summaryrefslogtreecommitdiffstats
path: root/src/crypto/bn/div.c
diff options
context:
space:
mode:
authorAdam Langley <agl@google.com>2015-01-22 14:27:53 -0800
committerAdam Langley <agl@google.com>2015-01-30 16:52:14 -0800
commitd9e397b599b13d642138480a28c14db7a136bf05 (patch)
tree34bab61dc4ce323b123ad4614dbc07e86ea2f9ef /src/crypto/bn/div.c
downloadexternal_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.zip
external_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.tar.gz
external_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.tar.bz2
Initial commit of BoringSSL for Android.
Diffstat (limited to 'src/crypto/bn/div.c')
-rw-r--r--src/crypto/bn/div.c620
1 files changed, 620 insertions, 0 deletions
diff --git a/src/crypto/bn/div.c b/src/crypto/bn/div.c
new file mode 100644
index 0000000..d65957a
--- /dev/null
+++ b/src/crypto/bn/div.c
@@ -0,0 +1,620 @@
+/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
+ * All rights reserved.
+ *
+ * This package is an SSL implementation written
+ * by Eric Young (eay@cryptsoft.com).
+ * The implementation was written so as to conform with Netscapes SSL.
+ *
+ * This library is free for commercial and non-commercial use as long as
+ * the following conditions are aheared to. The following conditions
+ * apply to all code found in this distribution, be it the RC4, RSA,
+ * lhash, DES, etc., code; not just the SSL code. The SSL documentation
+ * included with this distribution is covered by the same copyright terms
+ * except that the holder is Tim Hudson (tjh@cryptsoft.com).
+ *
+ * Copyright remains Eric Young's, and as such any Copyright notices in
+ * the code are not to be removed.
+ * If this package is used in a product, Eric Young should be given attribution
+ * as the author of the parts of the library used.
+ * This can be in the form of a textual message at program startup or
+ * in documentation (online or textual) provided with the package.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * "This product includes cryptographic software written by
+ * Eric Young (eay@cryptsoft.com)"
+ * The word 'cryptographic' can be left out if the rouines from the library
+ * being used are not cryptographic related :-).
+ * 4. If you include any Windows specific code (or a derivative thereof) from
+ * the apps directory (application code) you must include an acknowledgement:
+ * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * The licence and distribution terms for any publically available version or
+ * derivative of this code cannot be changed. i.e. this code cannot simply be
+ * copied and put under another distribution licence
+ * [including the GNU Public Licence.] */
+
+#include <openssl/bn.h>
+
+#include <limits.h>
+#include <openssl/err.h>
+
+#include "internal.h"
+
+
+#define asm __asm__
+
+#if !defined(OPENSSL_NO_ASM)
+# if defined(__GNUC__) && __GNUC__>=2
+# if defined(OPENSSL_X86)
+ /*
+ * There were two reasons for implementing this template:
+ * - GNU C generates a call to a function (__udivdi3 to be exact)
+ * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
+ * understand why...);
+ * - divl doesn't only calculate quotient, but also leaves
+ * remainder in %edx which we can definitely use here:-)
+ *
+ * <appro@fy.chalmers.se>
+ */
+#undef div_asm
+# define div_asm(n0,n1,d0) \
+ ({ asm volatile ( \
+ "divl %4" \
+ : "=a"(q), "=d"(rem) \
+ : "a"(n1), "d"(n0), "g"(d0) \
+ : "cc"); \
+ q; \
+ })
+# define REMAINDER_IS_ALREADY_CALCULATED
+# elif defined(OPENSSL_X86_64)
+ /*
+ * Same story here, but it's 128-bit by 64-bit division. Wow!
+ * <appro@fy.chalmers.se>
+ */
+# undef div_asm
+# define div_asm(n0,n1,d0) \
+ ({ asm volatile ( \
+ "divq %4" \
+ : "=a"(q), "=d"(rem) \
+ : "a"(n1), "d"(n0), "g"(d0) \
+ : "cc"); \
+ q; \
+ })
+# define REMAINDER_IS_ALREADY_CALCULATED
+# endif /* __<cpu> */
+# endif /* __GNUC__ */
+#endif /* OPENSSL_NO_ASM */
+
+/* BN_div computes dv := num / divisor, rounding towards
+ * zero, and sets up rm such that dv*divisor + rm = num holds.
+ * Thus:
+ * dv->neg == num->neg ^ divisor->neg (unless the result is zero)
+ * rm->neg == num->neg (unless the remainder is zero)
+ * If 'dv' or 'rm' is NULL, the respective value is not returned. */
+int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
+ BN_CTX *ctx) {
+ int norm_shift, i, loop;
+ BIGNUM *tmp, wnum, *snum, *sdiv, *res;
+ BN_ULONG *resp, *wnump;
+ BN_ULONG d0, d1;
+ int num_n, div_n;
+ int no_branch = 0;
+
+ /* Invalid zero-padding would have particularly bad consequences
+ * so don't just rely on bn_check_top() here */
+ if ((num->top > 0 && num->d[num->top - 1] == 0) ||
+ (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
+ OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED);
+ return 0;
+ }
+
+ if ((num->flags & BN_FLG_CONSTTIME) != 0 ||
+ (divisor->flags & BN_FLG_CONSTTIME) != 0) {
+ no_branch = 1;
+ }
+
+ if (BN_is_zero(divisor)) {
+ OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO);
+ return 0;
+ }
+
+ if (!no_branch && BN_ucmp(num, divisor) < 0) {
+ if (rm != NULL) {
+ if (BN_copy(rm, num) == NULL) {
+ return 0;
+ }
+ }
+ if (dv != NULL) {
+ BN_zero(dv);
+ }
+ return 1;
+ }
+
+ BN_CTX_start(ctx);
+ tmp = BN_CTX_get(ctx);
+ snum = BN_CTX_get(ctx);
+ sdiv = BN_CTX_get(ctx);
+ if (dv == NULL) {
+ res = BN_CTX_get(ctx);
+ } else {
+ res = dv;
+ }
+ if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
+ goto err;
+ }
+
+ /* First we normalise the numbers */
+ norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
+ if (!(BN_lshift(sdiv, divisor, norm_shift))) {
+ goto err;
+ }
+ sdiv->neg = 0;
+ norm_shift += BN_BITS2;
+ if (!(BN_lshift(snum, num, norm_shift))) {
+ goto err;
+ }
+ snum->neg = 0;
+
+ if (no_branch) {
+ /* Since we don't know whether snum is larger than sdiv,
+ * we pad snum with enough zeroes without changing its
+ * value.
+ */
+ if (snum->top <= sdiv->top + 1) {
+ if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
+ goto err;
+ }
+ for (i = snum->top; i < sdiv->top + 2; i++) {
+ snum->d[i] = 0;
+ }
+ snum->top = sdiv->top + 2;
+ } else {
+ if (bn_wexpand(snum, snum->top + 1) == NULL) {
+ goto err;
+ }
+ snum->d[snum->top] = 0;
+ snum->top++;
+ }
+ }
+
+ div_n = sdiv->top;
+ num_n = snum->top;
+ loop = num_n - div_n;
+ /* Lets setup a 'window' into snum
+ * This is the part that corresponds to the current
+ * 'area' being divided */
+ wnum.neg = 0;
+ wnum.d = &(snum->d[loop]);
+ wnum.top = div_n;
+ /* only needed when BN_ucmp messes up the values between top and max */
+ wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
+
+ /* Get the top 2 words of sdiv */
+ /* div_n=sdiv->top; */
+ d0 = sdiv->d[div_n - 1];
+ d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
+
+ /* pointer to the 'top' of snum */
+ wnump = &(snum->d[num_n - 1]);
+
+ /* Setup to 'res' */
+ res->neg = (num->neg ^ divisor->neg);
+ if (!bn_wexpand(res, (loop + 1))) {
+ goto err;
+ }
+ res->top = loop - no_branch;
+ resp = &(res->d[loop - 1]);
+
+ /* space for temp */
+ if (!bn_wexpand(tmp, (div_n + 1))) {
+ goto err;
+ }
+
+ if (!no_branch) {
+ if (BN_ucmp(&wnum, sdiv) >= 0) {
+ bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
+ *resp = 1;
+ } else {
+ res->top--;
+ }
+ }
+
+ /* if res->top == 0 then clear the neg value otherwise decrease
+ * the resp pointer */
+ if (res->top == 0) {
+ res->neg = 0;
+ } else {
+ resp--;
+ }
+
+ for (i = 0; i < loop - 1; i++, wnump--, resp--) {
+ BN_ULONG q, l0;
+ /* the first part of the loop uses the top two words of snum and sdiv to
+ * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
+ BN_ULONG n0, n1, rem = 0;
+
+ n0 = wnump[0];
+ n1 = wnump[-1];
+ if (n0 == d0) {
+ q = BN_MASK2;
+ } else {
+ /* n0 < d0 */
+#ifdef BN_LLONG
+ BN_ULLONG t2;
+
+#if defined(BN_LLONG) && !defined(div_asm)
+ q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0);
+#else
+ q = div_asm(n0, n1, d0);
+#endif
+
+#ifndef REMAINDER_IS_ALREADY_CALCULATED
+ /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0,
+ * isn't it? */
+ rem = (n1 - q * d0) & BN_MASK2;
+#endif
+
+ t2 = (BN_ULLONG)d1 * q;
+
+ for (;;) {
+ if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2]))
+ break;
+ q--;
+ rem += d0;
+ if (rem < d0)
+ break; /* don't let rem overflow */
+ t2 -= d1;
+ }
+#else /* !BN_LLONG */
+ BN_ULONG t2l, t2h;
+
+#if defined(div_asm)
+ q = div_asm(n0, n1, d0);
+#else
+ q = bn_div_words(n0, n1, d0);
+#endif
+
+#ifndef REMAINDER_IS_ALREADY_CALCULATED
+ rem = (n1 - q * d0) & BN_MASK2;
+#endif
+
+#if defined(BN_UMULT_LOHI)
+ BN_UMULT_LOHI(t2l, t2h, d1, q);
+#elif defined(BN_UMULT_HIGH)
+ t2l = d1 * q;
+ t2h = BN_UMULT_HIGH(d1, q);
+#else
+ {
+ BN_ULONG ql, qh;
+ t2l = LBITS(d1);
+ t2h = HBITS(d1);
+ ql = LBITS(q);
+ qh = HBITS(q);
+ mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
+ }
+#endif
+
+ for (;;) {
+ if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2])))
+ break;
+ q--;
+ rem += d0;
+ if (rem < d0)
+ break; /* don't let rem overflow */
+ if (t2l < d1)
+ t2h--;
+ t2l -= d1;
+ }
+#endif /* !BN_LLONG */
+ }
+
+ l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
+ tmp->d[div_n] = l0;
+ wnum.d--;
+ /* ingore top values of the bignums just sub the two
+ * BN_ULONG arrays with bn_sub_words */
+ if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
+ /* Note: As we have considered only the leading
+ * two BN_ULONGs in the calculation of q, sdiv * q
+ * might be greater than wnum (but then (q-1) * sdiv
+ * is less or equal than wnum)
+ */
+ q--;
+ if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
+ /* we can't have an overflow here (assuming
+ * that q != 0, but if q == 0 then tmp is
+ * zero anyway) */
+ (*wnump)++;
+ }
+ }
+ /* store part of the result */
+ *resp = q;
+ }
+ bn_correct_top(snum);
+ if (rm != NULL) {
+ /* Keep a copy of the neg flag in num because if rm==num
+ * BN_rshift() will overwrite it.
+ */
+ int neg = num->neg;
+ BN_rshift(rm, snum, norm_shift);
+ if (!BN_is_zero(rm)) {
+ rm->neg = neg;
+ }
+ }
+ if (no_branch) {
+ bn_correct_top(res);
+ }
+ BN_CTX_end(ctx);
+ return 1;
+
+err:
+ BN_CTX_end(ctx);
+ return 0;
+}
+
+int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
+ if (!(BN_mod(r, m, d, ctx))) {
+ return 0;
+ }
+ if (!r->neg) {
+ return 1;
+ }
+
+ /* now -|d| < r < 0, so we have to set r := r + |d|. */
+ return (d->neg ? BN_sub : BN_add)(r, r, d);
+}
+
+int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
+ BN_CTX *ctx) {
+ if (!BN_add(r, a, b)) {
+ return 0;
+ }
+ return BN_nnmod(r, r, m, ctx);
+}
+
+int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+ const BIGNUM *m) {
+ if (!BN_uadd(r, a, b)) {
+ return 0;
+ }
+ if (BN_ucmp(r, m) >= 0) {
+ return BN_usub(r, r, m);
+ }
+ return 1;
+}
+
+int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
+ BN_CTX *ctx) {
+ if (!BN_sub(r, a, b)) {
+ return 0;
+ }
+ return BN_nnmod(r, r, m, ctx);
+}
+
+/* BN_mod_sub variant that may be used if both a and b are non-negative
+ * and less than m */
+int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+ const BIGNUM *m) {
+ if (!BN_sub(r, a, b)) {
+ return 0;
+ }
+ if (r->neg) {
+ return BN_add(r, r, m);
+ }
+ return 1;
+}
+
+int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
+ BN_CTX *ctx) {
+ BIGNUM *t;
+ int ret = 0;
+
+ BN_CTX_start(ctx);
+ t = BN_CTX_get(ctx);
+ if (t == NULL) {
+ goto err;
+ }
+
+ if (a == b) {
+ if (!BN_sqr(t, a, ctx)) {
+ goto err;
+ }
+ } else {
+ if (!BN_mul(t, a, b, ctx)) {
+ goto err;
+ }
+ }
+
+ if (!BN_nnmod(r, t, m, ctx)) {
+ goto err;
+ }
+
+ ret = 1;
+
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
+ if (!BN_sqr(r, a, ctx)) {
+ return 0;
+ }
+
+ /* r->neg == 0, thus we don't need BN_nnmod */
+ return BN_mod(r, r, m, ctx);
+}
+
+int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
+ BN_CTX *ctx) {
+ BIGNUM *abs_m = NULL;
+ int ret;
+
+ if (!BN_nnmod(r, a, m, ctx)) {
+ return 0;
+ }
+
+ if (m->neg) {
+ abs_m = BN_dup(m);
+ if (abs_m == NULL) {
+ return 0;
+ }
+ abs_m->neg = 0;
+ }
+
+ ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
+
+ if (abs_m) {
+ BN_free(abs_m);
+ }
+ return ret;
+}
+
+int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
+ if (r != a) {
+ if (BN_copy(r, a) == NULL) {
+ return 0;
+ }
+ }
+
+ while (n > 0) {
+ int max_shift;
+
+ /* 0 < r < m */
+ max_shift = BN_num_bits(m) - BN_num_bits(r);
+ /* max_shift >= 0 */
+
+ if (max_shift < 0) {
+ OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED);
+ return 0;
+ }
+
+ if (max_shift > n) {
+ max_shift = n;
+ }
+
+ if (max_shift) {
+ if (!BN_lshift(r, r, max_shift)) {
+ return 0;
+ }
+ n -= max_shift;
+ } else {
+ if (!BN_lshift1(r, r)) {
+ return 0;
+ }
+ --n;
+ }
+
+ /* BN_num_bits(r) <= BN_num_bits(m) */
+ if (BN_cmp(r, m) >= 0) {
+ if (!BN_sub(r, r, m)) {
+ return 0;
+ }
+ }
+ }
+
+ return 1;
+}
+
+int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
+ if (!BN_lshift1(r, a)) {
+ return 0;
+ }
+
+ return BN_nnmod(r, r, m, ctx);
+}
+
+int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
+ if (!BN_lshift1(r, a)) {
+ return 0;
+ }
+ if (BN_cmp(r, m) >= 0) {
+ return BN_sub(r, r, m);
+ }
+
+ return 1;
+}
+
+BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
+ BN_ULONG ret = 0;
+ int i, j;
+
+ w &= BN_MASK2;
+
+ if (!w) {
+ /* actually this an error (division by zero) */
+ return (BN_ULONG) - 1;
+ }
+
+ if (a->top == 0) {
+ return 0;
+ }
+
+ /* normalize input (so bn_div_words doesn't complain) */
+ j = BN_BITS2 - BN_num_bits_word(w);
+ w <<= j;
+ if (!BN_lshift(a, a, j)) {
+ return (BN_ULONG) - 1;
+ }
+
+ for (i = a->top - 1; i >= 0; i--) {
+ BN_ULONG l, d;
+
+ l = a->d[i];
+ d = bn_div_words(ret, l, w);
+ ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
+ a->d[i] = d;
+ }
+
+ if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
+ a->top--;
+ }
+
+ ret >>= j;
+ return ret;
+}
+
+BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
+#ifndef BN_LLONG
+ BN_ULONG ret = 0;
+#else
+ BN_ULLONG ret = 0;
+#endif
+ int i;
+
+ if (w == 0) {
+ return (BN_ULONG) -1;
+ }
+
+ w &= BN_MASK2;
+ for (i = a->top - 1; i >= 0; i--) {
+#ifndef BN_LLONG
+ ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
+ ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
+#else
+ ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
+#endif
+ }
+ return (BN_ULONG)ret;
+}