3] = fragment.s[0] = 8; fragment.c[1] = r >> (GGL_COLOR_BITS-8); fragment.c[2] = g >> (GGL_COLOR_BITS-8); fragment.c[3] = b >> (GGL_COLOR_BITS-8); fragment.c[0] = a >> (GGL_COLOR_BITS-8); // texturing if (enables & GGL_ENABLE_TMUS) { for (int i=0 ; istate.texture[i]; if (!tx.enable) continue; texture_iterators_t& ti = tx.iterators; int32_t u, v; // s-coordinate if (tx.s_coord != GGL_ONE_TO_ONE) { const int w = tx.surface.width; u = wrapping(tc[i].s, w, tx.s_wrap); tc[i].s += ti.dsdx; } else { u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF; } // t-coordinate if (tx.t_coord != GGL_ONE_TO_ONE) { const int h = tx.surface.height; v = wrapping(tc[i].t, h, tx.t_wrap); tc[i].t += ti.dtdx; } else { v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF; } // read texture if (tx.mag_filter == GGL_NEAREST && tx.min_filter == GGL_NEAREST) { u >>= 16; v >>= 16; tx.surface.read(&tx.surface, c, u, v, &texel); } else { const int w = tx.surface.width; const int h = tx.surface.height; u -= FIXED_HALF; v -= FIXED_HALF; int u0 = u >> 16; int v0 = v >> 16; int u1 = u0 + 1; int v1 = v0 + 1; if (tx.s_wrap == GGL_REPEAT) { if (u0<0) u0 += w; if (u1<0) u1 += w; if (u0>=w) u0 -= w; if (u1>=w) u1 -= w; } else { if (u0<0) u0 = 0; if (u1<0) u1 = 0; if (u0>=w) u0 = w-1; if (u1>=w) u1 = w-1; } if (tx.t_wrap == GGL_REPEAT) { if (v0<0) v0 += h; if (v1<0) v1 += h; if (v0>=h) v0 -= h; if (v1>=h) v1 -= h; } else { if (v0<0) v0 = 0; if (v1<0) v1 = 0; if (v0>=h) v0 = h-1; if (v1>=h) v1 = h-1; } pixel_t texels[4]; uint32_t mm[4]; tx.surface.read(&tx.surface, c, u0, v0, &texels[0]); tx.surface.read(&tx.surface, c, u0, v1, &texels[1]); tx.surface.read(&tx.surface, c, u1, v0, &texels[2]); tx.surface.read(&tx.surface, c, u1, v1, &texels[3]); u = (u >> 12) & 0xF; v = (v >> 12) & 0xF; u += u>>3; v += v>>3; mm[0] = (0x10 - u) * (0x10 - v); mm[1] = (0x10 - u) * v; mm[2] = u * (0x10 - v); mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]); for (int j=0 ; j<4 ; j++) { texel.s[j] = texels[0].s[j]; if (!texel.s[j]) continue; texel.s[j] += 8; texel.c[j] = texels[0].c[j]*mm[0] + texels[1].c[j]*mm[1] + texels[2].c[j]*mm[2] + texels[3].c[j]*mm[3] ; } } // Texture environnement... for (int j=0 ; j<4 ; j++) { uint32_t& Cf = fragment.c[j]; uint32_t& Ct = texel.c[j]; uint8_t& sf = fragment.s[j]; uint8_t& st = texel.s[j]; uint32_t At = texel.c[0]; uint8_t sat = texel.s[0]; switch (tx.env) { case GGL_REPLACE: if (st) { Cf = Ct; sf = st; } break; case GGL_MODULATE: if (st) { uint32_t factor = Ct + (Ct>>(st-1)); Cf = (Cf * factor) >> st; } break; case GGL_DECAL: if (sat) { rescale(Cf, sf, Ct, st); Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat; } break; case GGL_BLEND: if (st) { uint32_t Cc = tx.env_color[i]; if (sf>8) Cc = (Cc * ((1<>8; else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf); uint32_t factor = Ct + (Ct>>(st-1)); Cf = ((((1<>st; } break; case GGL_ADD: if (st) { rescale(Cf, sf, Ct, st); Cf += Ct; } break; } } } } // coverage application if (enables & GGL_ENABLE_AA) { int16_t cf = *covPtr++; fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15; } // alpha-test if (enables & GGL_ENABLE_ALPHA_TEST) { GGLcolor ref = c->state.alpha_test.ref; GGLcolor alpha = (uint64_t(fragment.c[0]) * ((1<state.alpha_test.func) { case GGL_NEVER: goto discard; case GGL_LESS: if (alpharef) break; goto discard; case GGL_NOTEQUAL: if (alpha!=ref) break; goto discard; case GGL_GEQUAL: if (alpha>=ref) break; goto discard; } } // depth test if (c->state.buffers.depth.format) { if (enables & GGL_ENABLE_DEPTH_TEST) { surface_t* cb = &(c->state.buffers.depth); uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y)); uint16_t zz = uint32_t(z)>>(16); uint16_t depth = *p; switch (c->state.depth_test.func) { case GGL_NEVER: goto discard; case GGL_LESS: if (zzdepth) break; goto discard; case GGL_NOTEQUAL: if (zz!=depth) break; goto discard; case GGL_GEQUAL: if (zz>=depth) break; goto discard; } // depth buffer is not enabled, if depth-test is not enabled /* fragment.s[1] = fragment.s[2] = fragment.s[3] = fragment.s[0] = 8; fragment.c[1] = fragment.c[2] = fragment.c[3] = fragment.c[0] = 255 - (zz>>8); */ if (c->state.mask.depth) { *p = zz; } } } // fog if (enables & GGL_ENABLE_FOG) { for (int i=1 ; i<=3 ; i++) { GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF; uint32_t& c = fragment.c[i]; uint8_t& s = fragment.s[i]; c = (c * 0x10000) / ((1<state.buffers.color.read( &(c->state.buffers.color), c, x, y, &fb); blending( c, &fragment, &fb ); } // write c->state.buffers.color.write( &(c->state.buffers.color), c, x, y, &fragment); } discard: // iterate... x += 1; if (enables & GGL_ENABLE_SMOOTH) { r += c->shade.drdx; g += c->shade.dgdx; b += c->shade.dbdx; a += c->shade.dadx; } z += c->shade.dzdx; f += c->shade.dfdx; } } #endif // (ANDROID_ARM_CODEGEN || ANDROID_IA32_CODEGEN) && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) // ---------------------------------------------------------------------------- #if 0 #pragma mark - #pragma mark Scanline #endif /* Used to parse a 32-bit source texture linearly. Usage is: * * horz_iterator32 hi(context); * while (...) { * uint32_t src_pixel = hi.get_pixel32(); * ... * } * * Use only for one-to-one texture mapping. */ struct horz_iterator32 { horz_iterator32(context_t* c) { const int x = c->iterators.xl; const int y = c->iterators.y; texture_t& tx = c->state.texture[0]; const int32_t u = (tx.shade.is0>>16) + x; const int32_t v = (tx.shade.it0>>16) + y; m_src = reinterpret_cast(tx.surface.data)+(u+(tx.surface.stride*v)); } uint32_t get_pixel32() { return *m_src++; } protected: uint32_t* m_src; }; /* A variant for 16-bit source textures. */ struct horz_iterator16 { horz_iterator16(context_t* c) { const int x = c->iterators.xl; const int y = c->iterators.y; texture_t& tx = c->state.texture[0]; const int32_t u = (tx.shade.is0>>16) + x; const int32_t v = (tx.shade.it0>>16) + y; m_src = reinterpret_cast(tx.surface.data)+(u+(tx.surface.stride*v)); } uint16_t get_pixel16() { return *m_src++; } protected: uint16_t* m_src; }; /* A clamp iterator is used to iterate inside a texture with GGL_CLAMP. * After initialization, call get_src16() or get_src32() to get the current * texture pixel value. */ struct clamp_iterator { clamp_iterator(context_t* c) { const int xs = c->iterators.xl; texture_t& tx = c->state.texture[0]; texture_iterators_t& ti = tx.iterators; m_s = (xs * ti.dsdx) + ti.ydsdy; m_t = (xs * ti.dtdx) + ti.ydtdy; m_ds = ti.dsdx; m_dt = ti.dtdx; m_width_m1 = tx.surface.width - 1; m_height_m1 = tx.surface.height - 1; m_data = tx.surface.data; m_stride = tx.surface.stride; } uint16_t get_pixel16() { int u, v; get_uv(u, v); uint16_t* src = reinterpret_cast(m_data) + (u + (m_stride*v)); return src[0]; } uint32_t get_pixel32() { int u, v; get_uv(u, v); uint32_t* src = reinterpret_cast(m_data) + (u + (m_stride*v)); return src[0]; } private: void get_uv(int& u, int& v) { int uu = m_s >> 16; int vv = m_t >> 16; if (uu < 0) uu = 0; if (uu > m_width_m1) uu = m_width_m1; if (vv < 0) vv = 0; if (vv > m_height_m1) vv = m_height_m1; u = uu; v = vv; m_s += m_ds; m_t += m_dt; } GGLfixed m_s, m_t; GGLfixed m_ds, m_dt; int m_width_m1, m_height_m1; uint8_t* m_data; int m_stride; }; /* * The 'horizontal clamp iterator' variant corresponds to the case where * the 'v' coordinate doesn't change. This is useful to avoid one mult and * extra adds / checks per pixels, if the blending/processing operation after * this is very fast. */ static int is_context_horizontal(const context_t* c) { return (c->state.texture[0].iterators.dtdx == 0); } struct horz_clamp_iterator { uint16_t get_pixel16() { int u = m_s >> 16; m_s += m_ds; if (u < 0) u = 0; if (u > m_width_m1) u = m_width_m1; const uint16_t* src = reinterpret_cast(m_data); return src[u]; } uint32_t get_pixel32() { int u = m_s >> 16; m_s += m_ds; if (u < 0) u = 0; if (u > m_width_m1) u = m_width_m1; const uint32_t* src = reinterpret_cast(m_data); return src[u]; } protected: void init(const context_t* c, int shift); GGLfixed m_s; GGLfixed m_ds; int m_width_m1; const uint8_t* m_data; }; void horz_clamp_iterator::init(const context_t* c, int shift) { const int xs = c->iterators.xl; const texture_t& tx = c->state.texture[0]; const texture_iterators_t& ti = tx.iterators; m_s = (xs * ti.dsdx) + ti.ydsdy; m_ds = ti.dsdx; m_width_m1 = tx.surface.width-1; m_data = tx.surface.data; GGLfixed t = (xs * ti.dtdx) + ti.ydtdy; int v = t >> 16; if (v < 0) v = 0; else if (v >= (int)tx.surface.height) v = (int)tx.surface.height-1; m_data += (tx.surface.stride*v) << shift; } struct horz_clamp_iterator16 : horz_clamp_iterator { horz_clamp_iterator16(const context_t* c) { init(c,1); }; }; struct horz_clamp_iterator32 : horz_clamp_iterator { horz_clamp_iterator32(context_t* c) { init(c,2); }; }; /* This is used to perform dithering operations. */ struct ditherer { ditherer(const context_t* c) { const int x = c->iterators.xl; const int y = c->iterators.y; m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<> 8) & 0xff; uint32_t b = (s >> 16) & 0xff; return rgb888ToRgb565(r,g,b); } /* The following assumes that r/g/b are in the 0..255 range each */ uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) { int threshold = get_value(); /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */ r += (threshold >> (GGL_DITHER_BITS-8 +5)); g += (threshold >> (GGL_DITHER_BITS-8 +6)); b += (threshold >> (GGL_DITHER_BITS-8 +5)); if (r > 0xff) r = 0xff; if (g > 0xff) g = 0xff; if (b > 0xff) b = 0xff; return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3)); } protected: const uint8_t* m_line; int m_index; }; /* This structure is used to blend (SRC_OVER) 32-bit source pixels * onto 16-bit destination ones. Usage is simply: * * blender.blend(<32-bit-src-pixel-value>,) */ struct blender_32to16 { blender_32to16(context_t* /*c*/) { } void write(uint32_t s, uint16_t* dst) { if (s == 0) return; s = GGL_RGBA_TO_HOST(s); int sA = (s>>24); if (sA == 0xff) { *dst = convertAbgr8888ToRgb565(s); } else { int f = 0x100 - (sA + (sA>>7)); int sR = (s >> ( 3))&0x1F; int sG = (s >> ( 8+2))&0x3F; int sB = (s >> (16+3))&0x1F; uint16_t d = *dst; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR += (f*dR)>>8; sG += (f*dG)>>8; sB += (f*dB)>>8; *dst = uint16_t((sR<<11)|(sG<<5)|sB); } } void write(uint32_t s, uint16_t* dst, ditherer& di) { if (s == 0) { di.step(); return; } s = GGL_RGBA_TO_HOST(s); int sA = (s>>24); if (sA == 0xff) { *dst = di.abgr8888ToRgb565(s); } else { int threshold = di.get_value() << (8 - GGL_DITHER_BITS); int f = 0x100 - (sA + (sA>>7)); int sR = (s >> ( 3))&0x1F; int sG = (s >> ( 8+2))&0x3F; int sB = (s >> (16+3))&0x1F; uint16_t d = *dst; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR = ((sR << 8) + f*dR + threshold)>>8; sG = ((sG << 8) + f*dG + threshold)>>8; sB = ((sB << 8) + f*dB + threshold)>>8; if (sR > 0x1f) sR = 0x1f; if (sG > 0x3f) sG = 0x3f; if (sB > 0x1f) sB = 0x1f; *dst = uint16_t((sR<<11)|(sG<<5)|sB); } } }; /* This blender does the same for the 'blend_srca' operation. * where dstFactor=srcA*(1-srcA) srcFactor=srcA */ struct blender_32to16_srcA { blender_32to16_srcA(const context_t* /*c*/) { } void write(uint32_t s, uint16_t* dst) { if (!s) { return; } uint16_t d = *dst; s = GGL_RGBA_TO_HOST(s); int sR = (s >> ( 3))&0x1F; int sG = (s >> ( 8+2))&0x3F; int sB = (s >> (16+3))&0x1F; int sA = (s>>24); int f1 = (sA + (sA>>7)); int f2 = 0x100-f1; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR = (f1*sR + f2*dR)>>8; sG = (f1*sG + f2*dG)>>8; sB = (f1*sB + f2*dB)>>8; *dst = uint16_t((sR<<11)|(sG<<5)|sB); } }; /* Common init code the modulating blenders */ struct blender_modulate { void init(const context_t* c) { const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8); const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8); const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8); const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8); m_r = r + (r >> 7); m_g = g + (g >> 7); m_b = b + (b >> 7); m_a = a + (a >> 7); } protected: int m_r, m_g, m_b, m_a; }; /* This blender does a normal blend after modulation. */ struct blender_32to16_modulate : blender_modulate { blender_32to16_modulate(const context_t* c) { init(c); } void write(uint32_t s, uint16_t* dst) { // blend source and destination if (!s) { return; } s = GGL_RGBA_TO_HOST(s); /* We need to modulate s */ uint32_t sA = (s >> 24); uint32_t sB = (s >> 16) & 0xff; uint32_t sG = (s >> 8) & 0xff; uint32_t sR = s & 0xff; sA = (sA*m_a) >> 8; /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */ sR = (sR*m_r) >> (8 - 5); sG = (sG*m_g) >> (8 - 6); sB = (sB*m_b) >> (8 - 5); /* Now do a normal blend */ int f = 0x100 - (sA + (sA>>7)); uint16_t d = *dst; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR = (sR + f*dR)>>8; sG = (sG + f*dG)>>8; sB = (sB + f*dB)>>8; *dst = uint16_t((sR<<11)|(sG<<5)|sB); } void write(uint32_t s, uint16_t* dst, ditherer& di) { // blend source and destination if (!s) { di.step(); return; } s = GGL_RGBA_TO_HOST(s); /* We need to modulate s */ uint32_t sA = (s >> 24); uint32_t sB = (s >> 16) & 0xff; uint32_t sG = (s >> 8) & 0xff; uint32_t sR = s & 0xff; sA = (sA*m_a) >> 8; /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */ sR = (sR*m_r) >> (8 - 5); sG = (sG*m_g) >> (8 - 6); sB = (sB*m_b) >> (8 - 5); /* Scale threshold to 0.8 fixed float format */ int threshold = di.get_value() << (8 - GGL_DITHER_BITS); int f = 0x100 - (sA + (sA>>7)); uint16_t d = *dst; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR = (sR + f*dR + threshold)>>8; sG = (sG + f*dG + threshold)>>8; sB = (sB + f*dB + threshold)>>8; if (sR > 0x1f) sR = 0x1f; if (sG > 0x3f) sG = 0x3f; if (sB > 0x1f) sB = 0x1f; *dst = uint16_t((sR<<11)|(sG<<5)|sB); } }; /* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */ struct blender_x32to16_modulate : blender_modulate { blender_x32to16_modulate(const context_t* c) { init(c); } void write(uint32_t s, uint16_t* dst) { s = GGL_RGBA_TO_HOST(s); uint32_t sB = (s >> 16) & 0xff; uint32_t sG = (s >> 8) & 0xff; uint32_t sR = s & 0xff; /* Keep R/G/B in 5.8 or 6.8 format */ sR = (sR*m_r) >> (8 - 5); sG = (sG*m_g) >> (8 - 6); sB = (sB*m_b) >> (8 - 5); int f = 0x100 - m_a; uint16_t d = *dst; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR = (sR + f*dR)>>8; sG = (sG + f*dG)>>8; sB = (sB + f*dB)>>8; *dst = uint16_t((sR<<11)|(sG<<5)|sB); } void write(uint32_t s, uint16_t* dst, ditherer& di) { s = GGL_RGBA_TO_HOST(s); uint32_t sB = (s >> 16) & 0xff; uint32_t sG = (s >> 8) & 0xff; uint32_t sR = s & 0xff; sR = (sR*m_r) >> (8 - 5); sG = (sG*m_g) >> (8 - 6); sB = (sB*m_b) >> (8 - 5); /* Now do a normal blend */ int threshold = di.get_value() << (8 - GGL_DITHER_BITS); int f = 0x100 - m_a; uint16_t d = *dst; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR = (sR + f*dR + threshold)>>8; sG = (sG + f*dG + threshold)>>8; sB = (sB + f*dB + threshold)>>8; if (sR > 0x1f) sR = 0x1f; if (sG > 0x3f) sG = 0x3f; if (sB > 0x1f) sB = 0x1f; *dst = uint16_t((sR<<11)|(sG<<5)|sB); } }; /* Same as above, but source is 16bit rgb565 */ struct blender_16to16_modulate : blender_modulate { blender_16to16_modulate(const context_t* c) { init(c); } void write(uint16_t s16, uint16_t* dst) { uint32_t s = s16; uint32_t sR = s >> 11; uint32_t sG = (s >> 5) & 0x3f; uint32_t sB = s & 0x1f; sR = (sR*m_r); sG = (sG*m_g); sB = (sB*m_b); int f = 0x100 - m_a; uint16_t d = *dst; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR = (sR + f*dR)>>8; sG = (sG + f*dG)>>8; sB = (sB + f*dB)>>8; *dst = uint16_t((sR<<11)|(sG<<5)|sB); } }; /* This is used to iterate over a 16-bit destination color buffer. * Usage is: * * dst_iterator16 di(context); * while (di.count--) { * * di.dst++; * } */ struct dst_iterator16 { dst_iterator16(const context_t* c) { const int x = c->iterators.xl; const int width = c->iterators.xr - x; const int32_t y = c->iterators.y; const surface_t* cb = &(c->state.buffers.color); count = width; dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); } int count; uint16_t* dst; }; static void scanline_t32cb16_clamp(context_t* c) { dst_iterator16 di(c); if (is_context_horizontal(c)) { /* Special case for simple horizontal scaling */ horz_clamp_iterator32 ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); *di.dst++ = convertAbgr8888ToRgb565(s); } } else { /* General case */ clamp_iterator ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); *di.dst++ = convertAbgr8888ToRgb565(s); } } } static void scanline_t32cb16_dither(context_t* c) { horz_iterator32 si(c); dst_iterator16 di(c); ditherer dither(c); while (di.count--) { uint32_t s = si.get_pixel32(); *di.dst++ = dither.abgr8888ToRgb565(s); } } static void scanline_t32cb16_clamp_dither(context_t* c) { dst_iterator16 di(c); ditherer dither(c); if (is_context_horizontal(c)) { /* Special case for simple horizontal scaling */ horz_clamp_iterator32 ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); *di.dst++ = dither.abgr8888ToRgb565(s); } } else { /* General case */ clamp_iterator ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); *di.dst++ = dither.abgr8888ToRgb565(s); } } } static void scanline_t32cb16blend_dither(context_t* c) { dst_iterator16 di(c); ditherer dither(c); blender_32to16 bl(c); horz_iterator32 hi(c); while (di.count--) { uint32_t s = hi.get_pixel32(); bl.write(s, di.dst, dither); di.dst++; } } static void scanline_t32cb16blend_clamp(context_t* c) { dst_iterator16 di(c); blender_32to16 bl(c); if (is_context_horizontal(c)) { horz_clamp_iterator32 ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); bl.write(s, di.dst); di.dst++; } } else { clamp_iterator ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); bl.write(s, di.dst); di.dst++; } } } static void scanline_t32cb16blend_clamp_dither(context_t* c) { dst_iterator16 di(c); ditherer dither(c); blender_32to16 bl(c); clamp_iterator ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); bl.write(s, di.dst, dither); di.dst++; } } void scanline_t32cb16blend_clamp_mod(context_t* c) { dst_iterator16 di(c); blender_32to16_modulate bl(c); clamp_iterator ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); bl.write(s, di.dst); di.dst++; } } void scanline_t32cb16blend_clamp_mod_dither(context_t* c) { dst_iterator16 di(c); blender_32to16_modulate bl(c); ditherer dither(c); clamp_iterator ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); bl.write(s, di.dst, dither); di.dst++; } } /* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */ void scanline_x32cb16blend_clamp_mod(context_t* c) { dst_iterator16 di(c); blender_x32to16_modulate bl(c); clamp_iterator ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); bl.write(s, di.dst); di.dst++; } } void scanline_x32cb16blend_clamp_mod_dither(context_t* c) { dst_iterator16 di(c); blender_x32to16_modulate bl(c); ditherer dither(c); clamp_iterator ci(c); while (di.count--) { uint32_t s = ci.get_pixel32(); bl.write(s, di.dst, dither); di.dst++; } } void scanline_t16cb16_clamp(context_t* c) { dst_iterator16 di(c); /* Special case for simple horizontal scaling */ if (is_context_horizontal(c)) { horz_clamp_iterator16 ci(c); while (di.count--) { *di.dst++ = ci.get_pixel16(); } } else { clamp_iterator ci(c); while (di.count--) { *di.dst++ = ci.get_pixel16(); } } } template static inline __attribute__((const)) T interpolate(int y, T v0, U dvdx, U dvdy) { // interpolates in pixel's centers // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx) return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1)); } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #endif void init_y(context_t* c, int32_t ys) { const uint32_t enables = c->state.enables; // compute iterators... iterators_t& ci = c->iterators; // sample in the center ci.y = ys; if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) { ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy); ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy); ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy); } if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) { ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy); ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy); ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy); ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady); c->step_y = step_y__smooth; } else { ci.ydrdy = c->shade.r0; ci.ydgdy = c->shade.g0; ci.ydbdy = c->shade.b0; ci.ydady = c->shade.a0; // XXX: do only if needed, or make sure this is fast c->packed = ggl_pack_color(c, c->state.buffers.color.format, ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); } // initialize the variables we need in the shader generated_vars_t& gen = c->generated_vars; gen.argb[GGLFormat::ALPHA].c = ci.ydady; gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx; gen.argb[GGLFormat::RED ].c = ci.ydrdy; gen.argb[GGLFormat::RED ].dx = c->shade.drdx; gen.argb[GGLFormat::GREEN].c = ci.ydgdy; gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx; gen.argb[GGLFormat::BLUE ].c = ci.ydbdy; gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx; gen.dzdx = c->shade.dzdx; gen.f = ci.ydfdy; gen.dfdx = c->shade.dfdx; if (enables & GGL_ENABLE_TMUS) { for (int i=0 ; istate.texture[i]; if (!t.enable) continue; texture_iterators_t& ti = t.iterators; if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) { // we need to set all of these to 0 because in some cases // step_y__generic() or step_y__tmu() will be used and // therefore will update dtdy, however, in 1:1 mode // this is always done by the scanline rasterizer. ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0; ti.ydsdy = t.shade.is0; ti.ydtdy = t.shade.it0; } else { const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16); const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16); ti.sscale = t.shade.sscale + adjustSWrap; ti.tscale = t.shade.tscale + adjustTWrap; if (!(enables & GGL_ENABLE_W)) { // S coordinate const int32_t sscale = ti.sscale; const int32_t sy = interpolate(ys, t.shade.is0, t.shade.idsdx, t.shade.idsdy); if (sscale>=0) { ti.ydsdy= sy << sscale; ti.dsdx = t.shade.idsdx << sscale; ti.dsdy = t.shade.idsdy << sscale; } else { ti.ydsdy= sy >> -sscale; ti.dsdx = t.shade.idsdx >> -sscale; ti.dsdy = t.shade.idsdy >> -sscale; } // T coordinate const int32_t tscale = ti.tscale; const int32_t ty = interpolate(ys, t.shade.it0, t.shade.idtdx, t.shade.idtdy); if (tscale>=0) { ti.ydtdy= ty << tscale; ti.dtdx = t.shade.idtdx << tscale; ti.dtdy = t.shade.idtdy << tscale; } else { ti.ydtdy= ty >> -tscale; ti.dtdx = t.shade.idtdx >> -tscale; ti.dtdy = t.shade.idtdy >> -tscale; } } } // mirror for generated code... generated_tex_vars_t& gen = c->generated_vars.texture[i]; gen.width = t.surface.width; gen.height = t.surface.height; gen.stride = t.surface.stride; gen.data = uintptr_t(t.surface.data); gen.dsdx = ti.dsdx; gen.dtdx = ti.dtdx; } } // choose the y-stepper c->step_y = step_y__nop; if (enables & GGL_ENABLE_FOG) { c->step_y = step_y__generic; } else if (enables & GGL_ENABLE_TMUS) { if (enables & GGL_ENABLE_SMOOTH) { c->step_y = step_y__generic; } else if (enables & GGL_ENABLE_W) { c->step_y = step_y__w; } else { c->step_y = step_y__tmu; } } else { if (enables & GGL_ENABLE_SMOOTH) { c->step_y = step_y__smooth; } } // choose the rectangle blitter c->rect = rect_generic; if ((c->step_y == step_y__nop) && (c->scanline == scanline_memcpy)) { c->rect = rect_memcpy; } } void init_y_packed(context_t* c, int32_t y0) { uint8_t f = c->state.buffers.color.format; c->packed = ggl_pack_color(c, f, c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); c->iterators.y = y0; c->step_y = step_y__nop; // choose the rectangle blitter c->rect = rect_generic; if (c->scanline == scanline_memcpy) { c->rect = rect_memcpy; } } void init_y_noop(context_t* c, int32_t y0) { c->iterators.y = y0; c->step_y = step_y__nop; // choose the rectangle blitter c->rect = rect_generic; if (c->scanline == scanline_memcpy) { c->rect = rect_memcpy; } } void init_y_error(context_t* c, int32_t y0) { // woooops, shoud never happen, // fail gracefully (don't display anything) init_y_noop(c, y0); ALOGE("color-buffer has an invalid format!"); } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #endif void step_y__generic(context_t* c) { const uint32_t enables = c->state.enables; // iterate... iterators_t& ci = c->iterators; ci.y += 1; if (enables & GGL_ENABLE_SMOOTH) { ci.ydrdy += c->shade.drdy; ci.ydgdy += c->shade.dgdy; ci.ydbdy += c->shade.dbdy; ci.ydady += c->shade.dady; } const uint32_t mask = GGL_ENABLE_DEPTH_TEST | GGL_ENABLE_W | GGL_ENABLE_FOG; if (enables & mask) { ci.ydzdy += c->shade.dzdy; ci.ydwdy += c->shade.dwdy; ci.ydfdy += c->shade.dfdy; } if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) { for (int i=0 ; istate.texture[i].enable) { texture_iterators_t& ti = c->state.texture[i].iterators; ti.ydsdy += ti.dsdy; ti.ydtdy += ti.dtdy; } } } } void step_y__nop(context_t* c) { c->iterators.y += 1; c->iterators.ydzdy += c->shade.dzdy; } void step_y__smooth(context_t* c) { iterators_t& ci = c->iterators; ci.y += 1; ci.ydrdy += c->shade.drdy; ci.ydgdy += c->shade.dgdy; ci.ydbdy += c->shade.dbdy; ci.ydady += c->shade.dady; ci.ydzdy += c->shade.dzdy; } void step_y__w(context_t* c) { iterators_t& ci = c->iterators; ci.y += 1; ci.ydzdy += c->shade.dzdy; ci.ydwdy += c->shade.dwdy; } void step_y__tmu(context_t* c) { iterators_t& ci = c->iterators; ci.y += 1; ci.ydzdy += c->shade.dzdy; for (int i=0 ; istate.texture[i].enable) { texture_iterators_t& ti = c->state.texture[i].iterators; ti.ydsdy += ti.dsdy; ti.ydtdy += ti.dtdy; } } } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #endif void scanline_perspective(context_t* c) { struct { union { struct { int32_t s, sq; int32_t t, tq; } sqtq; struct { int32_t v, q; } st[2]; }; } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16))); // XXX: we should have a special case when dwdx = 0 // 32 pixels spans works okay. 16 is a lot better, // but hey, it's a software renderer... const uint32_t SPAN_BITS = 5; const uint32_t ys = c->iterators.y; const uint32_t xs = c->iterators.xl; const uint32_t x1 = c->iterators.xr; const uint32_t xc = x1 - xs; uint32_t remainder = xc & ((1<> SPAN_BITS; const iterators_t& ci = c->iterators; int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy; int32_t q0 = gglRecipQ(w0, 30); const int iwscale = 32 - gglClz(q0); const int32_t dwdx = c->shade.dwdx << SPAN_BITS; int32_t xl = c->iterators.xl; // We process s & t with a loop to reduce the code size // (and i-cache pressure). for (int i=0 ; istate.texture[i]; if (!tmu.enable) continue; int32_t s = tmu.shade.is0 + (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); int32_t t = tmu.shade.it0 + (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); tc[i].sqtq.s = s; tc[i].sqtq.t = t; tc[i].sqtq.sq = gglMulx(s, q0, iwscale); tc[i].sqtq.tq = gglMulx(t, q0, iwscale); } int32_t span = 0; do { int32_t w1; if (ggl_likely(numSpans)) { w1 = w0 + dwdx; } else { if (remainder) { // finish off the scanline... span = remainder; w1 = (c->shade.dwdx * span) + w0; } else { break; } } int32_t q1 = gglRecipQ(w1, 30); for (int i=0 ; istate.texture[i]; if (!tmu.enable) continue; texture_iterators_t& ti = tmu.iterators; for (int j=0 ; j<2 ; j++) { int32_t v = tc[i].st[j].v; if (span) v += (tmu.shade.st[j].dx)*span; else v += (tmu.shade.st[j].dx)<>= SPAN_BITS; tc[i].st[j].v = v; tc[i].st[j].q = v1; const int scale = ti.st[j].scale + (iwscale - 30); if (scale >= 0) { ti.st[j].ydvdy = v0 << scale; ti.st[j].dvdx = dvdx << scale; } else { ti.st[j].ydvdy = v0 >> -scale; ti.st[j].dvdx = dvdx >> -scale; } } generated_tex_vars_t& gen = c->generated_vars.texture[i]; gen.dsdx = ti.st[0].dvdx; gen.dtdx = ti.st[1].dvdx; } c->iterators.xl = xl; c->iterators.xr = xl = xl + (span ? span : (1<span(c); } while(numSpans--); } void scanline_perspective_single(context_t* c) { // 32 pixels spans works okay. 16 is a lot better, // but hey, it's a software renderer... const uint32_t SPAN_BITS = 5; const uint32_t ys = c->iterators.y; const uint32_t xs = c->iterators.xl; const uint32_t x1 = c->iterators.xr; const uint32_t xc = x1 - xs; const iterators_t& ci = c->iterators; int32_t w = (xs * c->shade.dwdx) + ci.ydwdy; int32_t iw = gglRecipQ(w, 30); const int iwscale = 32 - gglClz(iw); const int i = 31 - gglClz(c->state.enabled_tmu); generated_tex_vars_t& gen = c->generated_vars.texture[i]; texture_t& tmu = c->state.texture[i]; texture_iterators_t& ti = tmu.iterators; const int sscale = ti.sscale + (iwscale - 30); const int tscale = ti.tscale + (iwscale - 30); int32_t s = tmu.shade.is0 + (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); int32_t t = tmu.shade.it0 + (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); int32_t s0 = gglMulx(s, iw, iwscale); int32_t t0 = gglMulx(t, iw, iwscale); int32_t xl = c->iterators.xl; int32_t sq, tq, dsdx, dtdx; int32_t premainder = xc & ((1<> SPAN_BITS; if (c->shade.dwdx == 0) { // XXX: we could choose to do this if the error is small enough numSpans = 0; premainder = xc; goto no_perspective; } if (premainder) { w += c->shade.dwdx * premainder; iw = gglRecipQ(w, 30); no_perspective: s += tmu.shade.idsdx * premainder; t += tmu.shade.idtdx * premainder; sq = gglMulx(s, iw, iwscale); tq = gglMulx(t, iw, iwscale); dsdx = (sq - s0) / premainder; dtdx = (tq - t0) / premainder; c->iterators.xl = xl; c->iterators.xr = xl = xl + premainder; goto finish; } while (numSpans--) { w += c->shade.dwdx << SPAN_BITS; s += tmu.shade.idsdx << SPAN_BITS; t += tmu.shade.idtdx << SPAN_BITS; iw = gglRecipQ(w, 30); sq = gglMulx(s, iw, iwscale); tq = gglMulx(t, iw, iwscale); dsdx = (sq - s0) >> SPAN_BITS; dtdx = (tq - t0) >> SPAN_BITS; c->iterators.xl = xl; c->iterators.xr = xl = xl + (1<= 0) { ti.ydsdy = s0 << sscale; ti.dsdx = dsdx << sscale; } else { ti.ydsdy = s0 >>-sscale; ti.dsdx = dsdx >>-sscale; } if (tscale >= 0) { ti.ydtdy = t0 << tscale; ti.dtdx = dtdx << tscale; } else { ti.ydtdy = t0 >>-tscale; ti.dtdx = dtdx >>-tscale; } s0 = sq; t0 = tq; gen.dsdx = ti.dsdx; gen.dtdx = ti.dtdx; c->span(c); } } // ---------------------------------------------------------------------------- void scanline_col32cb16blend(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); union { uint16_t* dst; uint32_t* dst32; }; dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__)) #if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN scanline_col32cb16blend_neon(dst, &(c->packed8888), ct); #else // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct); #endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN #elif ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__aarch64__)) scanline_col32cb16blend_arm64(dst, GGL_RGBA_TO_HOST(c->packed8888), ct); #else uint32_t s = GGL_RGBA_TO_HOST(c->packed8888); int sA = (s>>24); int f = 0x100 - (sA + (sA>>7)); while (ct--) { uint16_t d = *dst; int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; int sR = (s >> ( 3))&0x1F; int sG = (s >> ( 8+2))&0x3F; int sB = (s >> (16+3))&0x1F; sR += (f*dR)>>8; sG += (f*dG)>>8; sB += (f*dB)>>8; *dst++ = uint16_t((sR<<11)|(sG<<5)|sB); } #endif } void scanline_t32cb16(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); union { uint16_t* dst; uint32_t* dst32; }; dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); surface_t* tex = &(c->state.texture[0].surface); const int32_t u = (c->state.texture[0].shade.is0>>16) + x; const int32_t v = (c->state.texture[0].shade.it0>>16) + y; uint32_t *src = reinterpret_cast(tex->data)+(u+(tex->stride*v)); int sR, sG, sB; uint32_t s, d; if (ct==1 || uintptr_t(dst)&2) { last_one: s = GGL_RGBA_TO_HOST( *src++ ); *dst++ = convertAbgr8888ToRgb565(s); ct--; } while (ct >= 2) { #if BYTE_ORDER == BIG_ENDIAN s = GGL_RGBA_TO_HOST( *src++ ); d = convertAbgr8888ToRgb565_hi16(s); s = GGL_RGBA_TO_HOST( *src++ ); d |= convertAbgr8888ToRgb565(s); #else s = GGL_RGBA_TO_HOST( *src++ ); d = convertAbgr8888ToRgb565(s); s = GGL_RGBA_TO_HOST( *src++ ); d |= convertAbgr8888ToRgb565(s) << 16; #endif *dst32++ = d; ct -= 2; } if (ct > 0) { goto last_one; } } void scanline_t32cb16blend(context_t* c) { #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__arm__) || (defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6) || defined(__aarch64__))) int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); uint16_t* dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); surface_t* tex = &(c->state.texture[0].surface); const int32_t u = (c->state.texture[0].shade.is0>>16) + x; const int32_t v = (c->state.texture[0].shade.it0>>16) + y; uint32_t *src = reinterpret_cast(tex->data)+(u+(tex->stride*v)); #ifdef __arm__ scanline_t32cb16blend_arm(dst, src, ct); #elif defined(__aarch64__) scanline_t32cb16blend_arm64(dst, src, ct); #elif defined(__mips__) scanline_t32cb16blend_mips(dst, src, ct); #endif #else dst_iterator16 di(c); horz_iterator32 hi(c); blender_32to16 bl(c); while (di.count--) { uint32_t s = hi.get_pixel32(); bl.write(s, di.dst); di.dst++; } #endif } void scanline_t32cb16blend_srca(context_t* c) { dst_iterator16 di(c); horz_iterator32 hi(c); blender_32to16_srcA blender(c); while (di.count--) { uint32_t s = hi.get_pixel32(); blender.write(s,di.dst); di.dst++; } } void scanline_t16cb16blend_clamp_mod(context_t* c) { const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8); if (a == 0) { return; } if (a == 255) { scanline_t16cb16_clamp(c); return; } dst_iterator16 di(c); blender_16to16_modulate blender(c); clamp_iterator ci(c); while (di.count--) { uint16_t s = ci.get_pixel16(); blender.write(s, di.dst); di.dst++; } } void scanline_memcpy(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); const GGLFormat* fp = &(c->formats[cb->format]); uint8_t* dst = reinterpret_cast(cb->data) + (x + (cb->stride * y)) * fp->size; surface_t* tex = &(c->state.texture[0].surface); const int32_t u = (c->state.texture[0].shade.is0>>16) + x; const int32_t v = (c->state.texture[0].shade.it0>>16) + y; uint8_t *src = reinterpret_cast(tex->data) + (u + (tex->stride * v)) * fp->size; const size_t size = ct * fp->size; memcpy(dst, src, size); } void scanline_memset8(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); uint8_t* dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); uint32_t packed = c->packed; memset(dst, packed, ct); } void scanline_memset16(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); uint16_t* dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); uint32_t packed = c->packed; android_memset16(dst, packed, ct*2); } void scanline_memset32(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); uint32_t* dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); uint32_t packed = GGL_HOST_TO_RGBA(c->packed); android_memset32(dst, packed, ct*4); } void scanline_clear(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); const GGLFormat* fp = &(c->formats[cb->format]); uint8_t* dst = reinterpret_cast(cb->data) + (x + (cb->stride * y)) * fp->size; const size_t size = ct * fp->size; memset(dst, 0, size); } void scanline_set(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); const GGLFormat* fp = &(c->formats[cb->format]); uint8_t* dst = reinterpret_cast(cb->data) + (x + (cb->stride * y)) * fp->size; const size_t size = ct * fp->size; memset(dst, 0xFF, size); } void scanline_noop(context_t* /*c*/) { } void rect_generic(context_t* c, size_t yc) { do { c->scanline(c); c->step_y(c); } while (--yc); } void rect_memcpy(context_t* c, size_t yc) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); const GGLFormat* fp = &(c->formats[cb->format]); uint8_t* dst = reinterpret_cast(cb->data) + (x + (cb->stride * y)) * fp->size; surface_t* tex = &(c->state.texture[0].surface); const int32_t u = (c->state.texture[0].shade.is0>>16) + x; const int32_t v = (c->state.texture[0].shade.it0>>16) + y; uint8_t *src = reinterpret_cast(tex->data) + (u + (tex->stride * v)) * fp->size; if (cb->stride == tex->stride && ct == size_t(cb->stride)) { memcpy(dst, src, ct * fp->size * yc); } else { const size_t size = ct * fp->size; const size_t dbpr = cb->stride * fp->size; const size_t sbpr = tex->stride * fp->size; do { memcpy(dst, src, size); dst += dbpr; src += sbpr; } while (--yc); } } // ---------------------------------------------------------------------------- }; // namespace android