diff options
author | Adam Langley <agl@google.com> | 2015-01-22 14:27:53 -0800 |
---|---|---|
committer | Adam Langley <agl@google.com> | 2015-01-30 16:52:14 -0800 |
commit | d9e397b599b13d642138480a28c14db7a136bf05 (patch) | |
tree | 34bab61dc4ce323b123ad4614dbc07e86ea2f9ef /src/crypto/bn/div.c | |
download | external_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.zip external_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.tar.gz external_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.tar.bz2 |
Initial commit of BoringSSL for Android.
Diffstat (limited to 'src/crypto/bn/div.c')
-rw-r--r-- | src/crypto/bn/div.c | 620 |
1 files changed, 620 insertions, 0 deletions
diff --git a/src/crypto/bn/div.c b/src/crypto/bn/div.c new file mode 100644 index 0000000..d65957a --- /dev/null +++ b/src/crypto/bn/div.c @@ -0,0 +1,620 @@ +/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) + * All rights reserved. + * + * This package is an SSL implementation written + * by Eric Young (eay@cryptsoft.com). + * The implementation was written so as to conform with Netscapes SSL. + * + * This library is free for commercial and non-commercial use as long as + * the following conditions are aheared to. The following conditions + * apply to all code found in this distribution, be it the RC4, RSA, + * lhash, DES, etc., code; not just the SSL code. The SSL documentation + * included with this distribution is covered by the same copyright terms + * except that the holder is Tim Hudson (tjh@cryptsoft.com). + * + * Copyright remains Eric Young's, and as such any Copyright notices in + * the code are not to be removed. + * If this package is used in a product, Eric Young should be given attribution + * as the author of the parts of the library used. + * This can be in the form of a textual message at program startup or + * in documentation (online or textual) provided with the package. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * "This product includes cryptographic software written by + * Eric Young (eay@cryptsoft.com)" + * The word 'cryptographic' can be left out if the rouines from the library + * being used are not cryptographic related :-). + * 4. If you include any Windows specific code (or a derivative thereof) from + * the apps directory (application code) you must include an acknowledgement: + * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" + * + * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * The licence and distribution terms for any publically available version or + * derivative of this code cannot be changed. i.e. this code cannot simply be + * copied and put under another distribution licence + * [including the GNU Public Licence.] */ + +#include <openssl/bn.h> + +#include <limits.h> +#include <openssl/err.h> + +#include "internal.h" + + +#define asm __asm__ + +#if !defined(OPENSSL_NO_ASM) +# if defined(__GNUC__) && __GNUC__>=2 +# if defined(OPENSSL_X86) + /* + * There were two reasons for implementing this template: + * - GNU C generates a call to a function (__udivdi3 to be exact) + * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to + * understand why...); + * - divl doesn't only calculate quotient, but also leaves + * remainder in %edx which we can definitely use here:-) + * + * <appro@fy.chalmers.se> + */ +#undef div_asm +# define div_asm(n0,n1,d0) \ + ({ asm volatile ( \ + "divl %4" \ + : "=a"(q), "=d"(rem) \ + : "a"(n1), "d"(n0), "g"(d0) \ + : "cc"); \ + q; \ + }) +# define REMAINDER_IS_ALREADY_CALCULATED +# elif defined(OPENSSL_X86_64) + /* + * Same story here, but it's 128-bit by 64-bit division. Wow! + * <appro@fy.chalmers.se> + */ +# undef div_asm +# define div_asm(n0,n1,d0) \ + ({ asm volatile ( \ + "divq %4" \ + : "=a"(q), "=d"(rem) \ + : "a"(n1), "d"(n0), "g"(d0) \ + : "cc"); \ + q; \ + }) +# define REMAINDER_IS_ALREADY_CALCULATED +# endif /* __<cpu> */ +# endif /* __GNUC__ */ +#endif /* OPENSSL_NO_ASM */ + +/* BN_div computes dv := num / divisor, rounding towards + * zero, and sets up rm such that dv*divisor + rm = num holds. + * Thus: + * dv->neg == num->neg ^ divisor->neg (unless the result is zero) + * rm->neg == num->neg (unless the remainder is zero) + * If 'dv' or 'rm' is NULL, the respective value is not returned. */ +int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, + BN_CTX *ctx) { + int norm_shift, i, loop; + BIGNUM *tmp, wnum, *snum, *sdiv, *res; + BN_ULONG *resp, *wnump; + BN_ULONG d0, d1; + int num_n, div_n; + int no_branch = 0; + + /* Invalid zero-padding would have particularly bad consequences + * so don't just rely on bn_check_top() here */ + if ((num->top > 0 && num->d[num->top - 1] == 0) || + (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) { + OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED); + return 0; + } + + if ((num->flags & BN_FLG_CONSTTIME) != 0 || + (divisor->flags & BN_FLG_CONSTTIME) != 0) { + no_branch = 1; + } + + if (BN_is_zero(divisor)) { + OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO); + return 0; + } + + if (!no_branch && BN_ucmp(num, divisor) < 0) { + if (rm != NULL) { + if (BN_copy(rm, num) == NULL) { + return 0; + } + } + if (dv != NULL) { + BN_zero(dv); + } + return 1; + } + + BN_CTX_start(ctx); + tmp = BN_CTX_get(ctx); + snum = BN_CTX_get(ctx); + sdiv = BN_CTX_get(ctx); + if (dv == NULL) { + res = BN_CTX_get(ctx); + } else { + res = dv; + } + if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) { + goto err; + } + + /* First we normalise the numbers */ + norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2); + if (!(BN_lshift(sdiv, divisor, norm_shift))) { + goto err; + } + sdiv->neg = 0; + norm_shift += BN_BITS2; + if (!(BN_lshift(snum, num, norm_shift))) { + goto err; + } + snum->neg = 0; + + if (no_branch) { + /* Since we don't know whether snum is larger than sdiv, + * we pad snum with enough zeroes without changing its + * value. + */ + if (snum->top <= sdiv->top + 1) { + if (bn_wexpand(snum, sdiv->top + 2) == NULL) { + goto err; + } + for (i = snum->top; i < sdiv->top + 2; i++) { + snum->d[i] = 0; + } + snum->top = sdiv->top + 2; + } else { + if (bn_wexpand(snum, snum->top + 1) == NULL) { + goto err; + } + snum->d[snum->top] = 0; + snum->top++; + } + } + + div_n = sdiv->top; + num_n = snum->top; + loop = num_n - div_n; + /* Lets setup a 'window' into snum + * This is the part that corresponds to the current + * 'area' being divided */ + wnum.neg = 0; + wnum.d = &(snum->d[loop]); + wnum.top = div_n; + /* only needed when BN_ucmp messes up the values between top and max */ + wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ + + /* Get the top 2 words of sdiv */ + /* div_n=sdiv->top; */ + d0 = sdiv->d[div_n - 1]; + d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; + + /* pointer to the 'top' of snum */ + wnump = &(snum->d[num_n - 1]); + + /* Setup to 'res' */ + res->neg = (num->neg ^ divisor->neg); + if (!bn_wexpand(res, (loop + 1))) { + goto err; + } + res->top = loop - no_branch; + resp = &(res->d[loop - 1]); + + /* space for temp */ + if (!bn_wexpand(tmp, (div_n + 1))) { + goto err; + } + + if (!no_branch) { + if (BN_ucmp(&wnum, sdiv) >= 0) { + bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n); + *resp = 1; + } else { + res->top--; + } + } + + /* if res->top == 0 then clear the neg value otherwise decrease + * the resp pointer */ + if (res->top == 0) { + res->neg = 0; + } else { + resp--; + } + + for (i = 0; i < loop - 1; i++, wnump--, resp--) { + BN_ULONG q, l0; + /* the first part of the loop uses the top two words of snum and sdiv to + * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */ + BN_ULONG n0, n1, rem = 0; + + n0 = wnump[0]; + n1 = wnump[-1]; + if (n0 == d0) { + q = BN_MASK2; + } else { + /* n0 < d0 */ +#ifdef BN_LLONG + BN_ULLONG t2; + +#if defined(BN_LLONG) && !defined(div_asm) + q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0); +#else + q = div_asm(n0, n1, d0); +#endif + +#ifndef REMAINDER_IS_ALREADY_CALCULATED + /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0, + * isn't it? */ + rem = (n1 - q * d0) & BN_MASK2; +#endif + + t2 = (BN_ULLONG)d1 * q; + + for (;;) { + if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) + break; + q--; + rem += d0; + if (rem < d0) + break; /* don't let rem overflow */ + t2 -= d1; + } +#else /* !BN_LLONG */ + BN_ULONG t2l, t2h; + +#if defined(div_asm) + q = div_asm(n0, n1, d0); +#else + q = bn_div_words(n0, n1, d0); +#endif + +#ifndef REMAINDER_IS_ALREADY_CALCULATED + rem = (n1 - q * d0) & BN_MASK2; +#endif + +#if defined(BN_UMULT_LOHI) + BN_UMULT_LOHI(t2l, t2h, d1, q); +#elif defined(BN_UMULT_HIGH) + t2l = d1 * q; + t2h = BN_UMULT_HIGH(d1, q); +#else + { + BN_ULONG ql, qh; + t2l = LBITS(d1); + t2h = HBITS(d1); + ql = LBITS(q); + qh = HBITS(q); + mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ + } +#endif + + for (;;) { + if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) + break; + q--; + rem += d0; + if (rem < d0) + break; /* don't let rem overflow */ + if (t2l < d1) + t2h--; + t2l -= d1; + } +#endif /* !BN_LLONG */ + } + + l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); + tmp->d[div_n] = l0; + wnum.d--; + /* ingore top values of the bignums just sub the two + * BN_ULONG arrays with bn_sub_words */ + if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { + /* Note: As we have considered only the leading + * two BN_ULONGs in the calculation of q, sdiv * q + * might be greater than wnum (but then (q-1) * sdiv + * is less or equal than wnum) + */ + q--; + if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) { + /* we can't have an overflow here (assuming + * that q != 0, but if q == 0 then tmp is + * zero anyway) */ + (*wnump)++; + } + } + /* store part of the result */ + *resp = q; + } + bn_correct_top(snum); + if (rm != NULL) { + /* Keep a copy of the neg flag in num because if rm==num + * BN_rshift() will overwrite it. + */ + int neg = num->neg; + BN_rshift(rm, snum, norm_shift); + if (!BN_is_zero(rm)) { + rm->neg = neg; + } + } + if (no_branch) { + bn_correct_top(res); + } + BN_CTX_end(ctx); + return 1; + +err: + BN_CTX_end(ctx); + return 0; +} + +int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) { + if (!(BN_mod(r, m, d, ctx))) { + return 0; + } + if (!r->neg) { + return 1; + } + + /* now -|d| < r < 0, so we have to set r := r + |d|. */ + return (d->neg ? BN_sub : BN_add)(r, r, d); +} + +int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, + BN_CTX *ctx) { + if (!BN_add(r, a, b)) { + return 0; + } + return BN_nnmod(r, r, m, ctx); +} + +int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, + const BIGNUM *m) { + if (!BN_uadd(r, a, b)) { + return 0; + } + if (BN_ucmp(r, m) >= 0) { + return BN_usub(r, r, m); + } + return 1; +} + +int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, + BN_CTX *ctx) { + if (!BN_sub(r, a, b)) { + return 0; + } + return BN_nnmod(r, r, m, ctx); +} + +/* BN_mod_sub variant that may be used if both a and b are non-negative + * and less than m */ +int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, + const BIGNUM *m) { + if (!BN_sub(r, a, b)) { + return 0; + } + if (r->neg) { + return BN_add(r, r, m); + } + return 1; +} + +int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, + BN_CTX *ctx) { + BIGNUM *t; + int ret = 0; + + BN_CTX_start(ctx); + t = BN_CTX_get(ctx); + if (t == NULL) { + goto err; + } + + if (a == b) { + if (!BN_sqr(t, a, ctx)) { + goto err; + } + } else { + if (!BN_mul(t, a, b, ctx)) { + goto err; + } + } + + if (!BN_nnmod(r, t, m, ctx)) { + goto err; + } + + ret = 1; + +err: + BN_CTX_end(ctx); + return ret; +} + +int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { + if (!BN_sqr(r, a, ctx)) { + return 0; + } + + /* r->neg == 0, thus we don't need BN_nnmod */ + return BN_mod(r, r, m, ctx); +} + +int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, + BN_CTX *ctx) { + BIGNUM *abs_m = NULL; + int ret; + + if (!BN_nnmod(r, a, m, ctx)) { + return 0; + } + + if (m->neg) { + abs_m = BN_dup(m); + if (abs_m == NULL) { + return 0; + } + abs_m->neg = 0; + } + + ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m)); + + if (abs_m) { + BN_free(abs_m); + } + return ret; +} + +int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) { + if (r != a) { + if (BN_copy(r, a) == NULL) { + return 0; + } + } + + while (n > 0) { + int max_shift; + + /* 0 < r < m */ + max_shift = BN_num_bits(m) - BN_num_bits(r); + /* max_shift >= 0 */ + + if (max_shift < 0) { + OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED); + return 0; + } + + if (max_shift > n) { + max_shift = n; + } + + if (max_shift) { + if (!BN_lshift(r, r, max_shift)) { + return 0; + } + n -= max_shift; + } else { + if (!BN_lshift1(r, r)) { + return 0; + } + --n; + } + + /* BN_num_bits(r) <= BN_num_bits(m) */ + if (BN_cmp(r, m) >= 0) { + if (!BN_sub(r, r, m)) { + return 0; + } + } + } + + return 1; +} + +int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { + if (!BN_lshift1(r, a)) { + return 0; + } + + return BN_nnmod(r, r, m, ctx); +} + +int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) { + if (!BN_lshift1(r, a)) { + return 0; + } + if (BN_cmp(r, m) >= 0) { + return BN_sub(r, r, m); + } + + return 1; +} + +BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) { + BN_ULONG ret = 0; + int i, j; + + w &= BN_MASK2; + + if (!w) { + /* actually this an error (division by zero) */ + return (BN_ULONG) - 1; + } + + if (a->top == 0) { + return 0; + } + + /* normalize input (so bn_div_words doesn't complain) */ + j = BN_BITS2 - BN_num_bits_word(w); + w <<= j; + if (!BN_lshift(a, a, j)) { + return (BN_ULONG) - 1; + } + + for (i = a->top - 1; i >= 0; i--) { + BN_ULONG l, d; + + l = a->d[i]; + d = bn_div_words(ret, l, w); + ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2; + a->d[i] = d; + } + + if ((a->top > 0) && (a->d[a->top - 1] == 0)) { + a->top--; + } + + ret >>= j; + return ret; +} + +BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) { +#ifndef BN_LLONG + BN_ULONG ret = 0; +#else + BN_ULLONG ret = 0; +#endif + int i; + + if (w == 0) { + return (BN_ULONG) -1; + } + + w &= BN_MASK2; + for (i = a->top - 1; i >= 0; i--) { +#ifndef BN_LLONG + ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w; + ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w; +#else + ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w); +#endif + } + return (BN_ULONG)ret; +} |