/* libs/pixelflinger/scanline.cpp ** ** Copyright 2006, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "pixelflinger" #include #include #include #include #include #include #include "buffer.h" #include "scanline.h" #include "codeflinger/CodeCache.h" #include "codeflinger/GGLAssembler.h" #include "codeflinger/ARMAssembler.h" //#include "codeflinger/ARMAssemblerOptimizer.h" // ---------------------------------------------------------------------------- #define ANDROID_CODEGEN_GENERIC 0 // force generic pixel pipeline #define ANDROID_CODEGEN_C 1 // hand-written C, fallback generic #define ANDROID_CODEGEN_ASM 2 // hand-written asm, fallback generic #define ANDROID_CODEGEN_GENERATED 3 // hand-written asm, fallback codegen #ifdef NDEBUG # define ANDROID_RELEASE # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED #else # define ANDROID_DEBUG # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED #endif #if defined(__arm__) # define ANDROID_ARM_CODEGEN 1 #else # define ANDROID_ARM_CODEGEN 0 #endif #define DEBUG__CODEGEN_ONLY 0 #define ASSEMBLY_SCRATCH_SIZE 2048 // ---------------------------------------------------------------------------- namespace android { // ---------------------------------------------------------------------------- static void init_y(context_t*, int32_t); static void init_y_noop(context_t*, int32_t); static void init_y_packed(context_t*, int32_t); static void init_y_error(context_t*, int32_t); static void step_y__generic(context_t* c); static void step_y__nop(context_t*); static void step_y__smooth(context_t* c); static void step_y__tmu(context_t* c); static void step_y__w(context_t* c); static void scanline(context_t* c); static void scanline_perspective(context_t* c); static void scanline_perspective_single(context_t* c); static void scanline_t32cb16blend(context_t* c); static void scanline_t32cb16(context_t* c); static void scanline_memcpy(context_t* c); static void scanline_memset8(context_t* c); static void scanline_memset16(context_t* c); static void scanline_memset32(context_t* c); static void scanline_noop(context_t* c); static void scanline_set(context_t* c); static void scanline_clear(context_t* c); static void rect_generic(context_t* c, size_t yc); static void rect_memcpy(context_t* c, size_t yc); extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t); extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct); // ---------------------------------------------------------------------------- struct shortcut_t { needs_filter_t filter; const char* desc; void (*scanline)(context_t*); void (*init_y)(context_t*, int32_t); }; // Keep in sync with needs static shortcut_t shortcuts[] = { { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx, blend", scanline_t32cb16blend, init_y_noop }, { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } }, { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, "565 fb, 8888 tx", scanline_t32cb16, init_y_noop }, { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } }, "(nop) alpha test", scanline_noop, init_y_noop }, { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } }, "(nop) depth test", scanline_noop, init_y_noop }, { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } }, "(nop) logic_op", scanline_noop, init_y_noop }, { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } }, "(nop) color mask", scanline_noop, init_y_noop }, { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, "(set) logic_op", scanline_set, init_y_noop }, { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, "(clear) logic_op", scanline_clear, init_y_noop }, { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } }, "(clear) blending 0/0", scanline_clear, init_y_noop }, { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } }, "(error) invalid color-buffer format", scanline_noop, init_y_error }, }; static const needs_filter_t noblend1to1 = { // (disregard dithering, see below) { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } }, { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } } }; static const needs_filter_t fill16noblend = { { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } }, { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } } }; // ---------------------------------------------------------------------------- #if ANDROID_ARM_CODEGEN static CodeCache gCodeCache(12 * 1024); class ScanlineAssembly : public Assembly { AssemblyKey mKey; public: ScanlineAssembly(needs_t needs, size_t size) : Assembly(size), mKey(needs) { } const AssemblyKey& key() const { return mKey; } }; #endif // ---------------------------------------------------------------------------- void ggl_init_scanline(context_t* c) { c->init_y = init_y; c->step_y = step_y__generic; c->scanline = scanline; } void ggl_uninit_scanline(context_t* c) { if (c->state.buffers.coverage) free(c->state.buffers.coverage); #if ANDROID_ARM_CODEGEN if (c->scanline_as) c->scanline_as->decStrong(c); #endif } // ---------------------------------------------------------------------------- static void pick_scanline(context_t* c) { #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0)) #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC c->init_y = init_y; c->step_y = step_y__generic; c->scanline = scanline; return; #endif //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n", // c->state.needs.n, c->state.needs.p, // c->state.needs.t[0], c->state.needs.t[1]); // first handle the special case that we cannot test with a filter const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n); if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) { if (c->state.needs.match(noblend1to1)) { // this will match regardless of dithering state, since both // src and dest have the same format anyway, there is no dithering // to be done. const GGLFormat* f = &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]); if ((f->components == GGL_RGB) || (f->components == GGL_RGBA) || (f->components == GGL_LUMINANCE) || (f->components == GGL_LUMINANCE_ALPHA)) { // format must have all of RGB components // (so the current color doesn't show through) c->scanline = scanline_memcpy; c->init_y = init_y_noop; return; } } } if (c->state.needs.match(fill16noblend)) { c->init_y = init_y_packed; switch (c->formats[cb_format].size) { case 1: c->scanline = scanline_memset8; return; case 2: c->scanline = scanline_memset16; return; case 4: c->scanline = scanline_memset32; return; } } const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t); for (int i=0 ; istate.needs.match(shortcuts[i].filter)) { c->scanline = shortcuts[i].scanline; c->init_y = shortcuts[i].init_y; return; } } #endif // DEBUG__CODEGEN_ONLY c->init_y = init_y; c->step_y = step_y__generic; #if ANDROID_ARM_CODEGEN // we're going to have to generate some code... // here, generate code for our pixel pipeline const AssemblyKey key(c->state.needs); sp assembly = gCodeCache.lookup(key); if (assembly == 0) { // create a new assembly region sp a = new ScanlineAssembly(c->state.needs, ASSEMBLY_SCRATCH_SIZE); // initialize our assembler GGLAssembler assembler( new ARMAssembler(a) ); //GGLAssembler assembler( // new ARMAssemblerOptimizer(new ARMAssembler(a)) ); // generate the scanline code for the given needs int err = assembler.scanline(c->state.needs, c); if (ggl_likely(!err)) { // finally, cache this assembly err = gCodeCache.cache(a->key(), a); } if (ggl_unlikely(err)) { LOGE("error generating or caching assembly. Reverting to NOP."); c->scanline = scanline_noop; c->init_y = init_y_noop; c->step_y = step_y__nop; return; } assembly = a; } // release the previous assembly if (c->scanline_as) { c->scanline_as->decStrong(c); } //LOGI("using generated pixel-pipeline"); c->scanline_as = assembly.get(); c->scanline_as->incStrong(c); // hold on to assembly c->scanline = (void(*)(context_t* c))assembly->base(); #else // LOGW("using generic (slow) pixel-pipeline"); c->scanline = scanline; #endif } void ggl_pick_scanline(context_t* c) { pick_scanline(c); if ((c->state.enables & GGL_ENABLE_W) && (c->state.enables & GGL_ENABLE_TMUS)) { c->span = c->scanline; c->scanline = scanline_perspective; if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) { // only one TMU enabled c->scanline = scanline_perspective_single; } } } // ---------------------------------------------------------------------------- static void blending(context_t* c, pixel_t* fragment, pixel_t* fb); static void blend_factor(context_t* c, pixel_t* r, uint32_t factor, const pixel_t* src, const pixel_t* dst); static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv); #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) // no need to compile the generic-pipeline, it can't be reached void scanline(context_t*) { } #else void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv) { if (su && sv) { if (su > sv) { v = ggl_expand(v, sv, su); sv = su; } else if (su < sv) { u = ggl_expand(u, su, sv); su = sv; } } } void blending(context_t* c, pixel_t* fragment, pixel_t* fb) { rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]); rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]); rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]); rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]); pixel_t sf, df; blend_factor(c, &sf, c->state.blend.src, fragment, fb); blend_factor(c, &df, c->state.blend.dst, fragment, fb); fragment->c[1] = gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1])); fragment->c[2] = gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2])); fragment->c[3] = gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3])); if (c->state.blend.alpha_separate) { blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb); blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb); } fragment->c[0] = gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0])); // clamp to 1.0 if (fragment->c[0] >= (1LU<s[0])) fragment->c[0] = (1<s[0])-1; if (fragment->c[1] >= (1LU<s[1])) fragment->c[1] = (1<s[1])-1; if (fragment->c[2] >= (1LU<s[2])) fragment->c[2] = (1<s[2])-1; if (fragment->c[3] >= (1LU<s[3])) fragment->c[3] = (1<s[3])-1; } static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0) { if (!size) return def; // scale to 16 bits if (size > 16) { x >>= (size - 16); } else if (size < 16) { x = ggl_expand(x, size, 16); } x += x >> 15; return x; } void blend_factor(context_t* c, pixel_t* r, uint32_t factor, const pixel_t* src, const pixel_t* dst) { switch (factor) { case GGL_ZERO: r->c[1] = r->c[2] = r->c[3] = r->c[0] = 0; break; case GGL_ONE: r->c[1] = r->c[2] = r->c[3] = r->c[0] = FIXED_ONE; break; case GGL_DST_COLOR: r->c[1] = blendfactor(dst->c[1], dst->s[1]); r->c[2] = blendfactor(dst->c[2], dst->s[2]); r->c[3] = blendfactor(dst->c[3], dst->s[3]); r->c[0] = blendfactor(dst->c[0], dst->s[0]); break; case GGL_SRC_COLOR: r->c[1] = blendfactor(src->c[1], src->s[1]); r->c[2] = blendfactor(src->c[2], src->s[2]); r->c[3] = blendfactor(src->c[3], src->s[3]); r->c[0] = blendfactor(src->c[0], src->s[0]); break; case GGL_ONE_MINUS_DST_COLOR: r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]); r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]); r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]); r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]); break; case GGL_ONE_MINUS_SRC_COLOR: r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]); r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]); r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]); r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]); break; case GGL_SRC_ALPHA: r->c[1] = r->c[2] = r->c[3] = r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE); break; case GGL_ONE_MINUS_SRC_ALPHA: r->c[1] = r->c[2] = r->c[3] = r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE); break; case GGL_DST_ALPHA: r->c[1] = r->c[2] = r->c[3] = r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE); break; case GGL_ONE_MINUS_DST_ALPHA: r->c[1] = r->c[2] = r->c[3] = r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE); break; case GGL_SRC_ALPHA_SATURATE: // XXX: GGL_SRC_ALPHA_SATURATE break; } } static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap) { GGLfixed d; if (tx_wrap == GGL_REPEAT) { d = (uint32_t(coord)>>16) * size; } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics const GGLfixed clamp_min = FIXED_HALF; const GGLfixed clamp_max = (size << 16) - FIXED_HALF; if (coord < clamp_min) coord = clamp_min; if (coord > clamp_max) coord = clamp_max; d = coord; } else { // 1:1 const GGLfixed clamp_min = 0; const GGLfixed clamp_max = (size << 16); if (coord < clamp_min) coord = clamp_min; if (coord > clamp_max) coord = clamp_max; d = coord; } return d; } static inline GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len) { const int32_t end = dvdx * (len-1) + v; if (end < 0) v -= end; v &= ~(v>>31); return v; } void scanline(context_t* c) { const uint32_t enables = c->state.enables; const int xs = c->iterators.xl; const int x1 = c->iterators.xr; int xc = x1 - xs; const int16_t* covPtr = c->state.buffers.coverage + xs; // All iterated values are sampled at the pixel center // reset iterators for that scanline... GGLcolor r, g, b, a; iterators_t& ci = c->iterators; if (enables & GGL_ENABLE_SMOOTH) { r = (xs * c->shade.drdx) + ci.ydrdy; g = (xs * c->shade.dgdx) + ci.ydgdy; b = (xs * c->shade.dbdx) + ci.ydbdy; a = (xs * c->shade.dadx) + ci.ydady; r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc); g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc); b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc); a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc); } else { r = ci.ydrdy; g = ci.ydgdy; b = ci.ydbdy; a = ci.ydady; } // z iterators are 1.31 GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy; GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy; struct { GGLfixed s, t; } tc[GGL_TEXTURE_UNIT_COUNT]; if (enables & GGL_ENABLE_TMUS) { for (int i=0 ; istate.texture[i].enable) { texture_iterators_t& ti = c->state.texture[i].iterators; if (enables & GGL_ENABLE_W) { tc[i].s = ti.ydsdy; tc[i].t = ti.ydtdy; } else { tc[i].s = (xs * ti.dsdx) + ti.ydsdy; tc[i].t = (xs * ti.dtdx) + ti.ydtdy; } } } } pixel_t fragment; pixel_t texel; pixel_t fb; uint32_t x = xs; uint32_t y = c->iterators.y; while (xc--) { { // just a scope // read color (convert to 8 bits by keeping only the integer part) fragment.s[1] = fragment.s[2] = fragment.s[3] = fragment.s[0] = 8; fragment.c[1] = r >> (GGL_COLOR_BITS-8); fragment.c[2] = g >> (GGL_COLOR_BITS-8); fragment.c[3] = b >> (GGL_COLOR_BITS-8); fragment.c[0] = a >> (GGL_COLOR_BITS-8); // texturing if (enables & GGL_ENABLE_TMUS) { for (int i=0 ; istate.texture[i]; if (!tx.enable) continue; texture_iterators_t& ti = tx.iterators; int32_t u, v; // s-coordinate if (tx.s_coord != GGL_ONE_TO_ONE) { const int w = tx.surface.width; u = wrapping(tc[i].s, w, tx.s_wrap); tc[i].s += ti.dsdx; } else { u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF; } // t-coordinate if (tx.t_coord != GGL_ONE_TO_ONE) { const int h = tx.surface.height; v = wrapping(tc[i].t, h, tx.t_wrap); tc[i].t += ti.dtdx; } else { v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF; } // read texture if (tx.mag_filter == GGL_NEAREST && tx.min_filter == GGL_NEAREST) { u >>= 16; v >>= 16; tx.surface.read(&tx.surface, c, u, v, &texel); } else { const int w = tx.surface.width; const int h = tx.surface.height; u -= FIXED_HALF; v -= FIXED_HALF; int u0 = u >> 16; int v0 = v >> 16; int u1 = u0 + 1; int v1 = v0 + 1; if (tx.s_wrap == GGL_REPEAT) { if (u0<0) u0 += w; if (u1<0) u1 += w; if (u0>=w) u0 -= w; if (u1>=w) u1 -= w; } else { if (u0<0) u0 = 0; if (u1<0) u1 = 0; if (u0>=w) u0 = w-1; if (u1>=w) u1 = w-1; } if (tx.t_wrap == GGL_REPEAT) { if (v0<0) v0 += h; if (v1<0) v1 += h; if (v0>=h) v0 -= h; if (v1>=h) v1 -= h; } else { if (v0<0) v0 = 0; if (v1<0) v1 = 0; if (v0>=h) v0 = h-1; if (v1>=h) v1 = h-1; } pixel_t texels[4]; uint32_t mm[4]; tx.surface.read(&tx.surface, c, u0, v0, &texels[0]); tx.surface.read(&tx.surface, c, u0, v1, &texels[1]); tx.surface.read(&tx.surface, c, u1, v0, &texels[2]); tx.surface.read(&tx.surface, c, u1, v1, &texels[3]); u = (u >> 12) & 0xF; v = (v >> 12) & 0xF; u += u>>3; v += v>>3; mm[0] = (0x10 - u) * (0x10 - v); mm[1] = (0x10 - u) * v; mm[2] = u * (0x10 - v); mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]); for (int j=0 ; j<4 ; j++) { texel.s[j] = texels[0].s[j]; if (!texel.s[j]) continue; texel.s[j] += 8; texel.c[j] = texels[0].c[j]*mm[0] + texels[1].c[j]*mm[1] + texels[2].c[j]*mm[2] + texels[3].c[j]*mm[3] ; } } // Texture environnement... for (int j=0 ; j<4 ; j++) { uint32_t& Cf = fragment.c[j]; uint32_t& Ct = texel.c[j]; uint8_t& sf = fragment.s[j]; uint8_t& st = texel.s[j]; uint32_t At = texel.c[0]; uint8_t sat = texel.s[0]; switch (tx.env) { case GGL_REPLACE: if (st) { Cf = Ct; sf = st; } break; case GGL_MODULATE: if (st) { uint32_t factor = Ct + (Ct>>(st-1)); Cf = (Cf * factor) >> st; } break; case GGL_DECAL: if (sat) { rescale(Cf, sf, Ct, st); Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat; } break; case GGL_BLEND: if (st) { uint32_t Cc = tx.env_color[i]; if (sf>8) Cc = (Cc * ((1<>8; else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf); uint32_t factor = Ct + (Ct>>(st-1)); Cf = ((((1<>st; } break; case GGL_ADD: if (st) { rescale(Cf, sf, Ct, st); Cf += Ct; } break; } } } } // coverage application if (enables & GGL_ENABLE_AA) { int16_t cf = *covPtr++; fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15; } // alpha-test if (enables & GGL_ENABLE_ALPHA_TEST) { GGLcolor ref = c->state.alpha_test.ref; GGLcolor alpha = (uint64_t(fragment.c[0]) * ((1<state.alpha_test.func) { case GGL_NEVER: goto discard; case GGL_LESS: if (alpharef) break; goto discard; case GGL_NOTEQUAL: if (alpha!=ref) break; goto discard; case GGL_GEQUAL: if (alpha>=ref) break; goto discard; } } // depth test if (c->state.buffers.depth.format) { if (enables & GGL_ENABLE_DEPTH_TEST) { surface_t* cb = &(c->state.buffers.depth); uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y)); uint16_t zz = uint32_t(z)>>(16); uint16_t depth = *p; switch (c->state.depth_test.func) { case GGL_NEVER: goto discard; case GGL_LESS: if (zzdepth) break; goto discard; case GGL_NOTEQUAL: if (zz!=depth) break; goto discard; case GGL_GEQUAL: if (zz>=depth) break; goto discard; } // depth buffer is not enabled, if depth-test is not enabled /* fragment.s[1] = fragment.s[2] = fragment.s[3] = fragment.s[0] = 8; fragment.c[1] = fragment.c[2] = fragment.c[3] = fragment.c[0] = 255 - (zz>>8); */ if (c->state.mask.depth) { *p = zz; } } } // fog if (enables & GGL_ENABLE_FOG) { for (int i=1 ; i<=3 ; i++) { GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF; uint32_t& c = fragment.c[i]; uint8_t& s = fragment.s[i]; c = (c * 0x10000) / ((1<state.buffers.color.read( &(c->state.buffers.color), c, x, y, &fb); blending( c, &fragment, &fb ); } // write c->state.buffers.color.write( &(c->state.buffers.color), c, x, y, &fragment); } discard: // iterate... x += 1; if (enables & GGL_ENABLE_SMOOTH) { r += c->shade.drdx; g += c->shade.dgdx; b += c->shade.dbdx; a += c->shade.dadx; } z += c->shade.dzdx; f += c->shade.dfdx; } } #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) // ---------------------------------------------------------------------------- #if 0 #pragma mark - #pragma mark Scanline #endif template static inline __attribute__((const)) T interpolate(int y, T v0, U dvdx, U dvdy) { // interpolates in pixel's centers // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx) return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1)); } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #endif void init_y(context_t* c, int32_t ys) { const uint32_t enables = c->state.enables; // compute iterators... iterators_t& ci = c->iterators; // sample in the center ci.y = ys; if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) { ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy); ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy); ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy); } if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) { ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy); ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy); ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy); ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady); c->step_y = step_y__smooth; } else { ci.ydrdy = c->shade.r0; ci.ydgdy = c->shade.g0; ci.ydbdy = c->shade.b0; ci.ydady = c->shade.a0; // XXX: do only if needed, or make sure this is fast c->packed = ggl_pack_color(c, c->state.buffers.color.format, ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); } // initialize the variables we need in the shader generated_vars_t& gen = c->generated_vars; gen.argb[GGLFormat::ALPHA].c = ci.ydady; gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx; gen.argb[GGLFormat::RED ].c = ci.ydrdy; gen.argb[GGLFormat::RED ].dx = c->shade.drdx; gen.argb[GGLFormat::GREEN].c = ci.ydgdy; gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx; gen.argb[GGLFormat::BLUE ].c = ci.ydbdy; gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx; gen.dzdx = c->shade.dzdx; gen.f = ci.ydfdy; gen.dfdx = c->shade.dfdx; if (enables & GGL_ENABLE_TMUS) { for (int i=0 ; istate.texture[i]; if (!t.enable) continue; texture_iterators_t& ti = t.iterators; if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) { // we need to set all of these to 0 because in some cases // step_y__generic() or step_y__tmu() will be used and // therefore will update dtdy, however, in 1:1 mode // this is always done by the scanline rasterizer. ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0; ti.ydsdy = t.shade.is0; ti.ydtdy = t.shade.it0; } else { const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16); const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16); ti.sscale = t.shade.sscale + adjustSWrap; ti.tscale = t.shade.tscale + adjustTWrap; if (!(enables & GGL_ENABLE_W)) { // S coordinate const int32_t sscale = ti.sscale; const int32_t sy = interpolate(ys, t.shade.is0, t.shade.idsdx, t.shade.idsdy); if (sscale>=0) { ti.ydsdy= sy << sscale; ti.dsdx = t.shade.idsdx << sscale; ti.dsdy = t.shade.idsdy << sscale; } else { ti.ydsdy= sy >> -sscale; ti.dsdx = t.shade.idsdx >> -sscale; ti.dsdy = t.shade.idsdy >> -sscale; } // T coordinate const int32_t tscale = ti.tscale; const int32_t ty = interpolate(ys, t.shade.it0, t.shade.idtdx, t.shade.idtdy); if (tscale>=0) { ti.ydtdy= ty << tscale; ti.dtdx = t.shade.idtdx << tscale; ti.dtdy = t.shade.idtdy << tscale; } else { ti.ydtdy= ty >> -tscale; ti.dtdx = t.shade.idtdx >> -tscale; ti.dtdy = t.shade.idtdy >> -tscale; } } } // mirror for generated code... generated_tex_vars_t& gen = c->generated_vars.texture[i]; gen.width = t.surface.width; gen.height = t.surface.height; gen.stride = t.surface.stride; gen.data = int32_t(t.surface.data); gen.dsdx = ti.dsdx; gen.dtdx = ti.dtdx; } } // choose the y-stepper c->step_y = step_y__nop; if (enables & GGL_ENABLE_FOG) { c->step_y = step_y__generic; } else if (enables & GGL_ENABLE_TMUS) { if (enables & GGL_ENABLE_SMOOTH) { c->step_y = step_y__generic; } else if (enables & GGL_ENABLE_W) { c->step_y = step_y__w; } else { c->step_y = step_y__tmu; } } else { if (enables & GGL_ENABLE_SMOOTH) { c->step_y = step_y__smooth; } } // choose the rectangle blitter c->rect = rect_generic; if ((c->step_y == step_y__nop) && (c->scanline == scanline_memcpy)) { c->rect = rect_memcpy; } } void init_y_packed(context_t* c, int32_t y0) { uint8_t f = c->state.buffers.color.format; c->packed = ggl_pack_color(c, f, c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); c->iterators.y = y0; c->step_y = step_y__nop; // choose the rectangle blitter c->rect = rect_generic; if (c->scanline == scanline_memcpy) { c->rect = rect_memcpy; } } void init_y_noop(context_t* c, int32_t y0) { c->iterators.y = y0; c->step_y = step_y__nop; // choose the rectangle blitter c->rect = rect_generic; if (c->scanline == scanline_memcpy) { c->rect = rect_memcpy; } } void init_y_error(context_t* c, int32_t y0) { // woooops, shoud never happen, // fail gracefully (don't display anything) init_y_noop(c, y0); LOGE("color-buffer has an invalid format!"); } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #endif void step_y__generic(context_t* c) { const uint32_t enables = c->state.enables; // iterate... iterators_t& ci = c->iterators; ci.y += 1; if (enables & GGL_ENABLE_SMOOTH) { ci.ydrdy += c->shade.drdy; ci.ydgdy += c->shade.dgdy; ci.ydbdy += c->shade.dbdy; ci.ydady += c->shade.dady; } const uint32_t mask = GGL_ENABLE_DEPTH_TEST | GGL_ENABLE_W | GGL_ENABLE_FOG; if (enables & mask) { ci.ydzdy += c->shade.dzdy; ci.ydwdy += c->shade.dwdy; ci.ydfdy += c->shade.dfdy; } if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) { for (int i=0 ; istate.texture[i].enable) { texture_iterators_t& ti = c->state.texture[i].iterators; ti.ydsdy += ti.dsdy; ti.ydtdy += ti.dtdy; } } } } void step_y__nop(context_t* c) { c->iterators.y += 1; c->iterators.ydzdy += c->shade.dzdy; } void step_y__smooth(context_t* c) { iterators_t& ci = c->iterators; ci.y += 1; ci.ydrdy += c->shade.drdy; ci.ydgdy += c->shade.dgdy; ci.ydbdy += c->shade.dbdy; ci.ydady += c->shade.dady; ci.ydzdy += c->shade.dzdy; } void step_y__w(context_t* c) { iterators_t& ci = c->iterators; ci.y += 1; ci.ydzdy += c->shade.dzdy; ci.ydwdy += c->shade.dwdy; } void step_y__tmu(context_t* c) { iterators_t& ci = c->iterators; ci.y += 1; ci.ydzdy += c->shade.dzdy; for (int i=0 ; istate.texture[i].enable) { texture_iterators_t& ti = c->state.texture[i].iterators; ti.ydsdy += ti.dsdy; ti.ydtdy += ti.dtdy; } } } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #endif void scanline_perspective(context_t* c) { struct { union { struct { int32_t s, sq; int32_t t, tq; }; struct { int32_t v, q; } st[2]; }; } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16))); // XXX: we should have a special case when dwdx = 0 // 32 pixels spans works okay. 16 is a lot better, // but hey, it's a software renderer... const uint32_t SPAN_BITS = 5; const uint32_t ys = c->iterators.y; const uint32_t xs = c->iterators.xl; const uint32_t x1 = c->iterators.xr; const uint32_t xc = x1 - xs; uint32_t remainder = xc & ((1<> SPAN_BITS; const iterators_t& ci = c->iterators; int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy; int32_t q0 = gglRecipQ(w0, 30); const int iwscale = 32 - gglClz(q0); const int32_t dwdx = c->shade.dwdx << SPAN_BITS; int32_t xl = c->iterators.xl; // We process s & t with a loop to reduce the code size // (and i-cache pressure). for (int i=0 ; istate.texture[i]; if (!tmu.enable) continue; int32_t s = tmu.shade.is0 + (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); int32_t t = tmu.shade.it0 + (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); tc[i].s = s; tc[i].t = t; tc[i].sq = gglMulx(s, q0, iwscale); tc[i].tq = gglMulx(t, q0, iwscale); } int32_t span = 0; do { int32_t w1; if (ggl_likely(numSpans)) { w1 = w0 + dwdx; } else { if (remainder) { // finish off the scanline... span = remainder; w1 = (c->shade.dwdx * span) + w0; } else { break; } } int32_t q1 = gglRecipQ(w1, 30); for (int i=0 ; istate.texture[i]; if (!tmu.enable) continue; texture_iterators_t& ti = tmu.iterators; for (int j=0 ; j<2 ; j++) { int32_t v = tc[i].st[j].v; if (span) v += (tmu.shade.st[j].dx)*span; else v += (tmu.shade.st[j].dx)<>= SPAN_BITS; tc[i].st[j].v = v; tc[i].st[j].q = v1; const int scale = ti.st[j].scale + (iwscale - 30); if (scale >= 0) { ti.st[j].ydvdy = v0 << scale; ti.st[j].dvdx = dvdx << scale; } else { ti.st[j].ydvdy = v0 >> -scale; ti.st[j].dvdx = dvdx >> -scale; } } generated_tex_vars_t& gen = c->generated_vars.texture[i]; gen.dsdx = ti.st[0].dvdx; gen.dtdx = ti.st[1].dvdx; } c->iterators.xl = xl; c->iterators.xr = xl = xl + (span ? span : (1<span(c); } while(numSpans--); } void scanline_perspective_single(context_t* c) { // 32 pixels spans works okay. 16 is a lot better, // but hey, it's a software renderer... const uint32_t SPAN_BITS = 5; const uint32_t ys = c->iterators.y; const uint32_t xs = c->iterators.xl; const uint32_t x1 = c->iterators.xr; const uint32_t xc = x1 - xs; const iterators_t& ci = c->iterators; int32_t w = (xs * c->shade.dwdx) + ci.ydwdy; int32_t iw = gglRecipQ(w, 30); const int iwscale = 32 - gglClz(iw); const int i = 31 - gglClz(c->state.enabled_tmu); generated_tex_vars_t& gen = c->generated_vars.texture[i]; texture_t& tmu = c->state.texture[i]; texture_iterators_t& ti = tmu.iterators; const int sscale = ti.sscale + (iwscale - 30); const int tscale = ti.tscale + (iwscale - 30); int32_t s = tmu.shade.is0 + (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); int32_t t = tmu.shade.it0 + (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); int32_t s0 = gglMulx(s, iw, iwscale); int32_t t0 = gglMulx(t, iw, iwscale); int32_t xl = c->iterators.xl; int32_t sq, tq, dsdx, dtdx; int32_t premainder = xc & ((1<> SPAN_BITS; if (c->shade.dwdx == 0) { // XXX: we could choose to do this if the error is small enough numSpans = 0; premainder = xc; goto no_perspective; } if (premainder) { w += c->shade.dwdx * premainder; iw = gglRecipQ(w, 30); no_perspective: s += tmu.shade.idsdx * premainder; t += tmu.shade.idtdx * premainder; sq = gglMulx(s, iw, iwscale); tq = gglMulx(t, iw, iwscale); dsdx = (sq - s0) / premainder; dtdx = (tq - t0) / premainder; c->iterators.xl = xl; c->iterators.xr = xl = xl + premainder; goto finish; } while (numSpans--) { w += c->shade.dwdx << SPAN_BITS; s += tmu.shade.idsdx << SPAN_BITS; t += tmu.shade.idtdx << SPAN_BITS; iw = gglRecipQ(w, 30); sq = gglMulx(s, iw, iwscale); tq = gglMulx(t, iw, iwscale); dsdx = (sq - s0) >> SPAN_BITS; dtdx = (tq - t0) >> SPAN_BITS; c->iterators.xl = xl; c->iterators.xr = xl = xl + (1<= 0) { ti.ydsdy = s0 << sscale; ti.dsdx = dsdx << sscale; } else { ti.ydsdy = s0 >>-sscale; ti.dsdx = dsdx >>-sscale; } if (tscale >= 0) { ti.ydtdy = t0 << tscale; ti.dtdx = dtdx << tscale; } else { ti.ydtdy = t0 >>-tscale; ti.dtdx = dtdx >>-tscale; } s0 = sq; t0 = tq; gen.dsdx = ti.dsdx; gen.dtdx = ti.dtdx; c->span(c); } } // ---------------------------------------------------------------------------- void scanline_t32cb16(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); union { uint16_t* dst; uint32_t* dst32; }; dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); surface_t* tex = &(c->state.texture[0].surface); const int32_t u = (c->state.texture[0].shade.is0>>16) + x; const int32_t v = (c->state.texture[0].shade.it0>>16) + y; uint32_t *src = reinterpret_cast(tex->data)+(u+(tex->stride*v)); int sR, sG, sB; uint32_t s, d; if (ct==1 || uint32_t(dst)&2) { last_one: s = GGL_RGBA_TO_HOST( *src++ ); sR = (s >> ( 3))&0x1F; sG = (s >> ( 8+2))&0x3F; sB = (s >> (16+3))&0x1F; *dst++ = uint16_t((sR<<11)|(sG<<5)|sB); ct--; } while (ct >= 2) { s = GGL_RGBA_TO_HOST( *src++ ); sR = (s >> ( 3))&0x1F; sG = (s >> ( 8+2))&0x3F; sB = (s >> (16+3))&0x1F; d = (sR<<11)|(sG<<5)|sB; s = GGL_RGBA_TO_HOST( *src++ ); sR = (s >> ( 3))&0x1F; sG = (s >> ( 8+2))&0x3F; sB = (s >> (16+3))&0x1F; d |= ((sR<<11)|(sG<<5)|sB)<<16; #if BYTE_ORDER == BIG_ENDIAN d = (d>>16) | (d<<16); #endif *dst32++ = d; ct -= 2; } if (ct > 0) { goto last_one; } } void scanline_t32cb16blend(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); uint16_t* dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); surface_t* tex = &(c->state.texture[0].surface); const int32_t u = (c->state.texture[0].shade.is0>>16) + x; const int32_t v = (c->state.texture[0].shade.it0>>16) + y; uint32_t *src = reinterpret_cast(tex->data)+(u+(tex->stride*v)); #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__)) scanline_t32cb16blend_arm(dst, src, ct); #else while (ct--) { uint32_t s = *src++; if (!s) { dst++; continue; } uint16_t d = *dst; s = GGL_RGBA_TO_HOST(s); int sR = (s >> ( 3))&0x1F; int sG = (s >> ( 8+2))&0x3F; int sB = (s >> (16+3))&0x1F; int sA = (s>>24); int f = 0x100 - (sA + (sA>>7)); int dR = (d>>11)&0x1f; int dG = (d>>5)&0x3f; int dB = (d)&0x1f; sR += (f*dR)>>8; sG += (f*dG)>>8; sB += (f*dB)>>8; *dst++ = uint16_t((sR<<11)|(sG<<5)|sB); } #endif } void scanline_memcpy(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); const GGLFormat* fp = &(c->formats[cb->format]); uint8_t* dst = reinterpret_cast(cb->data) + (x + (cb->stride * y)) * fp->size; surface_t* tex = &(c->state.texture[0].surface); const int32_t u = (c->state.texture[0].shade.is0>>16) + x; const int32_t v = (c->state.texture[0].shade.it0>>16) + y; uint8_t *src = reinterpret_cast(tex->data) + (u + (tex->stride * v)) * fp->size; const size_t size = ct * fp->size; memcpy(dst, src, size); } void scanline_memset8(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); uint8_t* dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); uint32_t packed = c->packed; memset(dst, packed, ct); } void scanline_memset16(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); uint16_t* dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); uint32_t packed = c->packed; android_memset16(dst, packed, ct*2); } void scanline_memset32(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); uint32_t* dst = reinterpret_cast(cb->data) + (x+(cb->stride*y)); uint32_t packed = GGL_HOST_TO_RGBA(c->packed); android_memset32(dst, packed, ct*4); } void scanline_clear(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); const GGLFormat* fp = &(c->formats[cb->format]); uint8_t* dst = reinterpret_cast(cb->data) + (x + (cb->stride * y)) * fp->size; const size_t size = ct * fp->size; memset(dst, 0, size); } void scanline_set(context_t* c) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); const GGLFormat* fp = &(c->formats[cb->format]); uint8_t* dst = reinterpret_cast(cb->data) + (x + (cb->stride * y)) * fp->size; const size_t size = ct * fp->size; memset(dst, 0xFF, size); } void scanline_noop(context_t* c) { } void rect_generic(context_t* c, size_t yc) { do { c->scanline(c); c->step_y(c); } while (--yc); } void rect_memcpy(context_t* c, size_t yc) { int32_t x = c->iterators.xl; size_t ct = c->iterators.xr - x; int32_t y = c->iterators.y; surface_t* cb = &(c->state.buffers.color); const GGLFormat* fp = &(c->formats[cb->format]); uint8_t* dst = reinterpret_cast(cb->data) + (x + (cb->stride * y)) * fp->size; surface_t* tex = &(c->state.texture[0].surface); const int32_t u = (c->state.texture[0].shade.is0>>16) + x; const int32_t v = (c->state.texture[0].shade.it0>>16) + y; uint8_t *src = reinterpret_cast(tex->data) + (u + (tex->stride * v)) * fp->size; if (cb->stride == tex->stride && ct == size_t(cb->stride)) { memcpy(dst, src, ct * fp->size * yc); } else { const size_t size = ct * fp->size; const size_t dbpr = cb->stride * fp->size; const size_t sbpr = tex->stride * fp->size; do { memcpy(dst, src, size); dst += dbpr; src += sbpr; } while (--yc); } } // ---------------------------------------------------------------------------- }; // namespace android using namespace android; extern "C" void ggl_test_codegen(uint32_t n, uint32_t p, uint32_t t0, uint32_t t1) { #if ANDROID_ARM_CODEGEN GGLContext* c; gglInit(&c); needs_t needs; needs.n = n; needs.p = p; needs.t[0] = t0; needs.t[1] = t1; sp a(new ScanlineAssembly(needs, ASSEMBLY_SCRATCH_SIZE)); GGLAssembler assembler( new ARMAssembler(a) ); int err = assembler.scanline(needs, (context_t*)c); if (err != 0) { printf("error %08x (%s)\n", err, strerror(-err)); } gglUninit(c); #else printf("This test runs only on ARM\n"); #endif }