1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
/******************************************************************************
*
* Copyright (C) 1999-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* source file for fast dct operations
*
******************************************************************************/
#include "sbc_encoder.h"
#include "sbc_enc_func_declare.h"
#include "sbc_dct.h"
/*******************************************************************************
**
** Function SBC_FastIDCT8
**
** Description implementation of fast DCT algorithm by Feig and Winograd
**
**
** Returns y = dct(pInVect)
**
**
*******************************************************************************/
#if (SBC_IS_64_MULT_IN_IDCT == FALSE)
#define SBC_COS_PI_SUR_4 (0x00005a82) /* ((0x8000) * 0.7071) = cos(pi/4) */
#define SBC_COS_PI_SUR_8 (0x00007641) /* ((0x8000) * 0.9239) = (cos(pi/8)) */
#define SBC_COS_3PI_SUR_8 (0x000030fb) /* ((0x8000) * 0.3827) = (cos(3*pi/8)) */
#define SBC_COS_PI_SUR_16 (0x00007d8a) /* ((0x8000) * 0.9808)) = (cos(pi/16)) */
#define SBC_COS_3PI_SUR_16 (0x00006a6d) /* ((0x8000) * 0.8315)) = (cos(3*pi/16)) */
#define SBC_COS_5PI_SUR_16 (0x0000471c) /* ((0x8000) * 0.5556)) = (cos(5*pi/16)) */
#define SBC_COS_7PI_SUR_16 (0x000018f8) /* ((0x8000) * 0.1951)) = (cos(7*pi/16)) */
#define SBC_IDCT_MULT(a,b,c) SBC_MULT_32_16_SIMPLIFIED(a,b,c)
#else
#define SBC_COS_PI_SUR_4 (0x5A827999) /* ((0x80000000) * 0.707106781) = (cos(pi/4) ) */
#define SBC_COS_PI_SUR_8 (0x7641AF3C) /* ((0x80000000) * 0.923879533) = (cos(pi/8) ) */
#define SBC_COS_3PI_SUR_8 (0x30FBC54D) /* ((0x80000000) * 0.382683432) = (cos(3*pi/8) ) */
#define SBC_COS_PI_SUR_16 (0x7D8A5F3F) /* ((0x80000000) * 0.98078528 )) = (cos(pi/16) ) */
#define SBC_COS_3PI_SUR_16 (0x6A6D98A4) /* ((0x80000000) * 0.831469612)) = (cos(3*pi/16)) */
#define SBC_COS_5PI_SUR_16 (0x471CECE6) /* ((0x80000000) * 0.555570233)) = (cos(5*pi/16)) */
#define SBC_COS_7PI_SUR_16 (0x18F8B83C) /* ((0x80000000) * 0.195090322)) = (cos(7*pi/16)) */
#define SBC_IDCT_MULT(a,b,c) SBC_MULT_32_32(a,b,c)
#endif /* SBC_IS_64_MULT_IN_IDCT */
#if (SBC_FAST_DCT == FALSE)
extern const SINT16 gas16AnalDCTcoeff8[];
extern const SINT16 gas16AnalDCTcoeff4[];
#endif
void SBC_FastIDCT8(SINT32 *pInVect, SINT32 *pOutVect)
{
#if (SBC_FAST_DCT == TRUE)
#if (SBC_ARM_ASM_OPT==TRUE)
#else
#if (SBC_IPAQ_OPT==TRUE)
#if (SBC_IS_64_MULT_IN_IDCT == TRUE)
SINT64 s64Temp;
#endif
#else
#if (SBC_IS_64_MULT_IN_IDCT == TRUE)
SINT32 s32HiTemp;
#else
SINT32 s32In2Temp;
register SINT32 s32In1Temp;
#endif
#endif
#endif
register SINT32 x0, x1, x2, x3, x4, x5, x6, x7,temp;
SINT32 res_even[4], res_odd[4];
/*x0= (pInVect[4])/2 ;*/
SBC_IDCT_MULT(SBC_COS_PI_SUR_4,pInVect[4], x0);
/*printf("x0 0x%x = %d = %d * %d\n", x0, x0, SBC_COS_PI_SUR_4, pInVect[4]);*/
x1 = (pInVect[3] + pInVect[5]) >>1;
x2 = (pInVect[2] + pInVect[6]) >>1;
x3 = (pInVect[1] + pInVect[7]) >>1;
x4 = (pInVect[0] + pInVect[8]) >>1;
x5 = (pInVect[9] - pInVect[15]) >>1;
x6 = (pInVect[10] - pInVect[14])>>1;
x7 = (pInVect[11] - pInVect[13])>>1;
/* 2-point IDCT of x0 and x4 as in (11) */
temp = x0 ;
SBC_IDCT_MULT(SBC_COS_PI_SUR_4, ( x0 + x4 ), x0); /*x0 = ( x0 + x4 ) * cos(1*pi/4) ; */
SBC_IDCT_MULT(SBC_COS_PI_SUR_4, ( temp - x4 ), x4); /*x4 = ( temp - x4 ) * cos(1*pi/4) ; */
/* rearrangement of x2 and x6 as in (15) */
x2 -=x6;
x6 <<= 1 ;
/* 2-point IDCT of x2 and x6 and post-multiplication as in (15) */
SBC_IDCT_MULT(SBC_COS_PI_SUR_4,x6, x6); /*x6 = x6 * cos(1*pi/4) ; */
temp = x2 ;
SBC_IDCT_MULT(SBC_COS_PI_SUR_8,( x2 + x6 ), x2); /*x2 = ( x2 + x6 ) * cos(1*pi/8) ; */
SBC_IDCT_MULT(SBC_COS_3PI_SUR_8,( temp - x6 ), x6); /*x6 = ( temp - x6 ) * cos(3*pi/8) ;*/
/* 4-point IDCT of x0,x2,x4 and x6 as in (11) */
res_even[ 0 ] = x0 + x2 ;
res_even[ 1 ] = x4 + x6 ;
res_even[ 2 ] = x4 - x6 ;
res_even[ 3 ] = x0 - x2 ;
/* rearrangement of x1,x3,x5,x7 as in (15) */
x7 <<= 1 ;
x5 = ( x5 <<1 ) - x7 ;
x3 = ( x3 <<1 ) - x5 ;
x1 -= x3 >>1 ;
/* two-dimensional IDCT of x1 and x5 */
SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x5, x5); /*x5 = x5 * cos(1*pi/4) ; */
temp = x1 ;
x1 = x1 + x5 ;
x5 = temp - x5 ;
/* rearrangement of x3 and x7 as in (15) */
x3 -= x7;
x7 <<= 1 ;
SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x7, x7); /*x7 = x7 * cos(1*pi/4) ; */
/* 2-point IDCT of x3 and x7 and post-multiplication as in (15) */
temp = x3 ;
SBC_IDCT_MULT( SBC_COS_PI_SUR_8,( x3 + x7 ), x3); /*x3 = ( x3 + x7 ) * cos(1*pi/8) ; */
SBC_IDCT_MULT( SBC_COS_3PI_SUR_8,( temp - x7 ), x7); /*x7 = ( temp - x7 ) * cos(3*pi/8) ;*/
/* 4-point IDCT of x1,x3,x5 and x7 and post multiplication by diagonal matrix as in (14) */
SBC_IDCT_MULT((SBC_COS_PI_SUR_16), ( x1 + x3 ) , res_odd[0]); /*res_odd[ 0 ] = ( x1 + x3 ) * cos(1*pi/16) ; */
SBC_IDCT_MULT((SBC_COS_3PI_SUR_16), ( x5 + x7 ) , res_odd[1]); /*res_odd[ 1 ] = ( x5 + x7 ) * cos(3*pi/16) ; */
SBC_IDCT_MULT((SBC_COS_5PI_SUR_16), ( x5 - x7 ) , res_odd[2]); /*res_odd[ 2 ] = ( x5 - x7 ) * cos(5*pi/16) ; */
SBC_IDCT_MULT((SBC_COS_7PI_SUR_16), ( x1 - x3 ) , res_odd[3]); /*res_odd[ 3 ] = ( x1 - x3 ) * cos(7*pi/16) ; */
/* additions and subtractions as in (9) */
pOutVect[0] = (res_even[ 0 ] + res_odd[ 0 ]) ;
pOutVect[1] = (res_even[ 1 ] + res_odd[ 1 ]) ;
pOutVect[2] = (res_even[ 2 ] + res_odd[ 2 ]) ;
pOutVect[3] = (res_even[ 3 ] + res_odd[ 3 ]) ;
pOutVect[7] = (res_even[ 0 ] - res_odd[ 0 ]) ;
pOutVect[6] = (res_even[ 1 ] - res_odd[ 1 ]) ;
pOutVect[5] = (res_even[ 2 ] - res_odd[ 2 ]) ;
pOutVect[4] = (res_even[ 3 ] - res_odd[ 3 ]) ;
#else
UINT8 Index, k;
SINT32 temp;
/*Calculate 4 subband samples by matrixing*/
for(Index=0; Index<8; Index++)
{
temp = 0;
for(k=0; k<16; k++)
{
/*temp += (SINT32)(((SINT64)M[(Index*strEncParams->numOfSubBands*2)+k] * Y[k]) >> 16 );*/
temp += (gas16AnalDCTcoeff8[(Index*8*2)+k] * (pInVect[k] >> 16));
temp += ((gas16AnalDCTcoeff8[(Index*8*2)+k] * (pInVect[k] & 0xFFFF)) >> 16);
}
pOutVect[Index] = temp;
}
#endif
/* printf("pOutVect: 0x%x;0x%x;0x%x;0x%x;0x%x;0x%x;0x%x;0x%x\n",\
pOutVect[0],pOutVect[1],pOutVect[2],pOutVect[3],pOutVect[4],pOutVect[5],pOutVect[6],pOutVect[7]);*/
}
/*******************************************************************************
**
** Function SBC_FastIDCT4
**
** Description implementation of fast DCT algorithm by Feig and Winograd
**
**
** Returns y = dct(x0)
**
**
*******************************************************************************/
void SBC_FastIDCT4(SINT32 *pInVect, SINT32 *pOutVect)
{
#if (SBC_FAST_DCT == TRUE)
#if (SBC_ARM_ASM_OPT==TRUE)
#else
#if (SBC_IPAQ_OPT==TRUE)
#if (SBC_IS_64_MULT_IN_IDCT == TRUE)
SINT64 s64Temp;
#endif
#else
#if (SBC_IS_64_MULT_IN_IDCT == TRUE)
SINT32 s32HiTemp;
#else
UINT16 s32In2Temp;
SINT32 s32In1Temp;
#endif
#endif
#endif
SINT32 temp,x2;
SINT32 tmp[8];
x2=pInVect[2]>>1;
temp=(pInVect[0]+pInVect[4]);
SBC_IDCT_MULT((SBC_COS_PI_SUR_4>>1), temp , tmp[0]);
tmp[1]=x2-tmp[0];
tmp[0]+=x2;
temp=(pInVect[1]+pInVect[3]);
SBC_IDCT_MULT((SBC_COS_3PI_SUR_8>>1), temp , tmp[3]);
SBC_IDCT_MULT((SBC_COS_PI_SUR_8>>1), temp , tmp[2]);
temp=(pInVect[5]-pInVect[7]);
SBC_IDCT_MULT((SBC_COS_3PI_SUR_8>>1), temp , tmp[5]);
SBC_IDCT_MULT((SBC_COS_PI_SUR_8>>1), temp , tmp[4]);
tmp[6]=tmp[2]+tmp[5];
tmp[7]=tmp[3]-tmp[4];
pOutVect[0] = (tmp[0]+tmp[6]);
pOutVect[1] = (tmp[1]+tmp[7]);
pOutVect[2] = (tmp[1]-tmp[7]);
pOutVect[3] = (tmp[0]-tmp[6]);
#else
UINT8 Index, k;
SINT32 temp;
/*Calculate 4 subband samples by matrixing*/
for(Index=0; Index<4; Index++)
{
temp = 0;
for(k=0; k<8; k++)
{
/*temp += (SINT32)(((SINT64)M[(Index*strEncParams->numOfSubBands*2)+k] * Y[k]) >> 16 ); */
temp += (gas16AnalDCTcoeff4[(Index*4*2)+k] * (pInVect[k] >> 16));
temp += ((gas16AnalDCTcoeff4[(Index*4*2)+k] * (pInVect[k] & 0xFFFF)) >> 16);
}
pOutVect[Index] = temp;
}
#endif
}
|