1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/*
$License:
Copyright 2011 InvenSense, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
$
*/
#include "mlmath.h"
#include "mlMathFunc.h"
#include "mlinclude.h"
/** Performs a multiply and shift by 29. These are good functions to write in assembly on
* with devices with small memory where you want to get rid of the long long which some
* assemblers don't handle well
* @param[in] a
* @param[in] b
* @return ((long long)a*b)>>29
*/
long inv_q29_mult(long a, long b)
{
long long temp;
long result;
temp = (long long)a *b;
result = (long)(temp >> 29);
return result;
}
/** Performs a multiply and shift by 30. These are good functions to write in assembly on
* with devices with small memory where you want to get rid of the long long which some
* assemblers don't handle well
* @param[in] a
* @param[in] b
* @return ((long long)a*b)>>30
*/
long inv_q30_mult(long a, long b)
{
long long temp;
long result;
temp = (long long)a *b;
result = (long)(temp >> 30);
return result;
}
void inv_q_mult(const long *q1, const long *q2, long *qProd)
{
INVENSENSE_FUNC_START;
qProd[0] = (long)(((long long)q1[0] * q2[0] - (long long)q1[1] * q2[1] -
(long long)q1[2] * q2[2] -
(long long)q1[3] * q2[3]) >> 30);
qProd[1] =
(int)(((long long)q1[0] * q2[1] + (long long)q1[1] * q2[0] +
(long long)q1[2] * q2[3] - (long long)q1[3] * q2[2]) >> 30);
qProd[2] =
(long)(((long long)q1[0] * q2[2] - (long long)q1[1] * q2[3] +
(long long)q1[2] * q2[0] + (long long)q1[3] * q2[1]) >> 30);
qProd[3] =
(long)(((long long)q1[0] * q2[3] + (long long)q1[1] * q2[2] -
(long long)q1[2] * q2[1] + (long long)q1[3] * q2[0]) >> 30);
}
void inv_q_invert(const long *q, long *qInverted)
{
INVENSENSE_FUNC_START;
qInverted[0] = q[0];
qInverted[1] = -q[1];
qInverted[2] = -q[2];
qInverted[3] = -q[3];
}
/**
* Converts a quaternion to a rotation matrix.
* @param[in] quat 4-element quaternion in fixed point. One is 2^30.
* @param[out] rot Rotation matrix in fixed point. One is 2^30. The
* First 3 elements of the rotation matrix, represent
* the first row of the matrix. Rotation matrix multiplied
* by a 3 element column vector transform a vector from Body
* to World.
*/
void inv_quaternion_to_rotation(const long *quat, long *rot)
{
rot[0] =
inv_q29_mult(quat[1], quat[1]) + inv_q29_mult(quat[0],
quat[0]) - 1073741824L;
rot[1] = inv_q29_mult(quat[1], quat[2]) - inv_q29_mult(quat[3], quat[0]);
rot[2] = inv_q29_mult(quat[1], quat[3]) + inv_q29_mult(quat[2], quat[0]);
rot[3] = inv_q29_mult(quat[1], quat[2]) + inv_q29_mult(quat[3], quat[0]);
rot[4] =
inv_q29_mult(quat[2], quat[2]) + inv_q29_mult(quat[0],
quat[0]) - 1073741824L;
rot[5] = inv_q29_mult(quat[2], quat[3]) - inv_q29_mult(quat[1], quat[0]);
rot[6] = inv_q29_mult(quat[1], quat[3]) - inv_q29_mult(quat[2], quat[0]);
rot[7] = inv_q29_mult(quat[2], quat[3]) + inv_q29_mult(quat[1], quat[0]);
rot[8] =
inv_q29_mult(quat[3], quat[3]) + inv_q29_mult(quat[0],
quat[0]) - 1073741824L;
}
/** Converts a 32-bit long to a big endian byte stream */
unsigned char *inv_int32_to_big8(long x, unsigned char *big8)
{
big8[0] = (unsigned char)((x >> 24) & 0xff);
big8[1] = (unsigned char)((x >> 16) & 0xff);
big8[2] = (unsigned char)((x >> 8) & 0xff);
big8[3] = (unsigned char)(x & 0xff);
return big8;
}
/** Converts a big endian byte stream into a 32-bit long */
long inv_big8_to_int32(const unsigned char *big8)
{
long x;
x = ((long)big8[0] << 24) | ((long)big8[1] << 16) | ((long)big8[2] << 8) |
((long)big8[3]);
return x;
}
/** Converts a 16-bit short to a big endian byte stream */
unsigned char *inv_int16_to_big8(short x, unsigned char *big8)
{
big8[0] = (unsigned char)((x >> 8) & 0xff);
big8[1] = (unsigned char)(x & 0xff);
return big8;
}
void inv_matrix_det_inc(float *a, float *b, int *n, int x, int y)
{
int k, l, i, j;
for (i = 0, k = 0; i < *n; i++, k++) {
for (j = 0, l = 0; j < *n; j++, l++) {
if (i == x)
i++;
if (j == y)
j++;
*(b + 10 * k + l) = *(a + 10 * i + j);
}
}
*n = *n - 1;
}
float inv_matrix_det(float *p, int *n)
{
float d[10][10], sum = 0;
int i, j, m;
m = *n;
if (*n == 2)
return (*p ** (p + 11) - *(p + 1) ** (p + 10));
for (i = 0, j = 0; j < m; j++) {
*n = m;
inv_matrix_det_inc(p, &d[0][0], n, i, j);
sum =
sum + *(p + 10 * i + j) * SIGNM(i + j) * inv_matrix_det(&d[0][0],
n);
}
return (sum);
}
/** Wraps angle from (-M_PI,M_PI]
* @param[in] ang Angle in radians to wrap
* @return Wrapped angle from (-M_PI,M_PI]
*/
float inv_wrap_angle(float ang)
{
if (ang > M_PI)
return ang - 2 * (float)M_PI;
else if (ang <= -(float)M_PI)
return ang + 2 * (float)M_PI;
else
return ang;
}
/** Finds the minimum angle difference ang1-ang2 such that difference
* is between [-M_PI,M_PI]
* @param[in] ang1
* @param[in] ang2
* @return angle difference ang1-ang2
*/
float inv_angle_diff(float ang1, float ang2)
{
float d;
ang1 = inv_wrap_angle(ang1);
ang2 = inv_wrap_angle(ang2);
d = ang1 - ang2;
if (d > M_PI)
d -= 2 * (float)M_PI;
else if (d < -(float)M_PI)
d += 2 * (float)M_PI;
return d;
}
|