diff options
author | Paul Kocialkowski <contact@paulk.fr> | 2013-12-28 14:10:40 +0100 |
---|---|---|
committer | Paul Kocialkowski <contact@paulk.fr> | 2014-01-05 12:26:23 +0100 |
commit | f8f404410d88f2cc87d3869f99cc8ea439f3ce39 (patch) | |
tree | 06f154c2cc1e0c33cbae44c861e49b44ef6095b2 /sensors/akmdfs/AKFS_APIs.c | |
parent | 9031e596f8950588a65cafa8fa65e154f5a2d254 (diff) | |
download | device_samsung_n7000-replicant-4.2-0001.zip device_samsung_n7000-replicant-4.2-0001.tar.gz device_samsung_n7000-replicant-4.2-0001.tar.bz2 |
SMDK4210 Sensorsreplicant-4.2-0001
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Diffstat (limited to 'sensors/akmdfs/AKFS_APIs.c')
-rw-r--r-- | sensors/akmdfs/AKFS_APIs.c | 389 |
1 files changed, 389 insertions, 0 deletions
diff --git a/sensors/akmdfs/AKFS_APIs.c b/sensors/akmdfs/AKFS_APIs.c new file mode 100644 index 0000000..ace9bc1 --- /dev/null +++ b/sensors/akmdfs/AKFS_APIs.c @@ -0,0 +1,389 @@ +/****************************************************************************** + * + * Copyright (C) 2012 Asahi Kasei Microdevices Corporation, Japan + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * + ******************************************************************************/ +#include "AKFS_Common.h" +#include "AKFS_Disp.h" +#include "AKFS_FileIO.h" +#include "AKFS_APIs.h" + +#ifdef WIN32 +#include "AK8975_LinuxDriver.h" +#endif + +static AK8975PRMS g_prms; + +/*! + Initialize library. At first, 0 is set to all parameters. After that, some + parameters, which should not be 0, are set to specific value. Some of initial + values can be customized by editing the file \c "AKFS_CSpec.h". + @return The return value is #AKM_SUCCESS. + @param[in] hpat Specify a layout pattern number. The number is determined + according to the mount orientation of the magnetometer. + @param[in] regs[3] Specify the ASA values which are read out from + fuse ROM. regs[0] is ASAX, regs[1] is ASAY, regs[2] is ASAZ. + */ +int16 AKFS_Init( + const AKFS_PATNO hpat, + const uint8 regs[] +) +{ + AKMDATA(AKMDATA_DUMP, "%s: hpat=%d, r[0]=0x%02X, r[1]=0x%02X, r[2]=0x%02X\n", + __FUNCTION__, hpat, regs[0], regs[1], regs[2]); + + /* Set 0 to the AK8975 structure. */ + memset(&g_prms, 0, sizeof(AK8975PRMS)); + + /* Sensitivity */ + g_prms.mfv_hs.u.x = AK8975_HSENSE_DEFAULT; + g_prms.mfv_hs.u.y = AK8975_HSENSE_DEFAULT; + g_prms.mfv_hs.u.z = AK8975_HSENSE_DEFAULT; + g_prms.mfv_as.u.x = AK8975_ASENSE_DEFAULT; + g_prms.mfv_as.u.y = AK8975_ASENSE_DEFAULT; + g_prms.mfv_as.u.z = AK8975_ASENSE_DEFAULT; + + /* Initialize variables that initial value is not 0. */ + g_prms.mi_hnaveV = CSPEC_HNAVE_V; + g_prms.mi_hnaveD = CSPEC_HNAVE_D; + g_prms.mi_anaveV = CSPEC_ANAVE_V; + g_prms.mi_anaveD = CSPEC_ANAVE_D; + + /* Copy ASA values */ + g_prms.mi_asa.u.x = regs[0]; + g_prms.mi_asa.u.y = regs[1]; + g_prms.mi_asa.u.z = regs[2]; + + /* Copy layout pattern */ + g_prms.m_hpat = hpat; + + return AKM_SUCCESS; +} + +/*! + Release resources. This function is for future expansion. + @return The return value is #AKM_SUCCESS. + */ +int16 AKFS_Release(void) +{ + return AKM_SUCCESS; +} + +/* + This function is called just before a measurement sequence starts. + This function reads parameters from file, then initializes algorithm + parameters. + @return The return value is #AKM_SUCCESS. + @param[in] path Specify a path to the settings file. + */ +int16 AKFS_Start( + const char* path +) +{ + AKMDATA(AKMDATA_DUMP, "%s: path=%s\n", __FUNCTION__, path); + + /* Read setting files from a file */ + if (AKFS_LoadParameters(&g_prms, path) != AKM_SUCCESS) { + AKMERROR_STR("AKFS_Load"); + } + + /* Initialize buffer */ + AKFS_InitBuffer(AKFS_HDATA_SIZE, g_prms.mfv_hdata); + AKFS_InitBuffer(AKFS_HDATA_SIZE, g_prms.mfv_hvbuf); + AKFS_InitBuffer(AKFS_ADATA_SIZE, g_prms.mfv_adata); + AKFS_InitBuffer(AKFS_ADATA_SIZE, g_prms.mfv_avbuf); + + /* Initialize for AOC */ + AKFS_InitAOC(&g_prms.m_aocv); + /* Initialize magnetic status */ + g_prms.mi_hstatus = 0; + + return AKM_SUCCESS; +} + +/*! + This function is called when a measurement sequence is done. + This fucntion writes parameters to file. + @return The return value is #AKM_SUCCESS. + @param[in] path Specify a path to the settings file. + */ +int16 AKFS_Stop( + const char* path +) +{ + AKMDATA(AKMDATA_DUMP, "%s: path=%s\n", __FUNCTION__, path); + + /* Write setting files to a file */ + if (AKFS_SaveParameters(&g_prms, path) != AKM_SUCCESS) { + AKMERROR_STR("AKFS_Save"); + } + + return AKM_SUCCESS; +} + +/*! + This function is called when new magnetometer data is available. The output + vector format and coordination system follow the Android definition. + @return The return value is #AKM_SUCCESS. + Otherwise the return value is #AKM_FAIL. + @param[in] mag A set of measurement data from magnetometer. X axis value + should be in mag[0], Y axis value should be in mag[1], Z axis value should be + in mag[2]. + @param[in] status A status of magnetometer. This status indicates the result + of measurement data, i.e. overflow, success or fail, etc. + @param[out] vx X axis value of magnetic field vector. + @param[out] vy Y axis value of magnetic field vector. + @param[out] vz Z axis value of magnetic field vector. + @param[out] accuracy Accuracy of magnetic field vector. + */ +int16 AKFS_Get_MAGNETIC_FIELD( + const int16 mag[3], + const int16 status, + AKFLOAT* vx, + AKFLOAT* vy, + AKFLOAT* vz, + int16* accuracy +) +{ + int16 akret; + int16 aocret; + AKFLOAT radius; + + AKMDATA(AKMDATA_DUMP, "%s: m[0]=%d, m[1]=%d, m[2]=%d, st=%d\n", + __FUNCTION__, mag[0], mag[1], mag[2], status); + + /* Decomposition */ + /* Sensitivity adjustment, i.e. multiply ASA, is done in this function. */ + akret = AKFS_DecompAK8975( + mag, + status, + &g_prms.mi_asa, + AKFS_HDATA_SIZE, + g_prms.mfv_hdata + ); + if(akret == AKFS_ERROR) { + AKMERROR; + return AKM_FAIL; + } + + /* Adjust coordination */ + akret = AKFS_Rotate( + g_prms.m_hpat, + &g_prms.mfv_hdata[0] + ); + if (akret == AKFS_ERROR) { + AKMERROR; + return AKM_FAIL; + } + + /* AOC for magnetometer */ + /* Offset estimation is done in this function */ + aocret = AKFS_AOC( + &g_prms.m_aocv, + g_prms.mfv_hdata, + &g_prms.mfv_ho + ); + + /* Subtract offset */ + /* Then, a magnetic vector, the unit is uT, is stored in mfv_hvbuf. */ + akret = AKFS_VbNorm( + AKFS_HDATA_SIZE, + g_prms.mfv_hdata, + 1, + &g_prms.mfv_ho, + &g_prms.mfv_hs, + AK8975_HSENSE_TARGET, + AKFS_HDATA_SIZE, + g_prms.mfv_hvbuf + ); + if(akret == AKFS_ERROR) { + AKMERROR; + return AKM_FAIL; + } + + /* Averaging */ + akret = AKFS_VbAve( + AKFS_HDATA_SIZE, + g_prms.mfv_hvbuf, + CSPEC_HNAVE_V, + &g_prms.mfv_hvec + ); + if (akret == AKFS_ERROR) { + AKMERROR; + return AKM_FAIL; + } + + /* Check the size of magnetic vector */ + radius = AKFS_SQRT( + (g_prms.mfv_hvec.u.x * g_prms.mfv_hvec.u.x) + + (g_prms.mfv_hvec.u.y * g_prms.mfv_hvec.u.y) + + (g_prms.mfv_hvec.u.z * g_prms.mfv_hvec.u.z)); + + if (radius > AKFS_GEOMAG_MAX) { + g_prms.mi_hstatus = 0; + } else { + if (aocret) { + g_prms.mi_hstatus = 3; + } + } + + *vx = g_prms.mfv_hvec.u.x; + *vy = g_prms.mfv_hvec.u.y; + *vz = g_prms.mfv_hvec.u.z; + *accuracy = g_prms.mi_hstatus; + + /* Debug output */ + AKMDATA(AKMDATA_MAG, "Mag(%d):%8.2f, %8.2f, %8.2f\n", + *accuracy, *vx, *vy, *vz); + + return AKM_SUCCESS; +} + +/*! + This function is called when new accelerometer data is available. The output + vector format and coordination system follow the Android definition. + @return The return value is #AKM_SUCCESS when function succeeds. Otherwise + the return value is #AKM_FAIL. + @param[in] acc A set of measurement data from accelerometer. X axis value + should be in acc[0], Y axis value should be in acc[1], Z axis value should be + in acc[2]. + @param[in] status A status of accelerometer. This status indicates the result + of acceleration data, i.e. overflow, success or fail, etc. + @param[out] vx X axis value of acceleration vector. + @param[out] vy Y axis value of acceleration vector. + @param[out] vz Z axis value of acceleration vector. + @param[out] accuracy Accuracy of acceleration vector. + This value is always 3. + */ +int16 AKFS_Get_ACCELEROMETER( + const int16 acc[3], + const int16 status, + AKFLOAT* vx, + AKFLOAT* vy, + AKFLOAT* vz, + int16* accuracy +) +{ + int16 akret; + + AKMDATA(AKMDATA_DUMP, "%s: a[0]=%d, a[1]=%d, a[2]=%d, st=%d\n", + __FUNCTION__, acc[0], acc[1], acc[2], status); + + /* Save data to buffer */ + AKFS_BufShift( + AKFS_ADATA_SIZE, + 1, + g_prms.mfv_adata + ); + g_prms.mfv_adata[0].u.x = acc[0]; + g_prms.mfv_adata[0].u.y = acc[1]; + g_prms.mfv_adata[0].u.z = acc[2]; + + /* Subtract offset, adjust sensitivity */ + /* As a result, a unit of acceleration data in mfv_avbuf is '1G = 9.8' */ + akret = AKFS_VbNorm( + AKFS_ADATA_SIZE, + g_prms.mfv_adata, + 1, + &g_prms.mfv_ao, + &g_prms.mfv_as, + AK8975_ASENSE_TARGET, + AKFS_ADATA_SIZE, + g_prms.mfv_avbuf + ); + if(akret == AKFS_ERROR) { + AKMERROR; + return AKM_FAIL; + } + + /* Averaging */ + akret = AKFS_VbAve( + AKFS_ADATA_SIZE, + g_prms.mfv_avbuf, + CSPEC_ANAVE_V, + &g_prms.mfv_avec + ); + if (akret == AKFS_ERROR) { + AKMERROR; + return AKM_FAIL; + } + + /* Adjust coordination */ + /* It is not needed. Because, the data from AK8975 driver is already + follows Android coordinate system. */ + + *vx = g_prms.mfv_avec.u.x; + *vy = g_prms.mfv_avec.u.y; + *vz = g_prms.mfv_avec.u.z; + *accuracy = 3; + + /* Debug output */ + AKMDATA(AKMDATA_ACC, "Acc(%d):%8.2f, %8.2f, %8.2f\n", + *accuracy, *vx, *vy, *vz); + + return AKM_SUCCESS; +} + +/*! + Get orientation sensor's elements. The vector format and coordination system + follow the Android definition. Before this function is called, magnetic + field vector and acceleration vector should be stored in the buffer by + calling #AKFS_Get_MAGNETIC_FIELD and #AKFS_Get_ACCELEROMETER. + @return The return value is #AKM_SUCCESS when function succeeds. Otherwise + the return value is #AKM_FAIL. + @param[out] azimuth Azimuthal angle in degree. + @param[out] pitch Pitch angle in degree. + @param[out] roll Roll angle in degree. + @param[out] accuracy Accuracy of orientation sensor. + */ +int16 AKFS_Get_ORIENTATION( + AKFLOAT* azimuth, + AKFLOAT* pitch, + AKFLOAT* roll, + int16* accuracy +) +{ + int16 akret; + + /* Azimuth calculation */ + /* Coordination system follows the Android coordination. */ + akret = AKFS_Direction( + AKFS_HDATA_SIZE, + g_prms.mfv_hvbuf, + CSPEC_HNAVE_D, + AKFS_ADATA_SIZE, + g_prms.mfv_avbuf, + CSPEC_ANAVE_D, + &g_prms.mf_azimuth, + &g_prms.mf_pitch, + &g_prms.mf_roll + ); + + if(akret == AKFS_ERROR) { + AKMERROR; + return AKM_FAIL; + } + *azimuth = g_prms.mf_azimuth; + *pitch = g_prms.mf_pitch; + *roll = g_prms.mf_roll; + *accuracy = g_prms.mi_hstatus; + + /* Debug output */ + AKMDATA(AKMDATA_ORI, "Ori(%d):%8.2f, %8.2f, %8.2f\n", + *accuracy, *azimuth, *pitch, *roll); + + return AKM_SUCCESS; +} + |