summaryrefslogtreecommitdiffstats
path: root/invensense/mlsdk/mllite/mlFIFO.c
blob: a5d0c9f29706bfc55c74eaf24712a8fae0d24aeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
/*
 $License:
   Copyright 2011 InvenSense, Inc.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
  $
 */
/*******************************************************************************
 *
 * $Id: mlFIFO.c 5653 2011-06-16 21:06:55Z nroyer $
 *
 *******************************************************************************/

/**
 *   @defgroup MLFIFO
 *   @brief Motion Library - FIFO Driver.
 *          The FIFO API Interface.
 *
 *   @{
 *       @file mlFIFO.c
 *       @brief FIFO Interface.
**/

#include <string.h>
#include "mpu.h"
#include "mpu3050.h"
#include "mlFIFO.h"
#include "mlFIFOHW.h"
#include "dmpKey.h"
#include "mlMathFunc.h"
#include "ml.h"
#include "mldl.h"
#include "mldl_cfg.h"
#include "mlstates.h"
#include "mlsupervisor.h"
#include "mlos.h"
#include "mlmath.h"
#include "accel.h"

#include "log.h"
#undef MPL_LOG_TAG
#define MPL_LOG_TAG "MPL-fifo"

#define FIFO_DEBUG 0

#define REF_QUATERNION             (0)
#define REF_GYROS                  (REF_QUATERNION + 4)
#define REF_CONTROL                (REF_GYROS + 3)
#define REF_RAW                    (REF_CONTROL + 4)
#define REF_RAW_EXTERNAL           (REF_RAW + 8)
#define REF_ACCEL                  (REF_RAW_EXTERNAL + 6)
#define REF_QUANT_ACCEL            (REF_ACCEL + 3)
#define REF_QUATERNION_6AXIS       (REF_QUANT_ACCEL + INV_MAX_NUM_ACCEL_SAMPLES)
#define REF_EIS                    (REF_QUATERNION_6AXIS + 4)
#define REF_DMP_PACKET             (REF_EIS + 3)
#define REF_GARBAGE                (REF_DMP_PACKET + 1)
#define REF_LAST                   (REF_GARBAGE + 1)

long fifo_scale[REF_LAST] = {
    (1L << 30), (1L << 30), (1L << 30), (1L << 30), // Quaternion
    // 2^(16+30)/((2^30)*((3.14159265358/180)/200)/2)
    1501974482L, 1501974482L, 1501974482L,  // Gyro
    (1L << 30), (1L << 30), (1L << 30), (1L << 30), // Control
    (1L << 14),                 // Temperature
    (1L << 14), (1L << 14), (1L << 14), // Raw Gyro
    (1L << 14), (1L << 14), (1L << 14), (0),    // Raw Accel, plus padding
    (1L << 14), (1L << 14), (1L << 14), // Raw External
    (1L << 14), (1L << 14), (1L << 14), // Raw External
    (1L << 16), (1L << 16), (1L << 16), // Accel
    (1L << 30), (1L << 30), (1L << 30), (1L << 30), // Quant Accel
    (1L << 30), (1L << 30), (1L << 30), (1L << 30), //Quant Accel
    (1L << 30), (1L << 30), (1L << 30), (1L << 30), // Quaternion 6 Axis
    (1L << 30), (1L << 30), (1L << 30), // EIS
    (1L << 30),                 // Packet
    (1L << 30),                 // Garbage
};

// The scale factors for tap need to match the number in fifo_scale above.
// fifo_base_offset below may also need to be changed if this is not 8
#if INV_MAX_NUM_ACCEL_SAMPLES != 8
#error  INV_MAX_NUM_ACCEL_SAMPLES must be defined to 8
#endif

#define CONFIG_QUAT                (0)
#define CONFIG_GYROS               (CONFIG_QUAT + 1)
#define CONFIG_CONTROL_DATA        (CONFIG_GYROS + 1)
#define CONFIG_TEMPERATURE         (CONFIG_CONTROL_DATA + 1)
#define CONFIG_RAW_DATA            (CONFIG_TEMPERATURE + 1)
#define CONFIG_RAW_EXTERNAL        (CONFIG_RAW_DATA + 1)
#define CONFIG_ACCEL               (CONFIG_RAW_EXTERNAL + 1)
#define CONFIG_DMP_QUANT_ACCEL     (CONFIG_ACCEL + 1)
#define CONFIG_EIS                 (CONFIG_DMP_QUANT_ACCEL + 1)
#define CONFIG_DMP_PACKET_NUMBER   (CONFIG_EIS + 1)
#define CONFIG_FOOTER              (CONFIG_DMP_PACKET_NUMBER + 1)
#define NUMFIFOELEMENTS            (CONFIG_FOOTER + 1)

const int fifo_base_offset[NUMFIFOELEMENTS] = {
    REF_QUATERNION * 4,
    REF_GYROS * 4,
    REF_CONTROL * 4,
    REF_RAW * 4,
    REF_RAW * 4 + 4,
    REF_RAW_EXTERNAL * 4,
    REF_ACCEL * 4,
    REF_QUANT_ACCEL * 4,
    REF_EIS * 4,
    REF_DMP_PACKET * 4,
    REF_GARBAGE * 4
};

struct fifo_obj {
    void (*fifo_process_cb) (void);
    long decoded[REF_LAST];
    long decoded_accel[INV_MAX_NUM_ACCEL_SAMPLES][ACCEL_NUM_AXES];
    int offsets[REF_LAST * 4];
    int cache;
    uint_fast8_t gyro_source;
    unsigned short fifo_rate;
    unsigned short sample_step_size_ms;
    uint_fast16_t fifo_packet_size;
    uint_fast16_t data_config[NUMFIFOELEMENTS];
    unsigned char reference_count[REF_LAST];
    long acc_bias_filt[3];
    float acc_filter_coef;
    long gravity_cache[3];
};

static struct fifo_obj fifo_obj;

#define FIFO_CACHE_TEMPERATURE 1
#define FIFO_CACHE_GYRO 2
#define FIFO_CACHE_GRAVITY_BODY 4
#define FIFO_CACHE_ACC_BIAS 8

struct fifo_rate_obj {
    // These describe callbacks happening everytime a FIFO block is processed
    int_fast8_t num_cb;
    HANDLE mutex;
    inv_obj_func fifo_process_cb[MAX_HIGH_RATE_PROCESSES];
    int priority[MAX_HIGH_RATE_PROCESSES];
};

struct fifo_rate_obj fifo_rate_obj;

/** Sets accuracy to be one of 0, INV_32_BIT, or INV_16_BIT. Looks up old
 *  accuracy if needed.
 */
static uint_fast16_t inv_set_fifo_accuracy(uint_fast16_t elements,
                                           uint_fast16_t accuracy,
                                           uint_fast8_t configOffset)
{
    if (elements) {
        if (!accuracy)
            accuracy = fifo_obj.data_config[configOffset];
        else if (accuracy & INV_16_BIT)
            if ((fifo_obj.data_config[configOffset] & INV_32_BIT))
                accuracy = INV_32_BIT;  // 32-bits takes priority
            else
                accuracy = INV_16_BIT;
        else
            accuracy = INV_32_BIT;
    } else {
        accuracy = 0;
    }

    return accuracy;
}

/** Adjusts (len) Reference Counts, at offset (refOffset). If increment is 0,
 * the reference counts are subtracted, otherwise they are incremented for each
 * bit set in element. The value returned are the elements that should be sent
 * out as data through the FIFO.
*/
static uint_fast16_t inv_set_fifo_reference(uint_fast16_t elements,
                                            uint_fast16_t increment,
                                            uint_fast8_t refOffset,
                                            uint_fast8_t len)
{
    uint_fast8_t kk;

    if (increment == 0) {
        for (kk = 0; kk < len; ++kk) {
            if ((elements & 1)
                && (fifo_obj.reference_count[kk + refOffset] > 0)) {
                fifo_obj.reference_count[kk + refOffset]--;
            }
            elements >>= 1;
        }
    } else {
        for (kk = 0; kk < len; ++kk) {
            if (elements & 1)
                fifo_obj.reference_count[kk + refOffset]++;
            elements >>= 1;
        }
    }
    elements = 0;
    for (kk = 0; kk < len; ++kk) {
        if (fifo_obj.reference_count[kk + refOffset] > 0)
            elements |= (1 << kk);
    }
    return elements;
}

/**
 * @param[in] accuracy INV_16_BIT or INV_32_BIT when constructing data to send
 *  out the FIFO, 0 when removing from the FIFO.
 */
static inv_error_t inv_construct3_fifo(unsigned char *regs,
                                       uint_fast16_t elements,
                                       uint_fast16_t accuracy,
                                       uint_fast8_t refOffset,
                                       unsigned short key,
                                       uint_fast8_t configOffset)
{
    int_fast8_t kk;
    inv_error_t result;

    elements = inv_set_fifo_reference(elements, accuracy, refOffset, 3);
    accuracy = inv_set_fifo_accuracy(elements, accuracy, configOffset);

    if (accuracy & INV_16_BIT) {
        regs[0] = DINAF8 + 2;
    }

    fifo_obj.data_config[configOffset] = elements | accuracy;

    for (kk = 0; kk < 3; ++kk) {
        if ((elements & 1) == 0)
            regs[kk + 1] = DINAA0 + 3;
        elements >>= 1;
    }

    result = inv_set_mpu_memory(key, 4, regs);

    return result;
}

/**
 * @internal
 * Puts footer on FIFO data.
 */
static inv_error_t inv_set_footer(void)
{
    unsigned char regs = DINA30;
    uint_fast8_t tmp_count;
    int_fast8_t i, j;
    int offset;
    int result;
    int *fifo_offsets_ptr = fifo_obj.offsets;

    fifo_obj.fifo_packet_size = 0;
    for (i = 0; i < NUMFIFOELEMENTS; i++) {
        tmp_count = 0;
        offset = fifo_base_offset[i];
        for (j = 0; j < 8; j++) {
            if ((fifo_obj.data_config[i] >> j) & 0x0001) {
#ifndef BIG_ENDIAN
                // Special Case for Byte Ordering on Accel Data
                if ((i == CONFIG_RAW_DATA) && (j > 2)) {
                    tmp_count += 2;
                    switch (inv_get_dl_config()->accel->endian) {
                    case EXT_SLAVE_BIG_ENDIAN:
                        *fifo_offsets_ptr++ = offset + 3;
                        *fifo_offsets_ptr++ = offset + 2;
                        break;
                    case EXT_SLAVE_LITTLE_ENDIAN:
                        *fifo_offsets_ptr++ = offset + 2;
                        *fifo_offsets_ptr++ = offset + 3;
                        break;
                    case EXT_SLAVE_FS8_BIG_ENDIAN:
                        if (j == 3) {
                            // Throw this byte away
                            *fifo_offsets_ptr++ =
                                fifo_base_offset[CONFIG_FOOTER];
                            *fifo_offsets_ptr++ = offset + 3;
                        } else if (j == 4) {
                            *fifo_offsets_ptr++ = offset + 3;
                            *fifo_offsets_ptr++ = offset + 7;
                        } else {
                            // Throw these byte away
                            *fifo_offsets_ptr++ =
                                fifo_base_offset[CONFIG_FOOTER];
                            *fifo_offsets_ptr++ =
                                fifo_base_offset[CONFIG_FOOTER];
                        }
                        break;
                    case EXT_SLAVE_FS16_BIG_ENDIAN:
                        if (j == 3) {
                            // Throw this byte away
                            *fifo_offsets_ptr++ =
                                fifo_base_offset[CONFIG_FOOTER];
                            *fifo_offsets_ptr++ = offset + 3;
                        } else if (j == 4) {
                            *fifo_offsets_ptr++ = offset - 2;
                            *fifo_offsets_ptr++ = offset + 3;
                        } else {
                            *fifo_offsets_ptr++ = offset - 2;
                            *fifo_offsets_ptr++ = offset + 3;
                        }
                        break;
                    default:
                        return INV_ERROR;    // Bad value on ordering
                    }
                } else {
                    tmp_count += 2;
                    *fifo_offsets_ptr++ = offset + 3;
                    *fifo_offsets_ptr++ = offset + 2;
                    if (fifo_obj.data_config[i] & INV_32_BIT) {
                        *fifo_offsets_ptr++ = offset + 1;
                        *fifo_offsets_ptr++ = offset;
                        tmp_count += 2;
                    }
                }
#else
                // Big Endian Platform
                // Special Case for Byte Ordering on Accel Data
                if ((i == CONFIG_RAW_DATA) && (j > 2)) {
                    tmp_count += 2;
                    switch (inv_get_dl_config()->accel->endian) {
                    case EXT_SLAVE_BIG_ENDIAN:
                        *fifo_offsets_ptr++ = offset + 2;
                        *fifo_offsets_ptr++ = offset + 3;
                        break;
                    case EXT_SLAVE_LITTLE_ENDIAN:
                        *fifo_offsets_ptr++ = offset + 3;
                        *fifo_offsets_ptr++ = offset + 2;
                        break;
                    case EXT_SLAVE_FS8_BIG_ENDIAN:
                        if (j == 3) {
                            // Throw this byte away
                            *fifo_offsets_ptr++ =
                                fifo_base_offset[CONFIG_FOOTER];
                            *fifo_offsets_ptr++ = offset;
                        } else if (j == 4) {
                            *fifo_offsets_ptr++ = offset;
                            *fifo_offsets_ptr++ = offset + 4;
                        } else {
                            // Throw these bytes away
                            *fifo_offsets_ptr++ =
                                fifo_base_offset[CONFIG_FOOTER];
                            *fifo_offsets_ptr++ =
                                fifo_base_offset[CONFIG_FOOTER];
                        }
                        break;
                    case EXT_SLAVE_FS16_BIG_ENDIAN:
                        if (j == 3) {
                            // Throw this byte away
                            *fifo_offsets_ptr++ =
                                fifo_base_offset[CONFIG_FOOTER];
                            *fifo_offsets_ptr++ = offset;
                        } else if (j == 4) {
                            *fifo_offsets_ptr++ = offset - 3;
                            *fifo_offsets_ptr++ = offset;
                        } else {
                            *fifo_offsets_ptr++ = offset - 3;
                            *fifo_offsets_ptr++ = offset;
                        }
                        break;
                    default:
                        return INV_ERROR;    // Bad value on ordering
                    }
                } else {
                    tmp_count += 2;
                    *fifo_offsets_ptr++ = offset;
                    *fifo_offsets_ptr++ = offset + 1;
                    if (fifo_obj.data_config[i] & INV_32_BIT) {
                        *fifo_offsets_ptr++ = offset + 2;
                        *fifo_offsets_ptr++ = offset + 3;
                        tmp_count += 2;
                    }
                }

#endif
            }
            offset += 4;
        }
        fifo_obj.fifo_packet_size += tmp_count;
    }
    if (fifo_obj.data_config[CONFIG_FOOTER] == 0 &&
        fifo_obj.fifo_packet_size > 0) {
        // Add footer
        result = inv_set_mpu_memory(KEY_CFG_16, 1, &regs);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }
        fifo_obj.data_config[CONFIG_FOOTER] = 0x0001 | INV_16_BIT;
        fifo_obj.fifo_packet_size += 2;
    } else if (fifo_obj.data_config[CONFIG_FOOTER] &&
               (fifo_obj.fifo_packet_size == 2)) {
        // Remove Footer
        regs = DINAA0 + 3;
        result = inv_set_mpu_memory(KEY_CFG_16, 1, &regs);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }
        fifo_obj.data_config[CONFIG_FOOTER] = 0;
        fifo_obj.fifo_packet_size = 0;
    }

    return INV_SUCCESS;
}

inv_error_t inv_decode_quantized_accel(void)
{
    int kk;
    int fifoRate = inv_get_fifo_rate();

    if (!fifo_obj.data_config[CONFIG_DMP_QUANT_ACCEL])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (kk = (INV_MAX_NUM_ACCEL_SAMPLES - (fifoRate + 1));
         kk < INV_MAX_NUM_ACCEL_SAMPLES; kk++) {
        union {
            unsigned int u10:10;
            signed int s10:10;
        } temp;

        union {
            uint32_t u32;
            int32_t s32;
        } value;

        value.u32 = fifo_obj.decoded[REF_QUANT_ACCEL + kk];
        // unquantize this samples.
        // They are stored as x * 2^20 + y * 2^10 + z
        // Z
        temp.u10 = value.u32 & 0x3ff;
        value.s32 -= temp.s10;
        fifo_obj.decoded_accel[kk][2] = temp.s10 * 64;
        // Y
        value.s32 = value.s32 / 1024;
        temp.u10 = value.u32 & 0x3ff;
        value.s32 -= temp.s10;
        fifo_obj.decoded_accel[kk][1] = temp.s10 * 64;
        // X
        value.s32 = value.s32 / 1024;
        temp.u10 = value.u32 & 0x3ff;
        fifo_obj.decoded_accel[kk][0] = temp.s10 * 64;
    }
    return INV_SUCCESS;
}

static inv_error_t inv_state_change_fifo(unsigned char newState)
{
    inv_error_t result = INV_SUCCESS;
    unsigned char regs[4];
    struct mldl_cfg *mldl_cfg = inv_get_dl_config();

    /* Don't reset the fifo on a fifo rate change */
    if ((mldl_cfg->requested_sensors & INV_DMP_PROCESSOR) &&
        (newState != inv_get_state()) && (inv_dmpkey_supported(KEY_D_1_178))) {
        /* Delay output on restart by 50ms due to warm up time of gyros */

        short delay = (short)-((50 / inv_get_sample_step_size_ms()) + 1);
        inv_init_fifo_hardare();
        inv_int16_to_big8(delay, regs);
        result = inv_set_mpu_memory(KEY_D_1_178, 2, regs);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }
    }

    if (INV_STATE_DMP_STARTED == newState) {
        if (inv_dmpkey_supported(KEY_D_1_128)) {
            double tmp;
            tmp = (0x20000000L * M_PI) / (fifo_obj.fifo_rate + 1);
            if (tmp > 0x40000000L)
                tmp = 0x40000000L;
            (void)inv_int32_to_big8((long)tmp, regs);
            result = inv_set_mpu_memory(KEY_D_1_128, sizeof(long), regs);
            if (result) {
                LOG_RESULT_LOCATION(result);
                return result;
            }
            result = inv_reset_fifo();
            if (result) {
                LOG_RESULT_LOCATION(result);
                return result;
            }
        }
    }
    return result;
}

/**
 * @internal
 * @brief get the FIFO packet size
 * @return the FIFO packet size
 */
uint_fast16_t inv_get_fifo_packet_size(void)
{
    return fifo_obj.fifo_packet_size;
}

/**
 *  @brief  Initializes all the internal static variables for
 *          the FIFO module.
 *  @note   Should be called by the initialization routine such
 *          as inv_dmp_open().
 *  @return INV_SUCCESS if successful, a non-zero error code otherwise.
 */
inv_error_t inv_init_fifo_param(void)
{
    inv_error_t result;
    memset(&fifo_obj, 0, sizeof(struct fifo_obj));
    fifo_obj.decoded[REF_QUATERNION] = 1073741824L; // Set to Identity
    inv_set_linear_accel_filter_coef(0.f);
    fifo_obj.fifo_rate = 20;
    fifo_obj.sample_step_size_ms = 100;
    memset(&fifo_rate_obj, 0, sizeof(struct fifo_rate_obj));
    result = inv_create_mutex(&fifo_rate_obj.mutex);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }
    result = inv_register_state_callback(inv_state_change_fifo);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }
    return result;
}

/**
 *  @brief  Close the FIFO usage.
 *  @return INV_SUCCESS if successful, a non-zero error code otherwise.
 */
inv_error_t inv_close_fifo(void)
{
    inv_error_t result;
    inv_error_t first = INV_SUCCESS;
    result = inv_unregister_state_callback(inv_state_change_fifo);
    ERROR_CHECK_FIRST(first, result);
    result = inv_destroy_mutex(fifo_rate_obj.mutex);
    ERROR_CHECK_FIRST(first, result);
    memset(&fifo_rate_obj, 0, sizeof(struct fifo_rate_obj));
    return first;
}

/**
 * Set the gyro source to output to the fifo
 *
 * @param source The source.  One of
 * - INV_GYRO_FROM_RAW
 * - INV_GYRO_FROM_QUATERNION
 *
 * @return INV_SUCCESS or non-zero error code;
 */
inv_error_t inv_set_gyro_data_source(uint_fast8_t source)
{
    if (source != INV_GYRO_FROM_QUATERNION && source != INV_GYRO_FROM_RAW) {
        return INV_ERROR_INVALID_PARAMETER;
    }

    fifo_obj.gyro_source = source;
    return INV_SUCCESS;
}

/**
 *  @brief  Reads and processes FIFO data. Also handles callbacks when data is
 *          ready.
 *  @param  numPackets
 *              Number of FIFO packets to try to read. You should
 *              use a large number here, such as 100, if you want to read all
 *              the full packets in the FIFO, which is typical operation.
 *  @param  processed
 *              The number of FIFO packets processed. This may be incremented
 *              even if high rate processes later fail.
 *  @return INV_SUCCESS if successful, a non-zero error code otherwise.
 */
inv_error_t inv_read_and_process_fifo(int_fast8_t numPackets,
                                      int_fast8_t * processed)
{
    int_fast8_t packet;
    inv_error_t result = INV_SUCCESS;
    uint_fast16_t read;
    struct mldl_cfg *mldl_cfg = inv_get_dl_config();
    int kk;

    if (NULL == processed)
        return INV_ERROR_INVALID_PARAMETER;

    *processed = 0;
    if (fifo_obj.fifo_packet_size == 0)
        return result;          // Nothing to read

    for (packet = 0; packet < numPackets; ++packet) {
        if (mldl_cfg->requested_sensors & INV_DMP_PROCESSOR) {
            unsigned char footer_n_data[MAX_FIFO_LENGTH + FIFO_FOOTER_SIZE];
            unsigned char *buf = &footer_n_data[FIFO_FOOTER_SIZE];
            read = inv_get_fifo((uint_fast16_t) fifo_obj.fifo_packet_size,
                                footer_n_data);
            if (0 == read ||
                read != fifo_obj.fifo_packet_size - FIFO_FOOTER_SIZE) {
                result = inv_get_fifo_status();
                if (INV_SUCCESS != result) {
                    memset(fifo_obj.decoded, 0, sizeof(fifo_obj.decoded));
                }
                return result;
            }

            result = inv_process_fifo_packet(buf);
            if (result) {
                LOG_RESULT_LOCATION(result);
                return result;
            }
        } else if (inv_accel_present()) {
            long data[ACCEL_NUM_AXES];
            result = inv_get_accel_data(data);
            if (result == INV_ERROR_ACCEL_DATA_NOT_READY) {
                return INV_SUCCESS;
            }
            if (result) {
                LOG_RESULT_LOCATION(result);
                return result;
            }

            memset(fifo_obj.decoded, 0, sizeof(fifo_obj.decoded));
            fifo_obj.cache = 0;
            for (kk = 0; kk < ACCEL_NUM_AXES; ++kk) {
                fifo_obj.decoded[REF_RAW + 4 + kk] =
                    inv_q30_mult((data[kk] << 16),
                                 fifo_scale[REF_RAW + 4 + kk]);
                fifo_obj.decoded[REF_ACCEL + kk] =
                    inv_q30_mult((data[kk] << 15), fifo_scale[REF_ACCEL + kk]);
                fifo_obj.decoded[REF_ACCEL + kk] -=
                    inv_obj.scaled_accel_bias[kk];
            }
        }
        // The buffer was processed correctly, so increment even if
        // other processes fail later, which will return an error
        *processed = *processed + 1;

        if ((fifo_obj.fifo_rate < INV_MAX_NUM_ACCEL_SAMPLES) &&
            fifo_obj.data_config[CONFIG_DMP_QUANT_ACCEL]) {
            result = inv_decode_quantized_accel();
            if (result) {
                LOG_RESULT_LOCATION(result);
                return result;
            }
        }

        if (fifo_obj.data_config[CONFIG_QUAT]) {
            result = inv_accel_compass_supervisor();
            if (result) {
                LOG_RESULT_LOCATION(result);
                return result;
            }
        }

        result = inv_pressure_supervisor();
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }

        // Callbacks now that we have a buffer of data ready
        result = inv_run_fifo_rate_processes();
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }

    }
    return result;
}

/**
 *  @brief  inv_set_fifo_processed_callback is used to set a processed data callback
 *          function.  inv_set_fifo_processed_callback sets a user defined callback
 *          function that triggers when all the decoding has been finished by
 *          the motion processing engines. It is called before other bigger
 *          processing engines to allow lower latency for the user.
 *
 *  @pre    inv_dmp_open()
 *          @ifnot MPL_MF
 *              or inv_open_low_power_pedometer()
 *              or inv_eis_open_dmp()
 *          @endif
 *          and inv_dmp_start()
 *          must <b>NOT</b> have been called.
 *
 *  @param  func    A user defined callback function.
 *
 *  @return INV_SUCCESS if successful, or non-zero error code otherwise.
 */
inv_error_t inv_set_fifo_processed_callback(void (*func) (void))
{
    INVENSENSE_FUNC_START;

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    fifo_obj.fifo_process_cb = func;

    return INV_SUCCESS;
}

/**
 * @internal
 * @brief   Process data from the dmp read via the fifo.  Takes a buffer
 *          filled with bytes read from the DMP FIFO.
 *          Currently expects only the 16 bytes of quaternion data.
 *          Calculates the motion parameters from that data and stores the
 *          results in an internal data structure.
 * @param[in,out]   dmpData     Pointer to the buffer containing the fifo data.
 * @return  INV_SUCCESS or error code.
**/
inv_error_t inv_process_fifo_packet(const unsigned char *dmpData)
{
    INVENSENSE_FUNC_START;
    unsigned int N, kk;
    unsigned char *p;

    p = (unsigned char *)(&fifo_obj.decoded);
    N = fifo_obj.fifo_packet_size;
    if (N > sizeof(fifo_obj.decoded))
        return INV_ERROR_ASSERTION_FAILURE;

    memset(&fifo_obj.decoded, 0, sizeof(fifo_obj.decoded));

    for (kk = 0; kk < N; ++kk) {
        p[fifo_obj.offsets[kk]] = *dmpData++;
    }

    // If multiplies are much greater cost than if checks, you could check
    // to see if fifo_scale is non-zero first, or equal to (1L<<30)
    for (kk = 0; kk < REF_LAST; ++kk) {
        fifo_obj.decoded[kk] =
            inv_q30_mult(fifo_obj.decoded[kk], fifo_scale[kk]);
    }

    memcpy(&fifo_obj.decoded[REF_QUATERNION_6AXIS],
           &fifo_obj.decoded[REF_QUATERNION], 4 * sizeof(long));

    inv_obj.flags[INV_PROCESSED_DATA_READY] = 1;
    fifo_obj.cache = 0;

    return INV_SUCCESS;
}

/** Converts 16-bit temperature data as read from temperature register
* into Celcius scaled by 2^16.
*/
long inv_decode_temperature(short tempReg)
{
    // Celcius = 35 + (T + 13200)/280
    return 5383314L + inv_q30_mult((long)tempReg << 16, 3834792L);
}

/**  @internal
* Returns the temperature in hardware units. The scaling may change from part to part.
*/
inv_error_t inv_get_temperature_raw(short *data)
{
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_TEMPERATURE]) {
        inv_error_t result;
        unsigned char regs[2];
        if ((fifo_obj.cache & FIFO_CACHE_TEMPERATURE) == 0) {
            if (FIFO_DEBUG)
                MPL_LOGI("Fetching the temperature from the registers\n");
            fifo_obj.cache |= FIFO_CACHE_TEMPERATURE;
            result = inv_serial_read(inv_get_serial_handle(),
                                inv_get_mpu_slave_addr(), MPUREG_TEMP_OUT_H, 2,
                                regs);
            if (result) {
                LOG_RESULT_LOCATION(result);
                return result;
            }
            fifo_obj.decoded[REF_RAW] = ((short)regs[0] << 8) | (regs[1]);
        }
    }
    *data = (short)fifo_obj.decoded[REF_RAW];
    return INV_SUCCESS;
}

/**
 *  @brief      Returns 1-element vector of temperature. It is read from the hardware if it
 *              doesn't exist in the FIFO.
 *  @param[out] data    1-element vector of temperature
 *  @return     0 on success or an error code.
 */
inv_error_t inv_get_temperature(long *data)
{
    short tr;
    inv_error_t result;

    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;
    result = inv_get_temperature_raw(&tr);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }
    data[0] = inv_decode_temperature(tr);
    return INV_SUCCESS;
}

/**
 *  @brief  Get the Decoded Accel Data.
 *  @param  data
 *              a buffer to store the quantized data.
 *  @return INV_SUCCESS if successful, a non-zero error code otherwise.
 */
inv_error_t inv_get_unquantized_accel(long *data)
{
    int ii, kk;
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_DMP_QUANT_ACCEL])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (ii = 0; ii < INV_MAX_NUM_ACCEL_SAMPLES; ii++) {
        for (kk = 0; kk < ACCEL_NUM_AXES; kk++) {
            data[ii * ACCEL_NUM_AXES + kk] = fifo_obj.decoded_accel[ii][kk];
        }
    }

    return INV_SUCCESS;
}

/**
 *  @brief  Get the Quantized Accel data algorithm output from the FIFO.
 *  @param  data
 *              a buffer to store the quantized data.
 *  @return INV_SUCCESS if successful, a non-zero error code otherwise.
 */
inv_error_t inv_get_quantized_accel(long *data)
{
    int ii;
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_DMP_QUANT_ACCEL])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (ii = 0; ii < INV_MAX_NUM_ACCEL_SAMPLES; ii++) {
        data[ii] = fifo_obj.decoded[REF_QUANT_ACCEL + ii];
    }

    return INV_SUCCESS;
}

/** This gets raw gyro data. The data is taken from the FIFO if it was put in the FIFO
*  and it is read from the registers if it was not put into the FIFO. The data is
*  cached till the next FIFO processing block time.
* @param[out] data Length 3, Gyro data
*/
inv_error_t inv_get_gyro_sensor(long *data)
{
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;
    if ((fifo_obj.data_config[CONFIG_RAW_DATA] & 7) != 7) {
        inv_error_t result;
        unsigned char regs[6];
        if ((fifo_obj.cache & FIFO_CACHE_GYRO) == 0) {
            fifo_obj.cache |= FIFO_CACHE_GYRO;
            result =
                inv_serial_read(inv_get_serial_handle(),
                                inv_get_mpu_slave_addr(), MPUREG_GYRO_XOUT_H, 6,
                                regs);
            if (result) {
                LOG_RESULT_LOCATION(result);
                return result;
            }
            fifo_obj.decoded[REF_RAW + 1] =
                (((long)regs[0]) << 24) | (((long)regs[1]) << 16);
            fifo_obj.decoded[REF_RAW + 2] =
                (((long)regs[2]) << 24) | (((long)regs[3]) << 16);
            fifo_obj.decoded[REF_RAW + 3] =
                (((long)regs[4]) << 24) | (((long)regs[5]) << 16);

            // Temperature starts at location 0, Gyro at location 1.
            fifo_obj.decoded[REF_RAW + 1] =
                inv_q30_mult(fifo_obj.decoded[REF_RAW + 1],
                             fifo_scale[REF_RAW + 1]);
            fifo_obj.decoded[REF_RAW + 2] =
                inv_q30_mult(fifo_obj.decoded[REF_RAW + 2],
                             fifo_scale[REF_RAW + 2]);
            fifo_obj.decoded[REF_RAW + 3] =
                inv_q30_mult(fifo_obj.decoded[REF_RAW + 3],
                             fifo_scale[REF_RAW + 3]);
        }
        data[0] = fifo_obj.decoded[REF_RAW + 1];
        data[1] = fifo_obj.decoded[REF_RAW + 2];
        data[2] = fifo_obj.decoded[REF_RAW + 3];
    } else {
        long data2[6];
        inv_get_gyro_and_accel_sensor(data2);
        data[0] = data2[0];
        data[1] = data2[1];
        data[2] = data2[2];
    }
    return INV_SUCCESS;
}

/**
 *  @brief      Returns 6-element vector of gyro and accel data
 *  @param[out] data    6-element vector of gyro and accel data
 *  @return     0 on success or an error code.
 */
inv_error_t inv_get_gyro_and_accel_sensor(long *data)
{
    int ii;
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_RAW_DATA])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (ii = 0; ii < (GYRO_NUM_AXES + ACCEL_NUM_AXES); ii++) {
        data[ii] = fifo_obj.decoded[REF_RAW + 1 + ii];
    }

    return INV_SUCCESS;
}

/**
 *  @brief      Returns 3-element vector of external sensor
 *  @param[out] data    3-element vector of external sensor
 *  @return     0 on success or an error code.
 */
inv_error_t inv_get_external_sensor_data(long *data, int size)
{
    memset(data, 0, COMPASS_NUM_AXES * sizeof(long));
    return INV_ERROR_FEATURE_NOT_IMPLEMENTED;
}

/**
 *  Sends accelerometer data to the FIFO.
 *
 *  @param[in] elements Which of the 3 elements to send. Use INV_ALL for 3 axis
 *            or INV_ELEMENT_1, INV_ELEMENT_2, INV_ELEMENT_3 or'd together
 *            for a subset.
 *
 * @param[in] accuracy Set to INV_32_BIT for 32-bit data, or INV_16_BIT for 16
 *            bit data. Set to zero to remove it from the FIFO.
 */
inv_error_t inv_send_accel(uint_fast16_t elements, uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    unsigned char regs[4] = { DINAF8 + 1, DINA28, DINA30, DINA38 };
    inv_error_t result;
    int kk;

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    result = inv_construct3_fifo(regs, elements, accuracy, REF_ACCEL,
                                 KEY_CFG_12, CONFIG_ACCEL);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    for (kk = 0; kk < ACCEL_NUM_AXES; kk++) {
        fifo_scale[REF_ACCEL + kk] = 2 * inv_obj.accel_sens;
    }

    return inv_set_footer();
}

/**
 * Sends control data to the FIFO. Control data is a 4 length vector of 32-bits.
 *
 *  @param[in] elements Which of the 4 elements to send. Use INV_ALL for all
 *            or INV_ELEMENT_1, INV_ELEMENT_2, INV_ELEMENT_3, INV_ELEMENT_4 or'd
 *             together for a subset.
 *
 *  @param[in] accuracy Set to INV_32_BIT for 32-bit data, or INV_16_BIT for 16
 *             bit data. Set to zero to remove it from the FIFO.
 */
inv_error_t inv_send_cntrl_data(uint_fast16_t elements, uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    int_fast8_t kk;
    inv_error_t result;
    unsigned char regs[5] = { DINAF8 + 1, DINA20, DINA28, DINA30, DINA38 };

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    elements = inv_set_fifo_reference(elements, accuracy, REF_CONTROL, 4);
    accuracy = inv_set_fifo_accuracy(elements, accuracy, CONFIG_CONTROL_DATA);

    if (accuracy & INV_16_BIT) {
        regs[0] = DINAF8 + 2;
    }

    fifo_obj.data_config[CONFIG_CONTROL_DATA] = elements | accuracy;

    for (kk = 0; kk < 4; ++kk) {
        if ((elements & 1) == 0)
            regs[kk + 1] = DINAA0 + 3;
        elements >>= 1;
    }

    result = inv_set_mpu_memory(KEY_CFG_1, 5, regs);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    return inv_set_footer();
}

/**
 * Adds a rolling counter to the fifo packet.  When used with the footer
 * the data comes out the first time:
 *
 * @code
 * <data0><data1>...<dataN><PacketNum0><PacketNum1>
 * @endcode
 * for every other packet it is
 *
 * @code
 * <FifoFooter0><FifoFooter1><data0><data1>...<dataN><PacketNum0><PacketNum1>
 * @endcode
 *
 * This allows for scanning of the fifo for packets
 *
 * @return INV_SUCCESS or error code
 */
inv_error_t inv_send_packet_number(uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    inv_error_t result;
    unsigned char regs;
    uint_fast16_t elements;

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    elements = inv_set_fifo_reference(1, accuracy, REF_DMP_PACKET, 1);
    if (elements & 1) {
        regs = DINA28;
        fifo_obj.data_config[CONFIG_DMP_PACKET_NUMBER] =
            INV_ELEMENT_1 | INV_16_BIT;
    } else {
        regs = DINAF8 + 3;
        fifo_obj.data_config[CONFIG_DMP_PACKET_NUMBER] = 0;
    }
    result = inv_set_mpu_memory(KEY_CFG_23, 1, &regs);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    return inv_set_footer();
}

/**
 *  @brief  Send the computed gravity vectors into the FIFO.
 *          The gravity vectors can be retrieved from the FIFO via
 *          inv_get_gravity(), to have the gravitation vector expressed
 *          in coordinates relative to the body.
 *
 *  Gravity is a derived vector derived from the quaternion.
 *  @param  elements
 *              the gravitation vectors components bitmask.
 *              To send all compoents use INV_ALL.
 *  @param  accuracy
 *              The number of bits the gravitation vector is expressed
 *              into.
 *              Set to INV_32_BIT for 32-bit data, or INV_16_BIT for 16
 *              bit data.
 *              Set to zero to remove it from the FIFO.
 *
 *  @return INV_SUCCESS if successful, a non-zero error code otherwise.
 */
inv_error_t inv_send_gravity(uint_fast16_t elements, uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    inv_error_t result;

    result = inv_send_quaternion(accuracy);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    return inv_set_footer();
}

/** Sends gyro data to the FIFO. Gyro data is a 3 length vector
 *  of 32-bits. Should be called once after inv_dmp_open() and before inv_dmp_start().
 *  @param[in] elements Which of the 3 elements to send. Use INV_ALL for all of them
 *            or INV_ELEMENT_1, INV_ELEMENT_2, INV_ELEMENT_3 or'd together
 *            for a subset.
 *  @param[in] accuracy Set to INV_32_BIT for 32-bit data, or INV_16_BIT for 16
 *             bit data. Set to zero to remove it from the FIFO.
 */
inv_error_t inv_send_gyro(uint_fast16_t elements, uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    unsigned char regs[4] = { DINAF8 + 1, DINA20, DINA28, DINA30 };
    inv_error_t result;

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    if (fifo_obj.gyro_source == INV_GYRO_FROM_QUATERNION) {
        regs[0] = DINA90 + 5;
        result = inv_set_mpu_memory(KEY_CFG_GYRO_SOURCE, 1, regs);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }
        regs[0] = DINAF8 + 1;
        regs[1] = DINA20;
        regs[2] = DINA28;
        regs[3] = DINA30;
    } else {
        regs[0] = DINA90 + 10;
        result = inv_set_mpu_memory(KEY_CFG_GYRO_SOURCE, 1, regs);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }
        regs[0] = DINAF8 + 1;
        regs[1] = DINA28;
        regs[2] = DINA30;
        regs[3] = DINA38;
    }
    result = inv_construct3_fifo(regs, elements, accuracy, REF_GYROS,
                                 KEY_CFG_9, CONFIG_GYROS);

    return inv_set_footer();
}

/** Sends linear accelerometer data to the FIFO.
 *
 *  Linear accelerometer data is a 3 length vector of 32-bits. It is the
 *  acceleration in the body frame with gravity removed.
 *
 *
 *  @param[in] elements Which of the 3 elements to send. Use INV_ALL for all of
 *            them or INV_ELEMENT_1, INV_ELEMENT_2, INV_ELEMENT_3 or'd together
 *            for a subset.
 *
 *  NOTE: Elements is ignored if the fifo rate is < INV_MAX_NUM_ACCEL_SAMPLES
 *  @param[in] accuracy Set to INV_32_BIT for 32-bit data, or INV_16_BIT for 16
 *             bit data. Set to zero to remove it from the FIFO.
 */
inv_error_t inv_send_linear_accel(uint_fast16_t elements,
                                  uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    inv_error_t result;
    unsigned char state = inv_get_state();

    if (state < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    result = inv_send_gravity(elements, accuracy);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }
    result = inv_send_accel(elements, accuracy);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    return inv_set_footer();
}

/** Sends linear world accelerometer data to the FIFO. Linear world
 *  accelerometer data is a 3 length vector of 32-bits. It is the acceleration
 *  in the world frame with gravity removed. Should be called once after
 *  inv_dmp_open() and before inv_dmp_start().
 *
 *  @param[in] elements Which of the 3 elements to send. Use INV_ALL for all of
 *             them or INV_ELEMENT_1, INV_ELEMENT_2, INV_ELEMENT_3 or'd together
 *             for a subset.
 *  @param[in] accuracy Set to INV_32_BIT for 32-bit data, or INV_16_BIT for 16
 *             bit data.
 */
inv_error_t inv_send_linear_accel_in_world(uint_fast16_t elements,
                                           uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    inv_error_t result;

    result = inv_send_linear_accel(INV_ALL, accuracy);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }
    result = inv_send_quaternion(accuracy);

    return inv_set_footer();
}

/** Sends quaternion data to the FIFO. Quaternion data is a 4 length vector
 *   of 32-bits. Should be called once after inv_dmp_open() and before inv_dmp_start().
 * @param[in] accuracy Set to INV_32_BIT for 32-bit data, or INV_16_BIT for 16
 *            bit data.
 */
inv_error_t inv_send_quaternion(uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    unsigned char regs[5] = { DINAF8 + 1, DINA20, DINA28,
        DINA30, DINA38
    };
    uint_fast16_t elements, kk;
    inv_error_t result;

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    elements = inv_set_fifo_reference(0xf, accuracy, REF_QUATERNION, 4);
    accuracy = inv_set_fifo_accuracy(elements, accuracy, CONFIG_QUAT);

    if (accuracy & INV_16_BIT) {
        regs[0] = DINAF8 + 2;
    }

    fifo_obj.data_config[CONFIG_QUAT] = elements | accuracy;

    for (kk = 0; kk < 4; ++kk) {
        if ((elements & 1) == 0)
            regs[kk + 1] = DINAA0 + 3;
        elements >>= 1;
    }

    result = inv_set_mpu_memory(KEY_CFG_8, 5, regs);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    return inv_set_footer();
}

/** Sends raw data to the FIFO.
 *  Should be called once after inv_dmp_open() and before inv_dmp_start().
 *  @param[in] elements Which of the 7 elements to send. Use INV_ALL for all of them
 *            or INV_ELEMENT_1, INV_ELEMENT_2, INV_ELEMENT_3 ... INV_ELEMENT_7 or'd together
 *            for a subset. The first element is temperature, the next 3 are gyro data,
 *            and the last 3 accel data.
 *  @param  accuracy
 *              The element's accuracy, can be INV_16_BIT, INV_32_BIT, or 0 to turn off.
 *  @return 0 if successful, a non-zero error code otherwise.
 */
inv_error_t inv_send_sensor_data(uint_fast16_t elements, uint_fast16_t accuracy)
{
    int result;
    INVENSENSE_FUNC_START;
    unsigned char regs[4] = { DINAA0 + 3,
        DINAA0 + 3,
        DINAA0 + 3,
        DINAA0 + 3
    };

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    if (accuracy)
        accuracy = INV_16_BIT;

    elements = inv_set_fifo_reference(elements, accuracy, REF_RAW, 7);

    if (elements & 0x03) {
        elements |= 0x03;
        regs[0] = DINA20;
    }
    if (elements & 0x0C) {
        elements |= 0x0C;
        regs[1] = DINA28;
    }
    if (elements & 0x30) {
        elements |= 0x30;
        regs[2] = DINA30;
    }
    if (elements & 0x40) {
        elements |= 0xC0;
        regs[3] = DINA38;
    }

    result = inv_set_mpu_memory(KEY_CFG_15, 4, regs);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    if (elements & 0x01)
        fifo_obj.data_config[CONFIG_TEMPERATURE] = 1 | INV_16_BIT;
    else
        fifo_obj.data_config[CONFIG_TEMPERATURE] = 0;
    if (elements & 0xfe)
        fifo_obj.data_config[CONFIG_RAW_DATA] =
            (0x7f & (elements >> 1)) | INV_16_BIT;
    else
        fifo_obj.data_config[CONFIG_RAW_DATA] = 0;

    return inv_set_footer();
}

/** Sends raw external data to the FIFO.
 *  Should be called once after inv_dmp_open() and before inv_dmp_start().
 *  @param[in] elements Which of the 3 elements to send. Use INV_ALL for all of them
 *            or INV_ELEMENT_1, INV_ELEMENT_2, INV_ELEMENT_3 or'd together
 *            for a subset.
 *  @param[in] accuracy INV_16_BIT to send data, 0 to stop sending this data.
 *            Sending and Stop sending are reference counted, so data actually
 *            stops when the reference reaches zero.
 */
inv_error_t inv_send_external_sensor_data(uint_fast16_t elements,
                                          uint_fast16_t accuracy)
{
    return INV_ERROR_FEATURE_NOT_IMPLEMENTED;    // Feature not supported
}

/**
 *  @brief  Send the Quantized Acceleromter data into the FIFO.  The data can be
 *          retrieved using inv_get_quantized_accel() or inv_get_unquantized_accel().
 *
 *  To be useful this should be set to fifo_rate + 1 if less than
 *  INV_MAX_NUM_ACCEL_SAMPLES, otherwise it doesn't work.
 *
 *  @param  elements
 *              the components bitmask.
 *              To send all compoents use INV_ALL.
 *
 *  @param  accuracy
 *              Use INV_32_BIT for 32-bit data or INV_16_BIT for
 *              16-bit data.
 *              Set to zero to remove it from the FIFO.
 *
 *  @return INV_SUCCESS if successful, a non-zero error code otherwise.
 */
inv_error_t inv_send_quantized_accel(uint_fast16_t elements,
                                     uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    unsigned char regs[5] = { DINAF8 + 1, DINA20, DINA28,
        DINA30, DINA38
    };
    unsigned char regs2[4] = { DINA20, DINA28,
        DINA30, DINA38
    };
    inv_error_t result;
    int_fast8_t kk;
    int_fast8_t ii;

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    elements = inv_set_fifo_reference(elements, accuracy, REF_QUANT_ACCEL, 8);

    if (elements) {
        fifo_obj.data_config[CONFIG_DMP_QUANT_ACCEL] = (elements) | INV_32_BIT;
    } else {
        fifo_obj.data_config[CONFIG_DMP_QUANT_ACCEL] = 0;
    }

    for (kk = 0; kk < INV_MAX_NUM_ACCEL_SAMPLES; ++kk) {
        fifo_obj.decoded[REF_QUANT_ACCEL + kk] = 0;
        for (ii = 0; ii < ACCEL_NUM_AXES; ii++) {
            fifo_obj.decoded_accel[kk][ii] = 0;
        }
    }

    for (kk = 0; kk < 4; ++kk) {
        if ((elements & 1) == 0)
            regs[kk + 1] = DINAA0 + 3;
        elements >>= 1;
    }

    result = inv_set_mpu_memory(KEY_CFG_TAP0, 5, regs);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    for (kk = 0; kk < 4; ++kk) {
        if ((elements & 1) == 0)
            regs2[kk] = DINAA0 + 3;
        elements >>= 1;
    }

    result = inv_set_mpu_memory(KEY_CFG_TAP4, 4, regs2);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    return inv_set_footer();
}

inv_error_t inv_send_eis(uint_fast16_t elements, uint_fast16_t accuracy)
{
    INVENSENSE_FUNC_START;
    int_fast8_t kk;
    unsigned char regs[3] = { DINA28, DINA30, DINA38 };
    inv_error_t result;

    if (inv_get_state() < INV_STATE_DMP_OPENED)
        return INV_ERROR_SM_IMPROPER_STATE;

    if (accuracy) {
        accuracy = INV_32_BIT;
    }

    elements = inv_set_fifo_reference(elements, accuracy, REF_EIS, 3);
    accuracy = inv_set_fifo_accuracy(elements, accuracy, CONFIG_EIS);

    fifo_obj.data_config[CONFIG_EIS] = elements | accuracy;

    for (kk = 0; kk < 3; ++kk) {
        if ((elements & 1) == 0)
            regs[kk] = DINAA0 + 7;
        elements >>= 1;
    }

    result = inv_set_mpu_memory(KEY_P_EIS_FIFO_XSHIFT, 3, regs);

    return inv_set_footer();
}

/**
 * @brief       Returns 3-element vector of accelerometer data in body frame.
 *
 * @param[out]  data    3-element vector of accelerometer data in body frame.
 *                      One gee = 2^16.
 *  @return     0 on success or an error code.
 */
inv_error_t inv_get_accel(long *data)
{
    int kk;
    struct mldl_cfg *mldl_cfg = inv_get_dl_config();

    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if ((!fifo_obj.data_config[CONFIG_ACCEL] &&
         (mldl_cfg->requested_sensors & INV_DMP_PROCESSOR))
        ||
        (!(mldl_cfg->requested_sensors & INV_DMP_PROCESSOR) &&
         !inv_accel_present()))
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (kk = 0; kk < ACCEL_NUM_AXES; ++kk) {
        data[kk] = fifo_obj.decoded[REF_ACCEL + kk];
    }

    return INV_SUCCESS;
}

/**
 *  @brief      Returns 4-element quaternion vector derived from 6-axis or
 *  9-axis if 9-axis was implemented. 6-axis is gyros and accels. 9-axis is
 *  gyros, accel and compass.
 *
 *  @param[out] data    4-element quaternion vector. One is scaled to 2^30.
 *  @return     0 on success or an error code.
 */
inv_error_t inv_get_quaternion(long *data)
{
    int kk;

    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_QUAT])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (kk = 0; kk < 4; ++kk) {
        data[kk] = fifo_obj.decoded[REF_QUATERNION + kk];
    }

    return INV_SUCCESS;
}

/**
 *  @brief      Returns 4-element quaternion vector derived from 6
 *              axis sensors (gyros and accels).
 *  @param[out] data
 *                  4-element quaternion vector. One is scaled to 2^30.
 *  @return     0 on success or an error code.
 */
inv_error_t inv_get_6axis_quaternion(long *data)
{
    int kk;
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_QUAT])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (kk = 0; kk < 4; ++kk) {
        data[kk] = fifo_obj.decoded[REF_QUATERNION_6AXIS + kk];
    }

    return INV_SUCCESS;
}

inv_error_t inv_get_relative_quaternion(long *data)
{
    if (data == NULL)
        return INV_ERROR;
    data[0] = inv_obj.relative_quat[0];
    data[1] = inv_obj.relative_quat[1];
    data[2] = inv_obj.relative_quat[2];
    data[3] = inv_obj.relative_quat[3];
    return INV_SUCCESS;
}

/**
 *  @brief  Returns 3-element vector of gyro data in body frame.
 *  @param[out] data
 *              3-element vector of gyro data in body frame
 *              with gravity removed. One degree per second = 2^16.
 *  @return 0 on success or an error code.
 */
inv_error_t inv_get_gyro(long *data)
{
    int kk;
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (fifo_obj.data_config[CONFIG_GYROS]) {
        for (kk = 0; kk < 3; ++kk) {
            data[kk] = fifo_obj.decoded[REF_GYROS + kk];
        }
        return INV_SUCCESS;
    } else {
        return INV_ERROR_FEATURE_NOT_ENABLED;
    }
}

/**
 *  @brief  Get the 3-element gravity vector from the FIFO expressed
 *          in coordinates relative to the body frame.
 *  @param  data
 *              3-element vector of gravity in body frame.
 *  @return 0 on success or an error code.
 */
inv_error_t inv_get_gravity(long *data)
{
    long quat[4];
    int ii;
    inv_error_t result;

    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_QUAT])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    if ((fifo_obj.cache & FIFO_CACHE_GRAVITY_BODY) == 0) {
        fifo_obj.cache |= FIFO_CACHE_GRAVITY_BODY;

        // Compute it from Quaternion
        result = inv_get_quaternion(quat);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }

        data[0] =
            inv_q29_mult(quat[1], quat[3]) - inv_q29_mult(quat[2], quat[0]);
        data[1] =
            inv_q29_mult(quat[2], quat[3]) + inv_q29_mult(quat[1], quat[0]);
        data[2] =
            (inv_q29_mult(quat[3], quat[3]) + inv_q29_mult(quat[0], quat[0])) -
            1073741824L;

        for (ii = 0; ii < ACCEL_NUM_AXES; ii++) {
            data[ii] >>= 14;
            fifo_obj.gravity_cache[ii] = data[ii];
        }
    } else {
        data[0] = fifo_obj.gravity_cache[0];
        data[1] = fifo_obj.gravity_cache[1];
        data[2] = fifo_obj.gravity_cache[2];
    }

    return INV_SUCCESS;
}

/**
* @brief        Sets the filter coefficent used for computing the acceleration
*               bias which is used to compute linear acceleration.
* @param[in] coef   Fitler coefficient. 0. means no filter, a small number means
*                   a small cutoff frequency with an increasing number meaning
*                   an increasing cutoff frequency.
*/
inv_error_t inv_set_linear_accel_filter_coef(float coef)
{
    fifo_obj.acc_filter_coef = coef;
    return INV_SUCCESS;
}

/**
 *  @brief      Returns 3-element vector of accelerometer data in body frame
 *              with gravity removed.
 *  @param[out] data    3-element vector of accelerometer data in body frame
 *                      with gravity removed. One g = 2^16.
 *  @return     0 on success or an error code. data unchanged on error.
 */
inv_error_t inv_get_linear_accel(long *data)
{
    int kk;
    long grav[3];
    long la[3];
    inv_error_t result;

    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    result = inv_get_gravity(grav);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }
    result = inv_get_accel(la);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    if ((fifo_obj.cache & FIFO_CACHE_ACC_BIAS) == 0) {
        fifo_obj.cache |= FIFO_CACHE_ACC_BIAS;

        for (kk = 0; kk < ACCEL_NUM_AXES; ++kk) {
            long x;
            x = la[kk] - grav[kk];
            fifo_obj.acc_bias_filt[kk] = (long)(x * fifo_obj.acc_filter_coef +
                                                fifo_obj.acc_bias_filt[kk] *
                                                (1.f -
                                                 fifo_obj.acc_filter_coef));
            data[kk] = x - fifo_obj.acc_bias_filt[kk];
        }
    } else {
        for (kk = 0; kk < ACCEL_NUM_AXES; ++kk) {
            data[kk] = la[kk] - grav[kk] - fifo_obj.acc_bias_filt[kk];
        }
    }
    return INV_SUCCESS;
}

/**
 *  @brief      Returns 3-element vector of accelerometer data in world frame
 *              with gravity removed.
 *  @param[out] data    3-element vector of accelerometer data in world frame
 *                      with gravity removed. One g = 2^16.
 *  @return     0 on success or an error code.
 */
inv_error_t inv_get_linear_accel_in_world(long *data)
{
    int kk;
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;
    if (fifo_obj.data_config[CONFIG_ACCEL] && fifo_obj.data_config[CONFIG_QUAT]) {
        long wtemp[4], qi[4], wtemp2[4];
        wtemp[0] = 0;
        inv_get_linear_accel(&wtemp[1]);
        inv_q_mult(&fifo_obj.decoded[REF_QUATERNION], wtemp, wtemp2);
        inv_q_invert(&fifo_obj.decoded[REF_QUATERNION], qi);
        inv_q_mult(wtemp2, qi, wtemp);
        for (kk = 0; kk < 3; ++kk) {
            data[kk] = wtemp[kk + 1];
        }
        return INV_SUCCESS;
    } else {
        return INV_ERROR_FEATURE_NOT_ENABLED;
    }
}

/**
 *  @brief      Returns 4-element vector of control data.
 *  @param[out] data    4-element vector of control data.
 *  @return     0 for succes or an error code.
 */
inv_error_t inv_get_cntrl_data(long *data)
{
    int kk;
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_CONTROL_DATA])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (kk = 0; kk < 4; ++kk) {
        data[kk] = fifo_obj.decoded[REF_CONTROL + kk];
    }

    return INV_SUCCESS;

}

/**
 *  @brief      Returns 3-element vector of EIS shfit data
 *  @param[out] data    3-element vector of EIS shift data.
 *  @return     0 for succes or an error code.
 */
inv_error_t inv_get_eis(long *data)
{
    int kk;
    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_EIS])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (kk = 0; kk < 3; ++kk) {
        data[kk] = fifo_obj.decoded[REF_EIS + kk];
    }

    return INV_SUCCESS;

}

/**
 *  @brief      Returns 3-element vector of accelerometer data in body frame.
 *  @param[out] data    3-element vector of accelerometer data in body frame in g's.
 *  @return     0 for success or an error code.
 */
inv_error_t inv_get_accel_float(float *data)
{
    long lData[3];
    int kk;
    int result;

    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    result = inv_get_accel(lData);
    if (result) {
        LOG_RESULT_LOCATION(result);
        return result;
    }

    for (kk = 0; kk < ACCEL_NUM_AXES; ++kk) {
        data[kk] = lData[kk] / 65536.0f;
    }

    return INV_SUCCESS;
}

/**
 *  @brief      Returns 4-element quaternion vector.
 *  @param[out] data    4-element quaternion vector.
 *  @return     0 on success, an error code otherwise.
 */
inv_error_t inv_get_quaternion_float(float *data)
{
    int kk;

    if (data == NULL)
        return INV_ERROR_INVALID_PARAMETER;

    if (!fifo_obj.data_config[CONFIG_QUAT])
        return INV_ERROR_FEATURE_NOT_ENABLED;

    for (kk = 0; kk < 4; ++kk) {
        data[kk] = fifo_obj.decoded[REF_QUATERNION + kk] / 1073741824.0f;
    }

    return INV_SUCCESS;
}

/**
 * @brief   Command the MPU to put data in the FIFO at a particular rate.
 *
 *          The DMP will add fifo entries every fifoRate + 1 MPU cycles.  For
 *          example if the MPU is running at 200Hz the following values apply:
 *
 *          <TABLE>
 *          <TR><TD>fifoRate</TD><TD>DMP Sample Rate</TD><TD>FIFO update frequency</TD></TR>
 *          <TR><TD>0</TD><TD>200Hz</TD><TD>200Hz</TD></TR>
 *          <TR><TD>1</TD><TD>200Hz</TD><TD>100Hz</TD></TR>
 *          <TR><TD>2</TD><TD>200Hz</TD><TD>50Hz</TD></TR>
 *          <TR><TD>4</TD><TD>200Hz</TD><TD>40Hz</TD></TR>
 *          <TR><TD>9</TD><TD>200Hz</TD><TD>20Hz</TD></TR>
 *          <TR><TD>19</TD><TD>200Hz</TD><TD>10Hz</TD></TR>
 *          </TABLE>
 *
 *          Note: if the DMP is running, (state == INV_STATE_DMP_STARTED)
 *          then inv_run_state_callbacks() will be called to allow features
 *          that depend upon fundamental constants to be updated.
 *
 *  @pre    inv_dmp_open()
 *          @ifnot MPL_MF
 *              or inv_open_low_power_pedometer()
 *              or inv_eis_open_dmp()
 *          @endif
 *          and inv_dmp_start()
 *          must <b>NOT</b> have been called.
 *
 * @param   fifoRate    Divider value - 1.  Output rate is
 *          (DMP Sample Rate) / (fifoRate + 1).
 *
 * @return  INV_SUCCESS if successful, ML error code on any failure.
 */
inv_error_t inv_set_fifo_rate(unsigned short fifoRate)
{
    INVENSENSE_FUNC_START;
    unsigned char regs[2];
    unsigned char state;
    inv_error_t result = INV_SUCCESS;
    struct mldl_cfg *mldl_cfg = inv_get_dl_config();

    state = inv_get_state();
    if (state != INV_STATE_DMP_OPENED && state != INV_STATE_DMP_STARTED)
        return INV_ERROR_SM_IMPROPER_STATE;

    fifo_obj.fifo_rate = fifoRate;

    if (mldl_cfg->requested_sensors & INV_DMP_PROCESSOR) {

        regs[0] = (unsigned char)((fifoRate >> 8) & 0xff);
        regs[1] = (unsigned char)(fifoRate & 0xff);

        result = inv_set_mpu_memory(KEY_D_0_22, 2, regs);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }
        fifo_obj.sample_step_size_ms =
            (unsigned short)(((long)fifoRate + 1) *
                             (inv_mpu_get_sampling_period_us
                              (mldl_cfg)) / 1000L);

        if (state == INV_STATE_DMP_STARTED)
            result = inv_run_state_callbacks(state);
    } else if (mldl_cfg->requested_sensors & INV_THREE_AXIS_ACCEL) {
        struct ext_slave_config config;
        long data;
        config.key = MPU_SLAVE_CONFIG_ODR_RESUME;
        config.len = sizeof(long);
        config.apply = (state == INV_STATE_DMP_STARTED);
        config.data = &data;
        data = (1000 * inv_mpu_get_sampling_rate_hz(mldl_cfg)) / (fifoRate + 1);

        /* Ask for the same frequency */
        result = inv_mpu_config_accel(mldl_cfg,
                                      inv_get_serial_handle(),
                                      inv_get_serial_handle(), &config);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }
        result = inv_mpu_get_accel_config(mldl_cfg,
                                          inv_get_serial_handle(),
                                          inv_get_serial_handle(), &config);
        if (result) {
            LOG_RESULT_LOCATION(result);
            return result;
        }
        if(FIFO_DEBUG)
            MPL_LOGI("Actual ODR: %ld Hz\n", data / 1000);
        /* Record the actual frequency granted odr is in mHz */
        fifo_obj.sample_step_size_ms = (unsigned short)((1000L * 1000L) / data);
    }
    return result;
}

/**
 * @brief   Retrieve the current FIFO update divider - 1.
 *          See inv_set_fifo_rate() for how this value is used.
 *
 *          The fifo rate when there is no fifo is the equivilent divider when
 *          derived from the value set by SetSampleSteSizeMs()
 *
 * @return  The value of the fifo rate divider or INV_INVALID_FIFO_RATE on error.
 */
unsigned short inv_get_fifo_rate(void)
{
    return fifo_obj.fifo_rate;
}

/**
 * @brief   Returns the step size for quaternion type data.
 *
 * Typically the data rate for each FIFO packet. When the gryos are sleeping
 * this value will return the last value set by SetSampleStepSizeMs()
 *
 * @return  step size for quaternion type data
 */
int_fast16_t inv_get_sample_step_size_ms(void)
{
    struct mldl_cfg *mldl_cfg = inv_get_dl_config();

    if (mldl_cfg->requested_sensors & INV_DMP_PROCESSOR)
        return (fifo_obj.fifo_rate + 1) *
            (inv_mpu_get_sampling_period_us(mldl_cfg) / 1000);
    else
        return fifo_obj.sample_step_size_ms;
}

/**
 * @brief   Returns the step size for quaternion type data.
 *
 * Typically the data rate for each FIFO packet. When the gryos are sleeping
 * this value will return the last value set by SetSampleStepSizeMs()
 *
 * @return  step size for quaternion type data
 */
int_fast16_t inv_get_sample_frequency(void)
{
    struct mldl_cfg *mldl_cfg = inv_get_dl_config();

    if (mldl_cfg->requested_sensors & INV_DMP_PROCESSOR)
        return (inv_mpu_get_sampling_rate_hz(mldl_cfg) /
                (fifo_obj.fifo_rate + 1));
    else
        return (1000 / fifo_obj.sample_step_size_ms);
}

/**
 *  @brief  The gyro data magnitude squared :
 *          (1 degree per second)^2 = 2^6 = 2^GYRO_MAG_SQR_SHIFT.
 *  @return the computed magnitude squared output of the gyroscope.
 */
unsigned long inv_get_gyro_sum_of_sqr(void)
{
    unsigned long gmag = 0;
    long temp;
    int kk;

    for (kk = 0; kk < 3; ++kk) {
        temp = fifo_obj.decoded[REF_GYROS + kk] >>
            (16 - (GYRO_MAG_SQR_SHIFT / 2));
        gmag += temp * temp;
    }

    return gmag;
}

/**
 *  @brief  The gyro data magnitude squared:
 *          (1 g)^2 = 2^16 = 2^ACC_MAG_SQR_SHIFT.
 *  @return the computed magnitude squared output of the accelerometer.
 */
unsigned long inv_accel_sum_of_sqr(void)
{
    unsigned long amag = 0;
    long temp;
    int kk;
    long accel[3];
    inv_error_t result;

    result = inv_get_accel(accel);
    if (INV_SUCCESS != result) {
        return 0;
    }

    for (kk = 0; kk < 3; ++kk) {
        temp = accel[kk] >> (16 - (ACC_MAG_SQR_SHIFT / 2));
        amag += temp * temp;
    }
    return amag;
}

/**
 *  @internal
 */
void inv_override_quaternion(float *q)
{
    int kk;
    for (kk = 0; kk < 4; ++kk) {
        fifo_obj.decoded[REF_QUATERNION + kk] = (long)(q[kk] * (1L << 30));
    }
}

/**
 * @internal
 * @brief   This registers a function to be called for each set of
 *          gyro/quaternion/rotation matrix/etc output.
 * @param[in] func The callback function to register
 * @param[in] priority The unique priority number of the callback. Lower numbers
 *            are called first.
 * @return  error code.
 */
inv_error_t inv_register_fifo_rate_process(inv_obj_func func, int priority)
{
    INVENSENSE_FUNC_START;
    inv_error_t result;
    int kk, nn;

    result = inv_lock_mutex(fifo_rate_obj.mutex);
    if (INV_SUCCESS != result) {
        return result;
    }
    // Make sure we haven't registered this function already
    // Or used the same priority
    for (kk = 0; kk < fifo_rate_obj.num_cb; ++kk) {
        if ((fifo_rate_obj.fifo_process_cb[kk] == func) ||
            (fifo_rate_obj.priority[kk] == priority)) {
            inv_unlock_mutex(fifo_rate_obj.mutex);
            return INV_ERROR_INVALID_PARAMETER;
        }
    }

    // Make sure we have not filled up our number of allowable callbacks
    if (fifo_rate_obj.num_cb <= MAX_HIGH_RATE_PROCESSES - 1) {
        kk = 0;
        if (fifo_rate_obj.num_cb != 0) {
            // set kk to be where this new callback goes in the array
            while ((kk < fifo_rate_obj.num_cb) &&
                   (fifo_rate_obj.priority[kk] < priority)) {
                kk++;
            }
            if (kk != fifo_rate_obj.num_cb) {
                // We need to move the others
                for (nn = fifo_rate_obj.num_cb; nn > kk; --nn) {
                    fifo_rate_obj.fifo_process_cb[nn] =
                        fifo_rate_obj.fifo_process_cb[nn - 1];
                    fifo_rate_obj.priority[nn] = fifo_rate_obj.priority[nn - 1];
                }
            }
        }
        // Add new callback
        fifo_rate_obj.fifo_process_cb[kk] = func;
        fifo_rate_obj.priority[kk] = priority;
        fifo_rate_obj.num_cb++;
    } else {
        result = INV_ERROR_MEMORY_EXAUSTED;
    }

    inv_unlock_mutex(fifo_rate_obj.mutex);
    return result;
}

/**
 * @internal
 * @brief   This unregisters a function to be called for each set of
 *          gyro/quaternion/rotation matrix/etc output.
 * @return  error code.
 */
inv_error_t inv_unregister_fifo_rate_process(inv_obj_func func)
{
    INVENSENSE_FUNC_START;
    int kk, jj;
    inv_error_t result;

    result = inv_lock_mutex(fifo_rate_obj.mutex);
    if (INV_SUCCESS != result) {
        return result;
    }
    // Make sure we haven't registered this function already
    result = INV_ERROR_INVALID_PARAMETER;
    for (kk = 0; kk < fifo_rate_obj.num_cb; ++kk) {
        if (fifo_rate_obj.fifo_process_cb[kk] == func) {
            for (jj = kk + 1; jj < fifo_rate_obj.num_cb; ++jj) {
                fifo_rate_obj.fifo_process_cb[jj - 1] =
                    fifo_rate_obj.fifo_process_cb[jj];
                fifo_rate_obj.priority[jj - 1] =
                    fifo_rate_obj.priority[jj];
            }
            fifo_rate_obj.fifo_process_cb[fifo_rate_obj.num_cb - 1] = NULL;
            fifo_rate_obj.priority[fifo_rate_obj.num_cb - 1] = 0;
            fifo_rate_obj.num_cb--;
            result = INV_SUCCESS;
            break;
        }
    }

    inv_unlock_mutex(fifo_rate_obj.mutex);
    return result;

}
#ifdef UMPL
bool bFIFIDataAvailable = FALSE;
bool isUmplDataInFIFO(void)
{
    return bFIFIDataAvailable;
}
void setUmplDataInFIFOFlag(bool flag)
{
    bFIFIDataAvailable = flag;
}
#endif
inv_error_t inv_run_fifo_rate_processes(void)
{
    int kk;
    inv_error_t result, result2;

    result = inv_lock_mutex(fifo_rate_obj.mutex);
    if (INV_SUCCESS != result) {
        MPL_LOGE("MLOsLockMutex returned %d\n", result);
        return result;
    }
    // User callbacks take priority over the fifo_process_cb callback
    if (fifo_obj.fifo_process_cb)
        fifo_obj.fifo_process_cb();

    for (kk = 0; kk < fifo_rate_obj.num_cb; ++kk) {
        if (fifo_rate_obj.fifo_process_cb[kk]) {
            result2 = fifo_rate_obj.fifo_process_cb[kk] (&inv_obj);
            if (result == INV_SUCCESS)
#ifdef UMPL
	 setUmplDataInFIFOFlag(TRUE);
#endif
                result = result2;
        }
    }

    inv_unlock_mutex(fifo_rate_obj.mutex);
    return result;
}

/*********************/
         /** \}*//* defgroup */
/*********************/