aboutsummaryrefslogtreecommitdiffstats
path: root/fuse_sideload.cpp
blob: a53a7561864ee0abb5e0215dccd4610e3206d60b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// This module creates a special filesystem containing two files.
//
// "/sideload/package.zip" appears to be a normal file, but reading
// from it causes data to be fetched from the adb host.  We can use
// this to sideload packages over an adb connection without having to
// store the entire package in RAM on the device.
//
// Because we may not trust the adb host, this filesystem maintains
// the following invariant: each read of a given position returns the
// same data as the first read at that position.  That is, once a
// section of the file is read, future reads of that section return
// the same data.  (Otherwise, a malicious adb host process could
// return one set of bits when the package is read for signature
// verification, and then different bits for when the package is
// accessed by the installer.)  If the adb host returns something
// different than it did on the first read, the reader of the file
// will see their read fail with EINVAL.
//
// The other file, "/sideload/exit", is used to control the subprocess
// that creates this filesystem.  Calling stat() on the exit file
// causes the filesystem to be unmounted and the adb process on the
// device shut down.
//
// Note that only the minimal set of file operations needed for these
// two files is implemented.  In particular, you can't opendir() or
// readdir() on the "/sideload" directory; ls on it won't work.

#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <linux/fuse.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/inotify.h>
#include <sys/mount.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <unistd.h>

#include "mincrypt/sha256.h"
#include "fuse_sideload.h"

#define PACKAGE_FILE_ID   (FUSE_ROOT_ID+1)

#define NO_STATUS         1

#define INSTALL_REQUIRED_MEMORY (100*1024*1024)

struct fuse_data {
    int ffd;   // file descriptor for the fuse socket

    struct provider_vtab* vtab;
    void* cookie;

    uint64_t file_size;     // bytes

    uint32_t block_size;    // block size that the adb host is using to send the file to us
    uint32_t file_blocks;   // file size in block_size blocks

    uid_t uid;
    gid_t gid;

    uint32_t curr_block;    // cache the block most recently used
    uint8_t* block_data;

    uint8_t* extra_block;   // another block of storage for reads that
                            // span two blocks

    uint8_t* hashes;        // SHA-256 hash of each block (all zeros
                            // if block hasn't been read yet)

    // Block cache
    uint32_t block_cache_max_size;   // Max allowed block cache size
    uint32_t block_cache_size;       // Current block cache size
    uint8_t** block_cache;           // Block cache data
};

static uint64_t free_memory() {
    uint64_t mem = 0;
    FILE* fp = fopen("/proc/meminfo", "r");
    if (fp) {
        char buf[256];
        char* linebuf = buf;
        size_t buflen = sizeof(buf);
        while (getline(&linebuf, &buflen, fp) > 0) {
            char* key = buf;
            char* val = strchr(buf, ':');
            *val = '\0';
            ++val;
            if (strcmp(key, "MemFree") == 0) {
                mem += strtoul(val, NULL, 0) * 1024;
            }
            if (strcmp(key, "Buffers") == 0) {
                mem += strtoul(val, NULL, 0) * 1024;
            }
            if (strcmp(key, "Cached") == 0) {
                mem += strtoul(val, NULL, 0) * 1024;
            }
        }
        fclose(fp);
    }
    return mem;
}

static int block_cache_fetch(struct fuse_data* fd, uint32_t block)
{
    if (fd->block_cache == NULL) {
        return -1;
    }
    if (fd->block_cache[block] == NULL) {
        return -1;
    }
    memcpy(fd->block_data, fd->block_cache[block], fd->block_size);
    return 0;
}

static void block_cache_enter(struct fuse_data* fd, uint32_t block)
{
    if (!fd->block_cache)
        return;
    if (fd->block_cache_size == fd->block_cache_max_size) {
        // Evict a block from the cache.  Since the file is typically read
        // sequentially, start looking from the block behind the current
        // block and proceed backward.
        int n;
        for (n = fd->curr_block - 1; n != (int)fd->curr_block; --n) {
            if (n < 0) {
                n = fd->file_blocks - 1;
            }
            if (fd->block_cache[n]) {
                free(fd->block_cache[n]);
                fd->block_cache[n] = NULL;
                fd->block_cache_size--;
                break;
            }
        }
    }

    fd->block_cache[block] = (uint8_t*)malloc(fd->block_size);
    memcpy(fd->block_cache[block], fd->block_data, fd->block_size);

    fd->block_cache_size++;
}

static void fuse_reply(struct fuse_data* fd, __u64 unique, const void *data, size_t len)
{
    struct fuse_out_header hdr;
    struct iovec vec[2];
    int res;

    hdr.len = len + sizeof(hdr);
    hdr.error = 0;
    hdr.unique = unique;

    vec[0].iov_base = &hdr;
    vec[0].iov_len = sizeof(hdr);
    vec[1].iov_base = /* const_cast */(void*)(data);
    vec[1].iov_len = len;

    res = writev(fd->ffd, vec, 2);
    if (res < 0) {
        printf("*** REPLY FAILED *** %s\n", strerror(errno));
    }
}

static int handle_init(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) {
    const struct fuse_init_in* req = reinterpret_cast<const struct fuse_init_in*>(data);
    struct fuse_init_out out;
    size_t fuse_struct_size;


    /* Kernel 2.6.16 is the first stable kernel with struct fuse_init_out
     * defined (fuse version 7.6). The structure is the same from 7.6 through
     * 7.22. Beginning with 7.23, the structure increased in size and added
     * new parameters.
     */
    if (req->major != FUSE_KERNEL_VERSION || req->minor < 6) {
        printf("Fuse kernel version mismatch: Kernel version %d.%d, Expected at least %d.6",
               req->major, req->minor, FUSE_KERNEL_VERSION);
        return -1;
    }

    out.minor = MIN(req->minor, FUSE_KERNEL_MINOR_VERSION);
    fuse_struct_size = sizeof(out);
#if defined(FUSE_COMPAT_22_INIT_OUT_SIZE)
    /* FUSE_KERNEL_VERSION >= 23. */

    /* If the kernel only works on minor revs older than or equal to 22,
     * then use the older structure size since this code only uses the 7.22
     * version of the structure. */
    if (req->minor <= 22) {
        fuse_struct_size = FUSE_COMPAT_22_INIT_OUT_SIZE;
    }
#endif

    out.major = FUSE_KERNEL_VERSION;
    out.max_readahead = req->max_readahead;
    out.flags = 0;
    out.max_background = 32;
    out.congestion_threshold = 32;
    out.max_write = 4096;
    fuse_reply(fd, hdr->unique, &out, fuse_struct_size);

    return NO_STATUS;
}

static void fill_attr(struct fuse_attr* attr, struct fuse_data* fd,
                      uint64_t nodeid, uint64_t size, uint32_t mode) {
    memset(attr, 0, sizeof(*attr));
    attr->nlink = 1;
    attr->uid = fd->uid;
    attr->gid = fd->gid;
    attr->blksize = 4096;

    attr->ino = nodeid;
    attr->size = size;
    attr->blocks = (size == 0) ? 0 : (((size-1) / attr->blksize) + 1);
    attr->mode = mode;
}

static int handle_getattr(void* /* data */, struct fuse_data* fd, const struct fuse_in_header* hdr) {
    struct fuse_attr_out out;
    memset(&out, 0, sizeof(out));
    out.attr_valid = 10;

    if (hdr->nodeid == FUSE_ROOT_ID) {
        fill_attr(&(out.attr), fd, hdr->nodeid, 4096, S_IFDIR | 0555);
    } else if (hdr->nodeid == PACKAGE_FILE_ID) {
        fill_attr(&(out.attr), fd, PACKAGE_FILE_ID, fd->file_size, S_IFREG | 0444);
    } else {
        return -ENOENT;
    }

    fuse_reply(fd, hdr->unique, &out, sizeof(out));
    return NO_STATUS;
}

static int handle_lookup(void* data, struct fuse_data* fd,
                         const struct fuse_in_header* hdr) {
    struct fuse_entry_out out;
    memset(&out, 0, sizeof(out));
    out.entry_valid = 10;
    out.attr_valid = 10;

    if (strncmp(FUSE_SIDELOAD_HOST_FILENAME, reinterpret_cast<const char*>(data),
                sizeof(FUSE_SIDELOAD_HOST_FILENAME)) == 0) {
        out.nodeid = PACKAGE_FILE_ID;
        out.generation = PACKAGE_FILE_ID;
        fill_attr(&(out.attr), fd, PACKAGE_FILE_ID, fd->file_size, S_IFREG | 0444);
    } else {
        return -ENOENT;
    }

    fuse_reply(fd, hdr->unique, &out, sizeof(out));
    return NO_STATUS;
}

static int handle_open(void* /* data */, struct fuse_data* fd, const struct fuse_in_header* hdr) {
    if (hdr->nodeid != PACKAGE_FILE_ID) return -ENOENT;

    struct fuse_open_out out;
    memset(&out, 0, sizeof(out));
    out.fh = 10;  // an arbitrary number; we always use the same handle
    fuse_reply(fd, hdr->unique, &out, sizeof(out));
    return NO_STATUS;
}

static int handle_flush(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) {
    return 0;
}

static int handle_release(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) {
    return 0;
}

// Fetch a block from the host into fd->curr_block and fd->block_data.
// Returns 0 on successful fetch, negative otherwise.
static int fetch_block(struct fuse_data* fd, uint32_t block) {
    if (block == fd->curr_block) {
        return 0;
    }

    if (block >= fd->file_blocks) {
        memset(fd->block_data, 0, fd->block_size);
        fd->curr_block = block;
        return 0;
    }

    if (block_cache_fetch(fd, block) == 0) {
        fd->curr_block = block;
        return 0;
    }

    size_t fetch_size = fd->block_size;
    if (block * fd->block_size + fetch_size > fd->file_size) {
        // If we're reading the last (partial) block of the file,
        // expect a shorter response from the host, and pad the rest
        // of the block with zeroes.
        fetch_size = fd->file_size - (block * fd->block_size);
        memset(fd->block_data + fetch_size, 0, fd->block_size - fetch_size);
    }

    int result = fd->vtab->read_block(fd->cookie, block, fd->block_data, fetch_size);
    if (result < 0) return result;

    fd->curr_block = block;

    // Verify the hash of the block we just got from the host.
    //
    // - If the hash of the just-received data matches the stored hash
    //   for the block, accept it.
    // - If the stored hash is all zeroes, store the new hash and
    //   accept the block (this is the first time we've read this
    //   block).
    // - Otherwise, return -EINVAL for the read.

    uint8_t hash[SHA256_DIGEST_SIZE];
    SHA256_hash(fd->block_data, fd->block_size, hash);
    uint8_t* blockhash = fd->hashes + block * SHA256_DIGEST_SIZE;
    if (memcmp(hash, blockhash, SHA256_DIGEST_SIZE) == 0) {
        return 0;
    }

    int i;
    for (i = 0; i < SHA256_DIGEST_SIZE; ++i) {
        if (blockhash[i] != 0) {
            fd->curr_block = -1;
            return -EIO;
        }
    }

    memcpy(blockhash, hash, SHA256_DIGEST_SIZE);
    block_cache_enter(fd, block);
    return 0;
}

static int handle_read(void* data, struct fuse_data* fd, const struct fuse_in_header* hdr) {
    const struct fuse_read_in* req = reinterpret_cast<const struct fuse_read_in*>(data);
    struct fuse_out_header outhdr;
    struct iovec vec[3];
    int vec_used;
    int result;

    if (hdr->nodeid != PACKAGE_FILE_ID) return -ENOENT;

    uint64_t offset = req->offset;
    uint32_t size = req->size;

    // The docs on the fuse kernel interface are vague about what to
    // do when a read request extends past the end of the file.  We
    // can return a short read -- the return structure does include a
    // length field -- but in testing that caused the program using
    // the file to segfault.  (I speculate that this is due to the
    // reading program accessing it via mmap; maybe mmap dislikes when
    // you return something short of a whole page?)  To fix this we
    // zero-pad reads that extend past the end of the file so we're
    // always returning exactly as many bytes as were requested.
    // (Users of the mapped file have to know its real length anyway.)

    outhdr.len = sizeof(outhdr) + size;
    outhdr.error = 0;
    outhdr.unique = hdr->unique;
    vec[0].iov_base = &outhdr;
    vec[0].iov_len = sizeof(outhdr);

    uint32_t block = offset / fd->block_size;
    result = fetch_block(fd, block);
    if (result != 0) return result;

    // Two cases:
    //
    //   - the read request is entirely within this block.  In this
    //     case we can reply immediately.
    //
    //   - the read request goes over into the next block.  Note that
    //     since we mount the filesystem with max_read=block_size, a
    //     read can never span more than two blocks.  In this case we
    //     copy the block to extra_block and issue a fetch for the
    //     following block.

    uint32_t block_offset = offset - (block * fd->block_size);

    if (size + block_offset <= fd->block_size) {
        // First case: the read fits entirely in the first block.

        vec[1].iov_base = fd->block_data + block_offset;
        vec[1].iov_len = size;
        vec_used = 2;
    } else {
        // Second case: the read spills over into the next block.

        memcpy(fd->extra_block, fd->block_data + block_offset,
               fd->block_size - block_offset);
        vec[1].iov_base = fd->extra_block;
        vec[1].iov_len = fd->block_size - block_offset;

        result = fetch_block(fd, block+1);
        if (result != 0) return result;
        vec[2].iov_base = fd->block_data;
        vec[2].iov_len = size - vec[1].iov_len;
        vec_used = 3;
    }

    if (writev(fd->ffd, vec, vec_used) < 0) {
        printf("*** READ REPLY FAILED: %s ***\n", strerror(errno));
    }
    return NO_STATUS;
}

static volatile int terminated = 0;
static void sig_term(int sig)
{
    terminated = 1;
}

int run_fuse_sideload(struct provider_vtab* vtab, void* cookie,
                      uint64_t file_size, uint32_t block_size)
{
    int result;

    // If something's already mounted on our mountpoint, try to remove
    // it.  (Mostly in case of a previous abnormal exit.)
    umount2(FUSE_SIDELOAD_HOST_MOUNTPOINT, MNT_FORCE);

    if (block_size < 1024) {
        fprintf(stderr, "block size (%u) is too small\n", block_size);
        return -1;
    }
    if (block_size > (1<<22)) {   // 4 MiB
        fprintf(stderr, "block size (%u) is too large\n", block_size);
        return -1;
    }

    struct fuse_data fd;
    memset(&fd, 0, sizeof(fd));
    fd.vtab = vtab;
    fd.cookie = cookie;
    fd.file_size = file_size;
    fd.block_size = block_size;
    fd.file_blocks = (file_size == 0) ? 0 : (((file_size-1) / block_size) + 1);

    uint64_t mem = free_memory();
    uint64_t avail = mem - (INSTALL_REQUIRED_MEMORY + fd.file_blocks * sizeof(uint8_t*));

    if (fd.file_blocks > (1<<18)) {
        fprintf(stderr, "file has too many blocks (%u)\n", fd.file_blocks);
        result = -1;
        goto done;
    }

    fd.hashes = (uint8_t*)calloc(fd.file_blocks, SHA256_DIGEST_SIZE);
    if (fd.hashes == NULL) {
        fprintf(stderr, "failed to allocate %d bites for hashes\n",
                fd.file_blocks * SHA256_DIGEST_SIZE);
        result = -1;
        goto done;
    }

    fd.uid = getuid();
    fd.gid = getgid();

    fd.curr_block = -1;
    fd.block_data = (uint8_t*)malloc(block_size);
    if (fd.block_data == NULL) {
        fprintf(stderr, "failed to allocate %d bites for block_data\n", block_size);
        result = -1;
        goto done;
    }
    fd.extra_block = (uint8_t*)malloc(block_size);
    if (fd.extra_block == NULL) {
        fprintf(stderr, "failed to allocate %d bites for extra_block\n", block_size);
        result = -1;
        goto done;
    }

    fd.block_cache_max_size = 0;
    fd.block_cache_size = 0;
    fd.block_cache = NULL;
    if (mem > avail) {
        uint32_t max_size = avail / fd.block_size;
        if (max_size > fd.file_blocks) {
            max_size = fd.file_blocks;
        }
        // The cache must be at least 1% of the file size or two blocks,
        // whichever is larger.
        if (max_size >= fd.file_blocks/100 && max_size >= 2) {
            fd.block_cache_max_size = max_size;
            fd.block_cache = (uint8_t**)calloc(fd.file_blocks, sizeof(uint8_t*));
        }
    }

    signal(SIGTERM, sig_term);

    fd.ffd = open("/dev/fuse", O_RDWR);
    if (fd.ffd < 0) {
        perror("open /dev/fuse");
        result = -1;
        goto done;
    }

    char opts[256];
    snprintf(opts, sizeof(opts),
             ("fd=%d,user_id=%d,group_id=%d,max_read=%u,"
              "allow_other,rootmode=040000"),
             fd.ffd, fd.uid, fd.gid, block_size);

    result = mount("/dev/fuse", FUSE_SIDELOAD_HOST_MOUNTPOINT,
                   "fuse", MS_NOSUID | MS_NODEV | MS_RDONLY | MS_NOEXEC, opts);
    if (result < 0) {
        perror("mount");
        goto done;
    }
    uint8_t request_buffer[sizeof(struct fuse_in_header) + PATH_MAX*8];
    while (!terminated) {
        fd_set fds;
        struct timeval tv;
        FD_ZERO(&fds);
        FD_SET(fd.ffd, &fds);
        tv.tv_sec = 1;
        tv.tv_usec = 0;
        int rc = select(fd.ffd+1, &fds, NULL, NULL, &tv);
        if (rc <= 0) {
            continue;
        }
        ssize_t len = TEMP_FAILURE_RETRY(read(fd.ffd, request_buffer, sizeof(request_buffer)));
        if (len == -1) {
            perror("read request");
            if (errno == ENODEV) {
                result = -1;
                break;
            }
            continue;
        }

        if ((size_t)len < sizeof(struct fuse_in_header)) {
            fprintf(stderr, "request too short: len=%zu\n", (size_t)len);
            continue;
        }

        struct fuse_in_header* hdr = (struct fuse_in_header*) request_buffer;
        void* data = request_buffer + sizeof(struct fuse_in_header);

        result = -ENOSYS;

        switch (hdr->opcode) {
             case FUSE_INIT:
                result = handle_init(data, &fd, hdr);
                break;

             case FUSE_LOOKUP:
                result = handle_lookup(data, &fd, hdr);
                break;

            case FUSE_GETATTR:
                result = handle_getattr(data, &fd, hdr);
                break;

            case FUSE_OPEN:
                result = handle_open(data, &fd, hdr);
                break;

            case FUSE_READ:
                result = handle_read(data, &fd, hdr);
                break;

            case FUSE_FLUSH:
                result = handle_flush(data, &fd, hdr);
                break;

            case FUSE_RELEASE:
                result = handle_release(data, &fd, hdr);
                break;

            default:
                fprintf(stderr, "unknown fuse request opcode %d\n", hdr->opcode);
                break;
        }

        if (result != NO_STATUS) {
            struct fuse_out_header outhdr;
            outhdr.len = sizeof(outhdr);
            outhdr.error = result;
            outhdr.unique = hdr->unique;
            TEMP_FAILURE_RETRY(write(fd.ffd, &outhdr, sizeof(outhdr)));
        }
    }

  done:
    fd.vtab->close(fd.cookie);

    result = umount2(FUSE_SIDELOAD_HOST_MOUNTPOINT, MNT_DETACH);
    if (result < 0) {
        printf("fuse_sideload umount failed: %s\n", strerror(errno));
    }

    if (fd.ffd) close(fd.ffd);
    if (fd.block_cache) {
        uint32_t n;
        for (n = 0; n < fd.file_blocks; ++n) {
            free(fd.block_cache[n]);
        }
        free(fd.block_cache);
    }
    free(fd.hashes);
    free(fd.block_data);
    free(fd.extra_block);

    return result;
}