summaryrefslogtreecommitdiffstats
path: root/src/crypto/bn/mul.c
diff options
context:
space:
mode:
authorAdam Langley <agl@google.com>2015-01-22 14:27:53 -0800
committerAdam Langley <agl@google.com>2015-01-30 16:52:14 -0800
commitd9e397b599b13d642138480a28c14db7a136bf05 (patch)
tree34bab61dc4ce323b123ad4614dbc07e86ea2f9ef /src/crypto/bn/mul.c
downloadexternal_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.zip
external_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.tar.gz
external_boringssl-d9e397b599b13d642138480a28c14db7a136bf05.tar.bz2
Initial commit of BoringSSL for Android.
Diffstat (limited to 'src/crypto/bn/mul.c')
-rw-r--r--src/crypto/bn/mul.c886
1 files changed, 886 insertions, 0 deletions
diff --git a/src/crypto/bn/mul.c b/src/crypto/bn/mul.c
new file mode 100644
index 0000000..80c6288
--- /dev/null
+++ b/src/crypto/bn/mul.c
@@ -0,0 +1,886 @@
+/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
+ * All rights reserved.
+ *
+ * This package is an SSL implementation written
+ * by Eric Young (eay@cryptsoft.com).
+ * The implementation was written so as to conform with Netscapes SSL.
+ *
+ * This library is free for commercial and non-commercial use as long as
+ * the following conditions are aheared to. The following conditions
+ * apply to all code found in this distribution, be it the RC4, RSA,
+ * lhash, DES, etc., code; not just the SSL code. The SSL documentation
+ * included with this distribution is covered by the same copyright terms
+ * except that the holder is Tim Hudson (tjh@cryptsoft.com).
+ *
+ * Copyright remains Eric Young's, and as such any Copyright notices in
+ * the code are not to be removed.
+ * If this package is used in a product, Eric Young should be given attribution
+ * as the author of the parts of the library used.
+ * This can be in the form of a textual message at program startup or
+ * in documentation (online or textual) provided with the package.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * "This product includes cryptographic software written by
+ * Eric Young (eay@cryptsoft.com)"
+ * The word 'cryptographic' can be left out if the rouines from the library
+ * being used are not cryptographic related :-).
+ * 4. If you include any Windows specific code (or a derivative thereof) from
+ * the apps directory (application code) you must include an acknowledgement:
+ * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * The licence and distribution terms for any publically available version or
+ * derivative of this code cannot be changed. i.e. this code cannot simply be
+ * copied and put under another distribution licence
+ * [including the GNU Public Licence.] */
+
+#include <openssl/bn.h>
+
+#include <assert.h>
+#include <string.h>
+
+#include "internal.h"
+
+
+void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) {
+ BN_ULONG *rr;
+
+ if (na < nb) {
+ int itmp;
+ BN_ULONG *ltmp;
+
+ itmp = na;
+ na = nb;
+ nb = itmp;
+ ltmp = a;
+ a = b;
+ b = ltmp;
+ }
+ rr = &(r[na]);
+ if (nb <= 0) {
+ (void)bn_mul_words(r, a, na, 0);
+ return;
+ } else {
+ rr[0] = bn_mul_words(r, a, na, b[0]);
+ }
+
+ for (;;) {
+ if (--nb <= 0) {
+ return;
+ }
+ rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
+ if (--nb <= 0) {
+ return;
+ }
+ rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
+ if (--nb <= 0) {
+ return;
+ }
+ rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
+ if (--nb <= 0) {
+ return;
+ }
+ rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
+ rr += 4;
+ r += 4;
+ b += 4;
+ }
+}
+
+void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) {
+ bn_mul_words(r, a, n, b[0]);
+
+ for (;;) {
+ if (--n <= 0) {
+ return;
+ }
+ bn_mul_add_words(&(r[1]), a, n, b[1]);
+ if (--n <= 0) {
+ return;
+ }
+ bn_mul_add_words(&(r[2]), a, n, b[2]);
+ if (--n <= 0) {
+ return;
+ }
+ bn_mul_add_words(&(r[3]), a, n, b[3]);
+ if (--n <= 0) {
+ return;
+ }
+ bn_mul_add_words(&(r[4]), a, n, b[4]);
+ r += 4;
+ b += 4;
+ }
+}
+
+#if !defined(OPENSSL_X86) || defined(OPENSSL_NO_ASM)
+/* Here follows specialised variants of bn_add_words() and bn_sub_words(). They
+ * have the property performing operations on arrays of different sizes. The
+ * sizes of those arrays is expressed through cl, which is the common length (
+ * basicall, min(len(a),len(b)) ), and dl, which is the delta between the two
+ * lengths, calculated as len(a)-len(b). All lengths are the number of
+ * BN_ULONGs... For the operations that require a result array as parameter,
+ * it must have the length cl+abs(dl). These functions should probably end up
+ * in bn_asm.c as soon as there are assembler counterparts for the systems that
+ * use assembler files. */
+
+static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
+ const BN_ULONG *b, int cl, int dl) {
+ BN_ULONG c, t;
+
+ assert(cl >= 0);
+ c = bn_sub_words(r, a, b, cl);
+
+ if (dl == 0)
+ return c;
+
+ r += cl;
+ a += cl;
+ b += cl;
+
+ if (dl < 0) {
+ for (;;) {
+ t = b[0];
+ r[0] = (0 - t - c) & BN_MASK2;
+ if (t != 0) {
+ c = 1;
+ }
+ if (++dl >= 0) {
+ break;
+ }
+
+ t = b[1];
+ r[1] = (0 - t - c) & BN_MASK2;
+ if (t != 0) {
+ c = 1;
+ }
+ if (++dl >= 0) {
+ break;
+ }
+
+ t = b[2];
+ r[2] = (0 - t - c) & BN_MASK2;
+ if (t != 0) {
+ c = 1;
+ }
+ if (++dl >= 0) {
+ break;
+ }
+
+ t = b[3];
+ r[3] = (0 - t - c) & BN_MASK2;
+ if (t != 0) {
+ c = 1;
+ }
+ if (++dl >= 0) {
+ break;
+ }
+
+ b += 4;
+ r += 4;
+ }
+ } else {
+ int save_dl = dl;
+ while (c) {
+ t = a[0];
+ r[0] = (t - c) & BN_MASK2;
+ if (t != 0) {
+ c = 0;
+ }
+ if (--dl <= 0) {
+ break;
+ }
+
+ t = a[1];
+ r[1] = (t - c) & BN_MASK2;
+ if (t != 0) {
+ c = 0;
+ }
+ if (--dl <= 0) {
+ break;
+ }
+
+ t = a[2];
+ r[2] = (t - c) & BN_MASK2;
+ if (t != 0) {
+ c = 0;
+ }
+ if (--dl <= 0) {
+ break;
+ }
+
+ t = a[3];
+ r[3] = (t - c) & BN_MASK2;
+ if (t != 0) {
+ c = 0;
+ }
+ if (--dl <= 0) {
+ break;
+ }
+
+ save_dl = dl;
+ a += 4;
+ r += 4;
+ }
+ if (dl > 0) {
+ if (save_dl > dl) {
+ switch (save_dl - dl) {
+ case 1:
+ r[1] = a[1];
+ if (--dl <= 0) {
+ break;
+ }
+ case 2:
+ r[2] = a[2];
+ if (--dl <= 0) {
+ break;
+ }
+ case 3:
+ r[3] = a[3];
+ if (--dl <= 0) {
+ break;
+ }
+ }
+ a += 4;
+ r += 4;
+ }
+ }
+
+ if (dl > 0) {
+ for (;;) {
+ r[0] = a[0];
+ if (--dl <= 0) {
+ break;
+ }
+ r[1] = a[1];
+ if (--dl <= 0) {
+ break;
+ }
+ r[2] = a[2];
+ if (--dl <= 0) {
+ break;
+ }
+ r[3] = a[3];
+ if (--dl <= 0) {
+ break;
+ }
+
+ a += 4;
+ r += 4;
+ }
+ }
+ }
+
+ return c;
+}
+#else
+/* On other platforms the function is defined in asm. */
+BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+ int cl, int dl);
+#endif
+
+/* Karatsuba recursive multiplication algorithm
+ * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
+
+/* r is 2*n2 words in size,
+ * a and b are both n2 words in size.
+ * n2 must be a power of 2.
+ * We multiply and return the result.
+ * t must be 2*n2 words in size
+ * We calculate
+ * a[0]*b[0]
+ * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
+ * a[1]*b[1]
+ */
+/* dnX may not be positive, but n2/2+dnX has to be */
+static void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
+ int dna, int dnb, BN_ULONG *t) {
+ int n = n2 / 2, c1, c2;
+ int tna = n + dna, tnb = n + dnb;
+ unsigned int neg, zero;
+ BN_ULONG ln, lo, *p;
+
+ /* Only call bn_mul_comba 8 if n2 == 8 and the
+ * two arrays are complete [steve]
+ */
+ if (n2 == 8 && dna == 0 && dnb == 0) {
+ bn_mul_comba8(r, a, b);
+ return;
+ }
+
+ /* Else do normal multiply */
+ if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
+ bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
+ if ((dna + dnb) < 0)
+ memset(&r[2 * n2 + dna + dnb], 0, sizeof(BN_ULONG) * -(dna + dnb));
+ return;
+ }
+
+ /* r=(a[0]-a[1])*(b[1]-b[0]) */
+ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
+ c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
+ zero = neg = 0;
+ switch (c1 * 3 + c2) {
+ case -4:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ break;
+ case -3:
+ zero = 1;
+ break;
+ case -2:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
+ neg = 1;
+ break;
+ case -1:
+ case 0:
+ case 1:
+ zero = 1;
+ break;
+ case 2:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ neg = 1;
+ break;
+ case 3:
+ zero = 1;
+ break;
+ case 4:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
+ break;
+ }
+
+ if (n == 4 && dna == 0 && dnb == 0) {
+ /* XXX: bn_mul_comba4 could take extra args to do this well */
+ if (!zero) {
+ bn_mul_comba4(&(t[n2]), t, &(t[n]));
+ } else {
+ memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
+ }
+
+ bn_mul_comba4(r, a, b);
+ bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
+ } else if (n == 8 && dna == 0 && dnb == 0) {
+ /* XXX: bn_mul_comba8 could take extra args to do this well */
+ if (!zero) {
+ bn_mul_comba8(&(t[n2]), t, &(t[n]));
+ } else {
+ memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
+ }
+
+ bn_mul_comba8(r, a, b);
+ bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
+ } else {
+ p = &(t[n2 * 2]);
+ if (!zero) {
+ bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
+ } else {
+ memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
+ }
+ bn_mul_recursive(r, a, b, n, 0, 0, p);
+ bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
+ }
+
+ /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1]) */
+
+ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
+
+ if (neg) {
+ /* if t[32] is negative */
+ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
+ } else {
+ /* Might have a carry */
+ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
+ }
+
+ /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ * c1 holds the carry bits */
+ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
+ if (c1) {
+ p = &(r[n + n2]);
+ lo = *p;
+ ln = (lo + c1) & BN_MASK2;
+ *p = ln;
+
+ /* The overflow will stop before we over write
+ * words we should not overwrite */
+ if (ln < (BN_ULONG)c1) {
+ do {
+ p++;
+ lo = *p;
+ ln = (lo + 1) & BN_MASK2;
+ *p = ln;
+ } while (ln == 0);
+ }
+ }
+}
+
+/* n+tn is the word length
+ * t needs to be n*4 is size, as does r */
+/* tnX may not be negative but less than n */
+static void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
+ int tna, int tnb, BN_ULONG *t) {
+ int i, j, n2 = n * 2;
+ int c1, c2, neg;
+ BN_ULONG ln, lo, *p;
+
+ if (n < 8) {
+ bn_mul_normal(r, a, n + tna, b, n + tnb);
+ return;
+ }
+
+ /* r=(a[0]-a[1])*(b[1]-b[0]) */
+ c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
+ c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
+ neg = 0;
+ switch (c1 * 3 + c2) {
+ case -4:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ break;
+ case -3:
+ /* break; */
+ case -2:
+ bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
+ neg = 1;
+ break;
+ case -1:
+ case 0:
+ case 1:
+ /* break; */
+ case 2:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
+ bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
+ neg = 1;
+ break;
+ case 3:
+ /* break; */
+ case 4:
+ bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
+ bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
+ break;
+ }
+
+ if (n == 8) {
+ bn_mul_comba8(&(t[n2]), t, &(t[n]));
+ bn_mul_comba8(r, a, b);
+ bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
+ memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
+ } else {
+ p = &(t[n2 * 2]);
+ bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
+ bn_mul_recursive(r, a, b, n, 0, 0, p);
+ i = n / 2;
+ /* If there is only a bottom half to the number,
+ * just do it */
+ if (tna > tnb) {
+ j = tna - i;
+ } else {
+ j = tnb - i;
+ }
+
+ if (j == 0) {
+ bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
+ memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
+ } else if (j > 0) {
+ /* eg, n == 16, i == 8 and tn == 11 */
+ bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
+ memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
+ } else {
+ /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
+ memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
+ if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
+ tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
+ bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
+ } else {
+ for (;;) {
+ i /= 2;
+ /* these simplified conditions work
+ * exclusively because difference
+ * between tna and tnb is 1 or 0 */
+ if (i < tna || i < tnb) {
+ bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i,
+ tnb - i, p);
+ break;
+ } else if (i == tna || i == tnb) {
+ bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i,
+ p);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ */
+
+ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
+
+ if (neg) {
+ /* if t[32] is negative */
+ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
+ } else {
+ /* Might have a carry */
+ c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
+ }
+
+ /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1])
+ * c1 holds the carry bits */
+ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
+ if (c1) {
+ p = &(r[n + n2]);
+ lo = *p;
+ ln = (lo + c1) & BN_MASK2;
+ *p = ln;
+
+ /* The overflow will stop before we over write
+ * words we should not overwrite */
+ if (ln < (BN_ULONG)c1) {
+ do {
+ p++;
+ lo = *p;
+ ln = (lo + 1) & BN_MASK2;
+ *p = ln;
+ } while (ln == 0);
+ }
+ }
+}
+
+int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
+ int ret = 0;
+ int top, al, bl;
+ BIGNUM *rr;
+ int i;
+ BIGNUM *t = NULL;
+ int j = 0, k;
+
+ al = a->top;
+ bl = b->top;
+
+ if ((al == 0) || (bl == 0)) {
+ BN_zero(r);
+ return 1;
+ }
+ top = al + bl;
+
+ BN_CTX_start(ctx);
+ if ((r == a) || (r == b)) {
+ if ((rr = BN_CTX_get(ctx)) == NULL) {
+ goto err;
+ }
+ } else {
+ rr = r;
+ }
+ rr->neg = a->neg ^ b->neg;
+
+ i = al - bl;
+ if (i == 0) {
+ if (al == 8) {
+ if (bn_wexpand(rr, 16) == NULL) {
+ goto err;
+ }
+ rr->top = 16;
+ bn_mul_comba8(rr->d, a->d, b->d);
+ goto end;
+ }
+ }
+
+ if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
+ if (i >= -1 && i <= 1) {
+ /* Find out the power of two lower or equal
+ to the longest of the two numbers */
+ if (i >= 0) {
+ j = BN_num_bits_word((BN_ULONG)al);
+ }
+ if (i == -1) {
+ j = BN_num_bits_word((BN_ULONG)bl);
+ }
+ j = 1 << (j - 1);
+ assert(j <= al || j <= bl);
+ k = j + j;
+ t = BN_CTX_get(ctx);
+ if (t == NULL) {
+ goto err;
+ }
+ if (al > j || bl > j) {
+ if (bn_wexpand(t, k * 4) == NULL) {
+ goto err;
+ }
+ if (bn_wexpand(rr, k * 4) == NULL) {
+ goto err;
+ }
+ bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
+ } else {
+ /* al <= j || bl <= j */
+ if (bn_wexpand(t, k * 2) == NULL) {
+ goto err;
+ }
+ if (bn_wexpand(rr, k * 2) == NULL) {
+ goto err;
+ }
+ bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
+ }
+ rr->top = top;
+ goto end;
+ }
+ }
+
+ if (bn_wexpand(rr, top) == NULL) {
+ goto err;
+ }
+ rr->top = top;
+ bn_mul_normal(rr->d, a->d, al, b->d, bl);
+
+end:
+ bn_correct_top(rr);
+ if (r != rr) {
+ BN_copy(r, rr);
+ }
+ ret = 1;
+
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+/* tmp must have 2*n words */
+static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) {
+ int i, j, max;
+ const BN_ULONG *ap;
+ BN_ULONG *rp;
+
+ max = n * 2;
+ ap = a;
+ rp = r;
+ rp[0] = rp[max - 1] = 0;
+ rp++;
+ j = n;
+
+ if (--j > 0) {
+ ap++;
+ rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
+ rp += 2;
+ }
+
+ for (i = n - 2; i > 0; i--) {
+ j--;
+ ap++;
+ rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
+ rp += 2;
+ }
+
+ bn_add_words(r, r, r, max);
+
+ /* There will not be a carry */
+
+ bn_sqr_words(tmp, a, n);
+
+ bn_add_words(r, r, tmp, max);
+}
+
+/* r is 2*n words in size,
+ * a and b are both n words in size. (There's not actually a 'b' here ...)
+ * n must be a power of 2.
+ * We multiply and return the result.
+ * t must be 2*n words in size
+ * We calculate
+ * a[0]*b[0]
+ * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
+ * a[1]*b[1]
+ */
+static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) {
+ int n = n2 / 2;
+ int zero, c1;
+ BN_ULONG ln, lo, *p;
+
+ if (n2 == 4) {
+ bn_sqr_comba4(r, a);
+ return;
+ } else if (n2 == 8) {
+ bn_sqr_comba8(r, a);
+ return;
+ }
+ if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
+ bn_sqr_normal(r, a, n2, t);
+ return;
+ }
+ /* r=(a[0]-a[1])*(a[1]-a[0]) */
+ c1 = bn_cmp_words(a, &(a[n]), n);
+ zero = 0;
+ if (c1 > 0) {
+ bn_sub_words(t, a, &(a[n]), n);
+ } else if (c1 < 0) {
+ bn_sub_words(t, &(a[n]), a, n);
+ } else {
+ zero = 1;
+ }
+
+ /* The result will always be negative unless it is zero */
+ p = &(t[n2 * 2]);
+
+ if (!zero) {
+ bn_sqr_recursive(&(t[n2]), t, n, p);
+ } else {
+ memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
+ }
+ bn_sqr_recursive(r, a, n, p);
+ bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
+
+ /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
+ * r[10] holds (a[0]*b[0])
+ * r[32] holds (b[1]*b[1]) */
+
+ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
+
+ /* t[32] is negative */
+ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
+
+ /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
+ * r[10] holds (a[0]*a[0])
+ * r[32] holds (a[1]*a[1])
+ * c1 holds the carry bits */
+ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
+ if (c1) {
+ p = &(r[n + n2]);
+ lo = *p;
+ ln = (lo + c1) & BN_MASK2;
+ *p = ln;
+
+ /* The overflow will stop before we over write
+ * words we should not overwrite */
+ if (ln < (BN_ULONG)c1) {
+ do {
+ p++;
+ lo = *p;
+ ln = (lo + 1) & BN_MASK2;
+ *p = ln;
+ } while (ln == 0);
+ }
+ }
+}
+
+int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
+ BN_ULONG ll;
+
+ w &= BN_MASK2;
+ if (!bn->top) {
+ return 1;
+ }
+
+ if (w == 0) {
+ BN_zero(bn);
+ return 1;
+ }
+
+ ll = bn_mul_words(bn->d, bn->d, bn->top, w);
+ if (ll) {
+ if (bn_wexpand(bn, bn->top + 1) == NULL) {
+ return 0;
+ }
+ bn->d[bn->top++] = ll;
+ }
+
+ return 1;
+}
+
+int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
+ int max, al;
+ int ret = 0;
+ BIGNUM *tmp, *rr;
+
+ al = a->top;
+ if (al <= 0) {
+ r->top = 0;
+ r->neg = 0;
+ return 1;
+ }
+
+ BN_CTX_start(ctx);
+ rr = (a != r) ? r : BN_CTX_get(ctx);
+ tmp = BN_CTX_get(ctx);
+ if (!rr || !tmp) {
+ goto err;
+ }
+
+ max = 2 * al; /* Non-zero (from above) */
+ if (bn_wexpand(rr, max) == NULL) {
+ goto err;
+ }
+
+ if (al == 4) {
+ bn_sqr_comba4(rr->d, a->d);
+ } else if (al == 8) {
+ bn_sqr_comba8(rr->d, a->d);
+ } else {
+ if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
+ BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
+ bn_sqr_normal(rr->d, a->d, al, t);
+ } else {
+ int j, k;
+
+ j = BN_num_bits_word((BN_ULONG)al);
+ j = 1 << (j - 1);
+ k = j + j;
+ if (al == j) {
+ if (bn_wexpand(tmp, k * 2) == NULL) {
+ goto err;
+ }
+ bn_sqr_recursive(rr->d, a->d, al, tmp->d);
+ } else {
+ if (bn_wexpand(tmp, max) == NULL) {
+ goto err;
+ }
+ bn_sqr_normal(rr->d, a->d, al, tmp->d);
+ }
+ }
+ }
+
+ rr->neg = 0;
+ /* If the most-significant half of the top word of 'a' is zero, then
+ * the square of 'a' will max-1 words. */
+ if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) {
+ rr->top = max - 1;
+ } else {
+ rr->top = max;
+ }
+
+ if (rr != r) {
+ BN_copy(r, rr);
+ }
+ ret = 1;
+
+err:
+ BN_CTX_end(ctx);
+ return ret;
+}