summaryrefslogtreecommitdiffstats
path: root/libsensors/AkmSensor.cpp
blob: ce28dbfadd409c4be46e501d6d6aa4d7e789c07a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/select.h>
#include <dlfcn.h>

#include "ak8973b.h"

#include <cutils/log.h>

#include "AkmSensor.h"

/*****************************************************************************/

int (*akm_is_sensor_enabled)(uint32_t sensor_type);
int (*akm_enable_sensor)(uint32_t sensor_type);
int (*akm_disable_sensor)(uint32_t sensor_type);
int (*akm_set_delay)(uint32_t sensor_type, uint64_t delay);

int stub_is_sensor_enabled(uint32_t sensor_type) {
    return 0;
}

int stub_enable_disable_sensor(uint32_t sensor_type) {
    return -ENODEV;
}

int stub_set_delay(uint32_t sensor_type, uint64_t delay) {
    return -ENODEV;
}

AkmSensor::AkmSensor()
: SensorBase(NULL, NULL),
      mEnabled(0),
      mPendingMask(0),
      mInputReader(32)
{
    /* Open the library before opening the input device.  The library
     * creates a uinput device.
     */
    if (loadAKMLibrary() == 0) {
        data_name = "compass";
        data_fd = openInput("compass");
    }

    memset(mPendingEvents, 0, sizeof(mPendingEvents));

    mPendingEvents[Accelerometer].version = sizeof(sensors_event_t);
    mPendingEvents[Accelerometer].sensor = ID_A;
    mPendingEvents[Accelerometer].type = SENSOR_TYPE_ACCELEROMETER;
    mPendingEvents[Accelerometer].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;

    mPendingEvents[MagneticField].version = sizeof(sensors_event_t);
    mPendingEvents[MagneticField].sensor = ID_M;
    mPendingEvents[MagneticField].type = SENSOR_TYPE_MAGNETIC_FIELD;
    mPendingEvents[MagneticField].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;

    mPendingEvents[Orientation  ].version = sizeof(sensors_event_t);
    mPendingEvents[Orientation  ].sensor = ID_O;
    mPendingEvents[Orientation  ].type = SENSOR_TYPE_ORIENTATION;
    mPendingEvents[Orientation  ].orientation.status = SENSOR_STATUS_ACCURACY_HIGH;

    // read the actual value of all sensors if they're enabled already
    struct input_absinfo absinfo;
    short flags = 0;

    if (akm_is_sensor_enabled(SENSOR_TYPE_ACCELEROMETER))  {
        mEnabled |= 1<<Accelerometer;
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_X), &absinfo)) {
            mPendingEvents[Accelerometer].acceleration.x = absinfo.value * CONVERT_A_X;
        }
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Y), &absinfo)) {
            mPendingEvents[Accelerometer].acceleration.y = absinfo.value * CONVERT_A_Y;
        }
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Z), &absinfo)) {
            mPendingEvents[Accelerometer].acceleration.z = absinfo.value * CONVERT_A_Z;
        }
    }
    if (akm_is_sensor_enabled(SENSOR_TYPE_MAGNETIC_FIELD))  {
        mEnabled |= 1<<MagneticField;
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_X), &absinfo)) {
            mPendingEvents[MagneticField].magnetic.x = absinfo.value * CONVERT_M_X;
        }
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Y), &absinfo)) {
            mPendingEvents[MagneticField].magnetic.y = absinfo.value * CONVERT_M_Y;
        }
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Z), &absinfo)) {
            mPendingEvents[MagneticField].magnetic.z = absinfo.value * CONVERT_M_Z;
        }
    }
    if (akm_is_sensor_enabled(SENSOR_TYPE_ORIENTATION))  {
        mEnabled |= 1<<Orientation;
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_YAW), &absinfo)) {
            mPendingEvents[Orientation].orientation.azimuth = absinfo.value;
        }
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_PITCH), &absinfo)) {
            mPendingEvents[Orientation].orientation.pitch = absinfo.value;
        }
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ROLL), &absinfo)) {
            mPendingEvents[Orientation].orientation.roll = -absinfo.value;
        }
        if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ORIENT_STATUS), &absinfo)) {
            mPendingEvents[Orientation].orientation.status = uint8_t(absinfo.value & SENSOR_STATE_MASK);
        }
    }

    // disable temperature sensor, since it is not supported
    akm_disable_sensor(SENSOR_TYPE_TEMPERATURE);
}

AkmSensor::~AkmSensor()
{
    if (mLibAKM) {
        unsigned ref = ::dlclose(mLibAKM);
    }
}

int AkmSensor::enable(int32_t handle, int en)
{
    int what = -1;

    switch (handle) {
        case ID_A: what = Accelerometer; break;
        case ID_M: what = MagneticField; break;
        case ID_O: what = Orientation;   break;
    }

    if (uint32_t(what) >= numSensors)
        return -EINVAL;

    int newState  = en ? 1 : 0;
    int err = 0;

    if ((uint32_t(newState)<<what) != (mEnabled & (1<<what))) {
        uint32_t sensor_type;
        switch (what) {
            case Accelerometer: sensor_type = SENSOR_TYPE_ACCELEROMETER;  break;
            case MagneticField: sensor_type = SENSOR_TYPE_MAGNETIC_FIELD; break;
            case Orientation:   sensor_type = SENSOR_TYPE_ORIENTATION;  break;
        }
        short flags = newState;
        if (en)
            err = akm_enable_sensor(sensor_type);
        else
            err = akm_disable_sensor(sensor_type);

        ALOGE_IF(err, "Could not change sensor state (%s)", strerror(-err));
        if (!err) {
            mEnabled &= ~(1<<what);
            mEnabled |= (uint32_t(flags)<<what);
        }
    }
    return err;
}

int AkmSensor::setDelay(int32_t handle, int64_t ns)
{
    uint32_t sensor_type = 0;

    if (ns < 0)
        return -EINVAL;

    switch (handle) {
        case ID_A: sensor_type = SENSOR_TYPE_ACCELEROMETER; break;
        case ID_M: sensor_type = SENSOR_TYPE_MAGNETIC_FIELD; break;
        case ID_O: sensor_type = SENSOR_TYPE_ORIENTATION; break;
    }

    if (sensor_type == 0)
        return -EINVAL;

    return akm_set_delay(sensor_type, ns);
}

int AkmSensor::loadAKMLibrary()
{
    mLibAKM = dlopen("libakm.so", RTLD_NOW);

    if (!mLibAKM) {
        akm_is_sensor_enabled = stub_is_sensor_enabled;
        akm_enable_sensor = stub_enable_disable_sensor;
        akm_disable_sensor = stub_enable_disable_sensor;
        akm_set_delay = stub_set_delay;
        ALOGE("AkmSensor: unable to load AKM Library, %s", dlerror());
        return -ENOENT;
    }

    *(void **)&akm_is_sensor_enabled = dlsym(mLibAKM, "akm_is_sensor_enabled");
    *(void **)&akm_enable_sensor = dlsym(mLibAKM, "akm_enable_sensor");
    *(void **)&akm_disable_sensor = dlsym(mLibAKM, "akm_disable_sensor");
    *(void **)&akm_set_delay = dlsym(mLibAKM, "akm_set_delay");

    return 0;
}

int AkmSensor::readEvents(sensors_event_t* data, int count)
{
    if (count < 1)
        return -EINVAL;

    ssize_t n = mInputReader.fill(data_fd);
    if (n < 0)
        return n;

    int numEventReceived = 0;
    input_event const* event;

    while (count && mInputReader.readEvent(&event)) {
        int type = event->type;
        if (type == EV_REL) {
            processEvent(event->code, event->value);
            mInputReader.next();
        } else if (type == EV_SYN) {
            int64_t time = timevalToNano(event->time);
            for (int j=0 ; count && mPendingMask && j<numSensors ; j++) {
                if (mPendingMask & (1<<j)) {
                    mPendingMask &= ~(1<<j);
                    mPendingEvents[j].timestamp = time;
                    if (mEnabled & (1<<j)) {
                        *data++ = mPendingEvents[j];
                        count--;
                        numEventReceived++;
                    }
                }
            }
            if (!mPendingMask) {
                mInputReader.next();
            }
        } else {
            ALOGE("AkmSensor: unknown event (type=%d, code=%d)",
                    type, event->code);
            mInputReader.next();
        }
    }
    return numEventReceived;
}

void AkmSensor::processEvent(int code, int value)
{
    switch (code) {
        case EVENT_TYPE_ACCEL_X:
            mPendingMask |= 1<<Accelerometer;
            mPendingEvents[Accelerometer].acceleration.x = value * CONVERT_A_X;
            break;
        case EVENT_TYPE_ACCEL_Y:
            mPendingMask |= 1<<Accelerometer;
            mPendingEvents[Accelerometer].acceleration.y = value * CONVERT_A_Y;
            break;
        case EVENT_TYPE_ACCEL_Z:
            mPendingMask |= 1<<Accelerometer;
            mPendingEvents[Accelerometer].acceleration.z = value * CONVERT_A_Z;
            break;

        case EVENT_TYPE_MAGV_X:
            mPendingMask |= 1<<MagneticField;
            mPendingEvents[MagneticField].magnetic.x = value * CONVERT_M_X;
            break;
        case EVENT_TYPE_MAGV_Y:
            mPendingMask |= 1<<MagneticField;
            mPendingEvents[MagneticField].magnetic.y = value * CONVERT_M_Y;
            break;
        case EVENT_TYPE_MAGV_Z:
            mPendingMask |= 1<<MagneticField;
            mPendingEvents[MagneticField].magnetic.z = value * CONVERT_M_Z;
            break;

        case EVENT_TYPE_YAW:
            mPendingMask |= 1<<Orientation;
            mPendingEvents[Orientation].orientation.azimuth = value * CONVERT_O_A;
            break;
        case EVENT_TYPE_PITCH:
            mPendingMask |= 1<<Orientation;
            mPendingEvents[Orientation].orientation.pitch = value * CONVERT_O_P;
            break;
        case EVENT_TYPE_ROLL:
            mPendingMask |= 1<<Orientation;
            mPendingEvents[Orientation].orientation.roll = value * CONVERT_O_R;
            break;
        case EVENT_TYPE_ORIENT_STATUS:
            uint8_t status = uint8_t(value & SENSOR_STATE_MASK);
            if (status == 4)
                status = 0;
            mPendingMask |= 1<<Orientation;
            mPendingEvents[Orientation].orientation.status = status;
            break;
    }
}