diff options
Diffstat (limited to 'src/crypto/rc4/asm')
-rw-r--r-- | src/crypto/rc4/asm/rc4-586.pl | 414 | ||||
-rw-r--r-- | src/crypto/rc4/asm/rc4-md5-x86_64.pl | 632 | ||||
-rw-r--r-- | src/crypto/rc4/asm/rc4-x86_64.pl | 679 |
3 files changed, 1725 insertions, 0 deletions
diff --git a/src/crypto/rc4/asm/rc4-586.pl b/src/crypto/rc4/asm/rc4-586.pl new file mode 100644 index 0000000..fc860ae --- /dev/null +++ b/src/crypto/rc4/asm/rc4-586.pl @@ -0,0 +1,414 @@ +#!/usr/bin/env perl + +# ==================================================================== +# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== + +# At some point it became apparent that the original SSLeay RC4 +# assembler implementation performs suboptimally on latest IA-32 +# microarchitectures. After re-tuning performance has changed as +# following: +# +# Pentium -10% +# Pentium III +12% +# AMD +50%(*) +# P4 +250%(**) +# +# (*) This number is actually a trade-off:-) It's possible to +# achieve +72%, but at the cost of -48% off PIII performance. +# In other words code performing further 13% faster on AMD +# would perform almost 2 times slower on Intel PIII... +# For reference! This code delivers ~80% of rc4-amd64.pl +# performance on the same Opteron machine. +# (**) This number requires compressed key schedule set up by +# RC4_set_key [see commentary below for further details]. +# +# <appro@fy.chalmers.se> + +# May 2011 +# +# Optimize for Core2 and Westmere [and incidentally Opteron]. Current +# performance in cycles per processed byte (less is better) and +# improvement relative to previous version of this module is: +# +# Pentium 10.2 # original numbers +# Pentium III 7.8(*) +# Intel P4 7.5 +# +# Opteron 6.1/+20% # new MMX numbers +# Core2 5.3/+67%(**) +# Westmere 5.1/+94%(**) +# Sandy Bridge 5.0/+8% +# Atom 12.6/+6% +# +# (*) PIII can actually deliver 6.6 cycles per byte with MMX code, +# but this specific code performs poorly on Core2. And vice +# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs +# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU +# [anymore], I chose to discard PIII-specific code path and opt +# for original IALU-only code, which is why MMX/SSE code path +# is guarded by SSE2 bit (see below), not MMX/SSE. +# (**) Performance vs. block size on Core2 and Westmere had a maximum +# at ... 64 bytes block size. And it was quite a maximum, 40-60% +# in comparison to largest 8KB block size. Above improvement +# coefficients are for the largest block size. + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +push(@INC,"${dir}","${dir}../../perlasm"); +require "x86asm.pl"; + +&asm_init($ARGV[0],"rc4-586.pl",$x86only = $ARGV[$#ARGV] eq "386"); + +$xx="eax"; +$yy="ebx"; +$tx="ecx"; +$ty="edx"; +$inp="esi"; +$out="ebp"; +$dat="edi"; + +sub RC4_loop { + my $i=shift; + my $func = ($i==0)?*mov:*or; + + &add (&LB($yy),&LB($tx)); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &mov (&DWP(0,$dat,$xx,4),$ty); + &add ($ty,$tx); + &inc (&LB($xx)); + &and ($ty,0xff); + &ror ($out,8) if ($i!=0); + if ($i<3) { + &mov ($tx,&DWP(0,$dat,$xx,4)); + } else { + &mov ($tx,&wparam(3)); # reload [re-biased] out + } + &$func ($out,&DWP(0,$dat,$ty,4)); +} + +if ($alt=0) { + # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, + # but ~40% slower on Core2 and Westmere... Attempt to add movz + # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet + # on Core2 with movz it's almost 20% slower than below alternative + # code... Yes, it's a total mess... + my @XX=($xx,$out); + $RC4_loop_mmx = sub { # SSE actually... + my $i=shift; + my $j=$i<=0?0:$i>>1; + my $mm=$i<=0?"mm0":"mm".($i&1); + + &add (&LB($yy),&LB($tx)); + &lea (@XX[1],&DWP(1,@XX[0])); + &pxor ("mm2","mm0") if ($i==0); + &psllq ("mm1",8) if ($i==0); + &and (@XX[1],0xff); + &pxor ("mm0","mm0") if ($i<=0); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &pxor ("mm1","mm2") if ($i==0); + &mov (&DWP(0,$dat,$XX[0],4),$ty); + &add (&LB($ty),&LB($tx)); + &movd (@XX[0],"mm7") if ($i==0); + &mov ($tx,&DWP(0,$dat,@XX[1],4)); + &pxor ("mm1","mm1") if ($i==1); + &movq ("mm2",&QWP(0,$inp)) if ($i==1); + &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); + &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); + + push (@XX,shift(@XX)) if ($i>=0); + } +} else { + # Using pinsrw here improves performane on Intel CPUs by 2-3%, but + # brings down AMD by 7%... + $RC4_loop_mmx = sub { + my $i=shift; + + &add (&LB($yy),&LB($tx)); + &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &mov (&DWP(0,$dat,$xx,4),$ty); + &inc ($xx); + &add ($ty,$tx); + &movz ($xx,&LB($xx)); # (*) + &movz ($ty,&LB($ty)); # (*) + &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); + &movq ("mm0",&QWP(0,$inp)) if ($i<=0); + &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); + &mov ($tx,&DWP(0,$dat,$xx,4)); + &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); + + # (*) This is the key to Core2 and Westmere performance. + # Whithout movz out-of-order execution logic confuses + # itself and fails to reorder loads and stores. Problem + # appears to be fixed in Sandy Bridge... + } +} + +&external_label("OPENSSL_ia32cap_P"); + +# void asm_RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); +&function_begin("asm_RC4"); + &mov ($dat,&wparam(0)); # load key schedule pointer + &mov ($ty, &wparam(1)); # load len + &mov ($inp,&wparam(2)); # load inp + &mov ($out,&wparam(3)); # load out + + &xor ($xx,$xx); # avoid partial register stalls + &xor ($yy,$yy); + + &cmp ($ty,0); # safety net + &je (&label("abort")); + + &mov (&LB($xx),&BP(0,$dat)); # load key->x + &mov (&LB($yy),&BP(4,$dat)); # load key->y + &add ($dat,8); + + &lea ($tx,&DWP(0,$inp,$ty)); + &sub ($out,$inp); # re-bias out + &mov (&wparam(1),$tx); # save input+len + + &inc (&LB($xx)); + + # detect compressed key schedule... + &cmp (&DWP(256,$dat),-1); + &je (&label("RC4_CHAR")); + + &mov ($tx,&DWP(0,$dat,$xx,4)); + + &and ($ty,-4); # how many 4-byte chunks? + &jz (&label("loop1")); + + &mov (&wparam(3),$out); # $out as accumulator in these loops + if ($x86only) { + &jmp (&label("go4loop4")); + } else { + &test ($ty,-8); + &jz (&label("go4loop4")); + + &picmeup($out,"OPENSSL_ia32cap_P"); + &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX] + &jnc (&label("go4loop4")); + + &mov ($out,&wparam(3)) if (!$alt); + &movd ("mm7",&wparam(3)) if ($alt); + &and ($ty,-8); + &lea ($ty,&DWP(-8,$inp,$ty)); + &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 + + &$RC4_loop_mmx(-1); + &jmp(&label("loop_mmx_enter")); + + &set_label("loop_mmx",16); + &$RC4_loop_mmx(0); + &set_label("loop_mmx_enter"); + for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } + &mov ($ty,$yy); + &xor ($yy,$yy); # this is second key to Core2 + &mov (&LB($yy),&LB($ty)); # and Westmere performance... + &cmp ($inp,&DWP(-4,$dat)); + &lea ($inp,&DWP(8,$inp)); + &jb (&label("loop_mmx")); + + if ($alt) { + &movd ($out,"mm7"); + &pxor ("mm2","mm0"); + &psllq ("mm1",8); + &pxor ("mm1","mm2"); + &movq (&QWP(-8,$out,$inp),"mm1"); + } else { + &psllq ("mm1",56); + &pxor ("mm2","mm1"); + &movq (&QWP(-8,$out,$inp),"mm2"); + } + &emms (); + + &cmp ($inp,&wparam(1)); # compare to input+len + &je (&label("done")); + &jmp (&label("loop1")); + } + +&set_label("go4loop4",16); + &lea ($ty,&DWP(-4,$inp,$ty)); + &mov (&wparam(2),$ty); # save input+(len/4)*4-4 + + &set_label("loop4"); + for ($i=0;$i<4;$i++) { RC4_loop($i); } + &ror ($out,8); + &xor ($out,&DWP(0,$inp)); + &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 + &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here + &lea ($inp,&DWP(4,$inp)); + &mov ($tx,&DWP(0,$dat,$xx,4)); + &jb (&label("loop4")); + + &cmp ($inp,&wparam(1)); # compare to input+len + &je (&label("done")); + &mov ($out,&wparam(3)); # restore $out + + &set_label("loop1",16); + &add (&LB($yy),&LB($tx)); + &mov ($ty,&DWP(0,$dat,$yy,4)); + &mov (&DWP(0,$dat,$yy,4),$tx); + &mov (&DWP(0,$dat,$xx,4),$ty); + &add ($ty,$tx); + &inc (&LB($xx)); + &and ($ty,0xff); + &mov ($ty,&DWP(0,$dat,$ty,4)); + &xor (&LB($ty),&BP(0,$inp)); + &lea ($inp,&DWP(1,$inp)); + &mov ($tx,&DWP(0,$dat,$xx,4)); + &cmp ($inp,&wparam(1)); # compare to input+len + &mov (&BP(-1,$out,$inp),&LB($ty)); + &jb (&label("loop1")); + + &jmp (&label("done")); + +# this is essentially Intel P4 specific codepath... +&set_label("RC4_CHAR",16); + &movz ($tx,&BP(0,$dat,$xx)); + # strangely enough unrolled loop performs over 20% slower... + &set_label("cloop1"); + &add (&LB($yy),&LB($tx)); + &movz ($ty,&BP(0,$dat,$yy)); + &mov (&BP(0,$dat,$yy),&LB($tx)); + &mov (&BP(0,$dat,$xx),&LB($ty)); + &add (&LB($ty),&LB($tx)); + &movz ($ty,&BP(0,$dat,$ty)); + &add (&LB($xx),1); + &xor (&LB($ty),&BP(0,$inp)); + &lea ($inp,&DWP(1,$inp)); + &movz ($tx,&BP(0,$dat,$xx)); + &cmp ($inp,&wparam(1)); + &mov (&BP(-1,$out,$inp),&LB($ty)); + &jb (&label("cloop1")); + +&set_label("done"); + &dec (&LB($xx)); + &mov (&DWP(-4,$dat),$yy); # save key->y + &mov (&BP(-8,$dat),&LB($xx)); # save key->x +&set_label("abort"); +&function_end("asm_RC4"); + +######################################################################## + +$inp="esi"; +$out="edi"; +$idi="ebp"; +$ido="ecx"; +$idx="edx"; + +# void asm_RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); +&function_begin("asm_RC4_set_key"); + &mov ($out,&wparam(0)); # load key + &mov ($idi,&wparam(1)); # load len + &mov ($inp,&wparam(2)); # load data + &picmeup($idx,"OPENSSL_ia32cap_P"); + + &lea ($out,&DWP(2*4,$out)); # &key->data + &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end + &neg ($idi); + &xor ("eax","eax"); + &mov (&DWP(-4,$out),$idi); # borrow key->y + + &bt (&DWP(0,$idx),20); # check for bit#20 + &jc (&label("c1stloop")); + +&set_label("w1stloop",16); + &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; + &add (&LB("eax"),1); # i++; + &jnc (&label("w1stloop")); + + &xor ($ido,$ido); + &xor ($idx,$idx); + +&set_label("w2ndloop",16); + &mov ("eax",&DWP(0,$out,$ido,4)); + &add (&LB($idx),&BP(0,$inp,$idi)); + &add (&LB($idx),&LB("eax")); + &add ($idi,1); + &mov ("ebx",&DWP(0,$out,$idx,4)); + &jnz (&label("wnowrap")); + &mov ($idi,&DWP(-4,$out)); + &set_label("wnowrap"); + &mov (&DWP(0,$out,$idx,4),"eax"); + &mov (&DWP(0,$out,$ido,4),"ebx"); + &add (&LB($ido),1); + &jnc (&label("w2ndloop")); +&jmp (&label("exit")); + +# Unlike all other x86 [and x86_64] implementations, Intel P4 core +# [including EM64T] was found to perform poorly with above "32-bit" key +# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded +# assembler turned out to be 3.5x if re-coded for compressed 8-bit one, +# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit +# schedule for x86[_64], because non-P4 implementations suffer from +# significant performance losses then, e.g. PIII exhibits >2x +# deterioration, and so does Opteron. In order to assure optimal +# all-round performance, we detect P4 at run-time and set up compressed +# key schedule, which is recognized by RC4 procedure. + +&set_label("c1stloop",16); + &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; + &add (&LB("eax"),1); # i++; + &jnc (&label("c1stloop")); + + &xor ($ido,$ido); + &xor ($idx,$idx); + &xor ("ebx","ebx"); + +&set_label("c2ndloop",16); + &mov (&LB("eax"),&BP(0,$out,$ido)); + &add (&LB($idx),&BP(0,$inp,$idi)); + &add (&LB($idx),&LB("eax")); + &add ($idi,1); + &mov (&LB("ebx"),&BP(0,$out,$idx)); + &jnz (&label("cnowrap")); + &mov ($idi,&DWP(-4,$out)); + &set_label("cnowrap"); + &mov (&BP(0,$out,$idx),&LB("eax")); + &mov (&BP(0,$out,$ido),&LB("ebx")); + &add (&LB($ido),1); + &jnc (&label("c2ndloop")); + + &mov (&DWP(256,$out),-1); # mark schedule as compressed + +&set_label("exit"); + &xor ("eax","eax"); + &mov (&DWP(-8,$out),"eax"); # key->x=0; + &mov (&DWP(-4,$out),"eax"); # key->y=0; +&function_end("asm_RC4_set_key"); + +# const char *RC4_options(void); +&function_begin_B("RC4_options"); + &call (&label("pic_point")); +&set_label("pic_point"); + &blindpop("eax"); + &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); + &picmeup("edx","OPENSSL_ia32cap_P"); + &mov ("edx",&DWP(0,"edx")); + &bt ("edx",20); + &jc (&label("1xchar")); + &bt ("edx",26); + &jnc (&label("ret")); + &add ("eax",25); + &ret (); +&set_label("1xchar"); + &add ("eax",12); +&set_label("ret"); + &ret (); +&set_label("opts",64); +&asciz ("rc4(4x,int)"); +&asciz ("rc4(1x,char)"); +&asciz ("rc4(8x,mmx)"); +&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); +&align (64); +&function_end_B("RC4_options"); + +&asm_finish(); + diff --git a/src/crypto/rc4/asm/rc4-md5-x86_64.pl b/src/crypto/rc4/asm/rc4-md5-x86_64.pl new file mode 100644 index 0000000..272fa91 --- /dev/null +++ b/src/crypto/rc4/asm/rc4-md5-x86_64.pl @@ -0,0 +1,632 @@ +#!/usr/bin/env perl +# +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== + +# June 2011 +# +# This is RC4+MD5 "stitch" implementation. The idea, as spelled in +# http://download.intel.com/design/intarch/papers/323686.pdf, is that +# since both algorithms exhibit instruction-level parallelism, ILP, +# below theoretical maximum, interleaving them would allow to utilize +# processor resources better and achieve better performance. RC4 +# instruction sequence is virtually identical to rc4-x86_64.pl, which +# is heavily based on submission by Maxim Perminov, Maxim Locktyukhin +# and Jim Guilford of Intel. MD5 is fresh implementation aiming to +# minimize register usage, which was used as "main thread" with RC4 +# weaved into it, one RC4 round per one MD5 round. In addition to the +# stiched subroutine the script can generate standalone replacement +# md5_block_asm_data_order and RC4. Below are performance numbers in +# cycles per processed byte, less is better, for these the standalone +# subroutines, sum of them, and stitched one: +# +# RC4 MD5 RC4+MD5 stitch gain +# Opteron 6.5(*) 5.4 11.9 7.0 +70%(*) +# Core2 6.5 5.8 12.3 7.7 +60% +# Westmere 4.3 5.2 9.5 7.0 +36% +# Sandy Bridge 4.2 5.5 9.7 6.8 +43% +# Atom 9.3 6.5 15.8 11.1 +42% +# +# (*) rc4-x86_64.pl delivers 5.3 on Opteron, so real improvement +# is +53%... + +my ($rc4,$md5)=(1,1); # what to generate? +my $D="#" if (!$md5); # if set to "#", MD5 is stitched into RC4(), + # but its result is discarded. Idea here is + # to be able to use 'openssl speed rc4' for + # benchmarking the stitched subroutine... + +my $flavour = shift; +my $output = shift; +if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } + +my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate; +( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or +( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or +die "can't locate x86_64-xlate.pl"; + +open OUT,"| \"$^X\" $xlate $flavour $output"; +*STDOUT=*OUT; + +my ($dat,$in0,$out,$ctx,$inp,$len, $func,$nargs); + +if ($rc4 && !$md5) { + ($dat,$len,$in0,$out) = ("%rdi","%rsi","%rdx","%rcx"); + $func="RC4"; $nargs=4; +} elsif ($md5 && !$rc4) { + ($ctx,$inp,$len) = ("%rdi","%rsi","%rdx"); + $func="md5_block_asm_data_order"; $nargs=3; +} else { + ($dat,$in0,$out,$ctx,$inp,$len) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9"); + $func="rc4_md5_enc"; $nargs=6; + # void rc4_md5_enc( + # RC4_KEY *key, # + # const void *in0, # RC4 input + # void *out, # RC4 output + # MD5_CTX *ctx, # + # const void *inp, # MD5 input + # size_t len); # number of 64-byte blocks +} + +my @K=( 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee, + 0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501, + 0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be, + 0x6b901122,0xfd987193,0xa679438e,0x49b40821, + + 0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa, + 0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8, + 0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed, + 0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a, + + 0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c, + 0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70, + 0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05, + 0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665, + + 0xf4292244,0x432aff97,0xab9423a7,0xfc93a039, + 0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1, + 0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1, + 0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391 ); + +my @V=("%r8d","%r9d","%r10d","%r11d"); # MD5 registers +my $tmp="%r12d"; + +my @XX=("%rbp","%rsi"); # RC4 registers +my @TX=("%rax","%rbx"); +my $YY="%rcx"; +my $TY="%rdx"; + +my $MOD=32; # 16, 32 or 64 + +$code.=<<___; +.text +.align 16 + +.globl $func +.type $func,\@function,$nargs +$func: + cmp \$0,$len + je .Labort + push %rbx + push %rbp + push %r12 + push %r13 + push %r14 + push %r15 + sub \$40,%rsp +.Lbody: +___ +if ($rc4) { +$code.=<<___; +$D#md5# mov $ctx,%r11 # reassign arguments + mov $len,%r12 + mov $in0,%r13 + mov $out,%r14 +$D#md5# mov $inp,%r15 +___ + $ctx="%r11" if ($md5); # reassign arguments + $len="%r12"; + $in0="%r13"; + $out="%r14"; + $inp="%r15" if ($md5); + $inp=$in0 if (!$md5); +$code.=<<___; + xor $XX[0],$XX[0] + xor $YY,$YY + + lea 8($dat),$dat + mov -8($dat),$XX[0]#b + mov -4($dat),$YY#b + + inc $XX[0]#b + sub $in0,$out + movl ($dat,$XX[0],4),$TX[0]#d +___ +$code.=<<___ if (!$md5); + xor $TX[1],$TX[1] + test \$-128,$len + jz .Loop1 + sub $XX[0],$TX[1] + and \$`$MOD-1`,$TX[1] + jz .Loop${MOD}_is_hot + sub $TX[1],$len +.Loop${MOD}_warmup: + add $TX[0]#b,$YY#b + movl ($dat,$YY,4),$TY#d + movl $TX[0]#d,($dat,$YY,4) + movl $TY#d,($dat,$XX[0],4) + add $TY#b,$TX[0]#b + inc $XX[0]#b + movl ($dat,$TX[0],4),$TY#d + movl ($dat,$XX[0],4),$TX[0]#d + xorb ($in0),$TY#b + movb $TY#b,($out,$in0) + lea 1($in0),$in0 + dec $TX[1] + jnz .Loop${MOD}_warmup + + mov $YY,$TX[1] + xor $YY,$YY + mov $TX[1]#b,$YY#b + +.Loop${MOD}_is_hot: + mov $len,32(%rsp) # save original $len + shr \$6,$len # number of 64-byte blocks +___ + if ($D && !$md5) { # stitch in dummy MD5 + $md5=1; + $ctx="%r11"; + $inp="%r15"; + $code.=<<___; + mov %rsp,$ctx + mov $in0,$inp +___ + } +} +$code.=<<___; +#rc4# add $TX[0]#b,$YY#b +#rc4# lea ($dat,$XX[0],4),$XX[1] + shl \$6,$len + add $inp,$len # pointer to the end of input + mov $len,16(%rsp) + +#md5# mov $ctx,24(%rsp) # save pointer to MD5_CTX +#md5# mov 0*4($ctx),$V[0] # load current hash value from MD5_CTX +#md5# mov 1*4($ctx),$V[1] +#md5# mov 2*4($ctx),$V[2] +#md5# mov 3*4($ctx),$V[3] + jmp .Loop + +.align 16 +.Loop: +#md5# mov $V[0],0*4(%rsp) # put aside current hash value +#md5# mov $V[1],1*4(%rsp) +#md5# mov $V[2],2*4(%rsp) +#md5# mov $V[3],$tmp # forward reference +#md5# mov $V[3],3*4(%rsp) +___ + +sub R0 { + my ($i,$a,$b,$c,$d)=@_; + my @rot0=(7,12,17,22); + my $j=$i%16; + my $k=$i%$MOD; + my $xmm="%xmm".($j&1); + $code.=" movdqu ($in0),%xmm2\n" if ($rc4 && $j==15); + $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1); + $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1); + $code.=<<___; +#rc4# movl ($dat,$YY,4),$TY#d +#md5# xor $c,$tmp +#rc4# movl $TX[0]#d,($dat,$YY,4) +#md5# and $b,$tmp +#md5# add 4*`$j`($inp),$a +#rc4# add $TY#b,$TX[0]#b +#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d +#md5# add \$$K[$i],$a +#md5# xor $d,$tmp +#rc4# movz $TX[0]#b,$TX[0]#d +#rc4# movl $TY#d,4*$k($XX[1]) +#md5# add $tmp,$a +#rc4# add $TX[1]#b,$YY#b +#md5# rol \$$rot0[$j%4],$a +#md5# mov `$j==15?"$b":"$c"`,$tmp # forward reference +#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n +#md5# add $b,$a +___ + $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1); + mov $YY,$XX[1] + xor $YY,$YY # keyword to partial register + mov $XX[1]#b,$YY#b + lea ($dat,$XX[0],4),$XX[1] +___ + $code.=<<___ if ($rc4 && $j==15); + psllq \$8,%xmm1 + pxor %xmm0,%xmm2 + pxor %xmm1,%xmm2 +___ +} +sub R1 { + my ($i,$a,$b,$c,$d)=@_; + my @rot1=(5,9,14,20); + my $j=$i%16; + my $k=$i%$MOD; + my $xmm="%xmm".($j&1); + $code.=" movdqu 16($in0),%xmm3\n" if ($rc4 && $j==15); + $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1); + $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1); + $code.=<<___; +#rc4# movl ($dat,$YY,4),$TY#d +#md5# xor $b,$tmp +#rc4# movl $TX[0]#d,($dat,$YY,4) +#md5# and $d,$tmp +#md5# add 4*`((1+5*$j)%16)`($inp),$a +#rc4# add $TY#b,$TX[0]#b +#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d +#md5# add \$$K[$i],$a +#md5# xor $c,$tmp +#rc4# movz $TX[0]#b,$TX[0]#d +#rc4# movl $TY#d,4*$k($XX[1]) +#md5# add $tmp,$a +#rc4# add $TX[1]#b,$YY#b +#md5# rol \$$rot1[$j%4],$a +#md5# mov `$j==15?"$c":"$b"`,$tmp # forward reference +#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n +#md5# add $b,$a +___ + $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1); + mov $YY,$XX[1] + xor $YY,$YY # keyword to partial register + mov $XX[1]#b,$YY#b + lea ($dat,$XX[0],4),$XX[1] +___ + $code.=<<___ if ($rc4 && $j==15); + psllq \$8,%xmm1 + pxor %xmm0,%xmm3 + pxor %xmm1,%xmm3 +___ +} +sub R2 { + my ($i,$a,$b,$c,$d)=@_; + my @rot2=(4,11,16,23); + my $j=$i%16; + my $k=$i%$MOD; + my $xmm="%xmm".($j&1); + $code.=" movdqu 32($in0),%xmm4\n" if ($rc4 && $j==15); + $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1); + $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1); + $code.=<<___; +#rc4# movl ($dat,$YY,4),$TY#d +#md5# xor $c,$tmp +#rc4# movl $TX[0]#d,($dat,$YY,4) +#md5# xor $b,$tmp +#md5# add 4*`((5+3*$j)%16)`($inp),$a +#rc4# add $TY#b,$TX[0]#b +#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d +#md5# add \$$K[$i],$a +#rc4# movz $TX[0]#b,$TX[0]#d +#md5# add $tmp,$a +#rc4# movl $TY#d,4*$k($XX[1]) +#rc4# add $TX[1]#b,$YY#b +#md5# rol \$$rot2[$j%4],$a +#md5# mov `$j==15?"\\\$-1":"$c"`,$tmp # forward reference +#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n +#md5# add $b,$a +___ + $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1); + mov $YY,$XX[1] + xor $YY,$YY # keyword to partial register + mov $XX[1]#b,$YY#b + lea ($dat,$XX[0],4),$XX[1] +___ + $code.=<<___ if ($rc4 && $j==15); + psllq \$8,%xmm1 + pxor %xmm0,%xmm4 + pxor %xmm1,%xmm4 +___ +} +sub R3 { + my ($i,$a,$b,$c,$d)=@_; + my @rot3=(6,10,15,21); + my $j=$i%16; + my $k=$i%$MOD; + my $xmm="%xmm".($j&1); + $code.=" movdqu 48($in0),%xmm5\n" if ($rc4 && $j==15); + $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1); + $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1); + $code.=<<___; +#rc4# movl ($dat,$YY,4),$TY#d +#md5# xor $d,$tmp +#rc4# movl $TX[0]#d,($dat,$YY,4) +#md5# or $b,$tmp +#md5# add 4*`((7*$j)%16)`($inp),$a +#rc4# add $TY#b,$TX[0]#b +#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d +#md5# add \$$K[$i],$a +#rc4# movz $TX[0]#b,$TX[0]#d +#md5# xor $c,$tmp +#rc4# movl $TY#d,4*$k($XX[1]) +#md5# add $tmp,$a +#rc4# add $TX[1]#b,$YY#b +#md5# rol \$$rot3[$j%4],$a +#md5# mov \$-1,$tmp # forward reference +#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n +#md5# add $b,$a +___ + $code.=<<___ if ($rc4 && $j==15); + mov $XX[0],$XX[1] + xor $XX[0],$XX[0] # keyword to partial register + mov $XX[1]#b,$XX[0]#b + mov $YY,$XX[1] + xor $YY,$YY # keyword to partial register + mov $XX[1]#b,$YY#b + lea ($dat,$XX[0],4),$XX[1] + psllq \$8,%xmm1 + pxor %xmm0,%xmm5 + pxor %xmm1,%xmm5 +___ +} + +my $i=0; +for(;$i<16;$i++) { R0($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); } +for(;$i<32;$i++) { R1($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); } +for(;$i<48;$i++) { R2($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); } +for(;$i<64;$i++) { R3($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); } + +$code.=<<___; +#md5# add 0*4(%rsp),$V[0] # accumulate hash value +#md5# add 1*4(%rsp),$V[1] +#md5# add 2*4(%rsp),$V[2] +#md5# add 3*4(%rsp),$V[3] + +#rc4# movdqu %xmm2,($out,$in0) # write RC4 output +#rc4# movdqu %xmm3,16($out,$in0) +#rc4# movdqu %xmm4,32($out,$in0) +#rc4# movdqu %xmm5,48($out,$in0) +#md5# lea 64($inp),$inp +#rc4# lea 64($in0),$in0 + cmp 16(%rsp),$inp # are we done? + jb .Loop + +#md5# mov 24(%rsp),$len # restore pointer to MD5_CTX +#rc4# sub $TX[0]#b,$YY#b # correct $YY +#md5# mov $V[0],0*4($len) # write MD5_CTX +#md5# mov $V[1],1*4($len) +#md5# mov $V[2],2*4($len) +#md5# mov $V[3],3*4($len) +___ +$code.=<<___ if ($rc4 && (!$md5 || $D)); + mov 32(%rsp),$len # restore original $len + and \$63,$len # remaining bytes + jnz .Loop1 + jmp .Ldone + +.align 16 +.Loop1: + add $TX[0]#b,$YY#b + movl ($dat,$YY,4),$TY#d + movl $TX[0]#d,($dat,$YY,4) + movl $TY#d,($dat,$XX[0],4) + add $TY#b,$TX[0]#b + inc $XX[0]#b + movl ($dat,$TX[0],4),$TY#d + movl ($dat,$XX[0],4),$TX[0]#d + xorb ($in0),$TY#b + movb $TY#b,($out,$in0) + lea 1($in0),$in0 + dec $len + jnz .Loop1 + +.Ldone: +___ +$code.=<<___; +#rc4# sub \$1,$XX[0]#b +#rc4# movl $XX[0]#d,-8($dat) +#rc4# movl $YY#d,-4($dat) + + mov 40(%rsp),%r15 + mov 48(%rsp),%r14 + mov 56(%rsp),%r13 + mov 64(%rsp),%r12 + mov 72(%rsp),%rbp + mov 80(%rsp),%rbx + lea 88(%rsp),%rsp +.Lepilogue: +.Labort: + ret +.size $func,.-$func +___ + +if ($rc4 && $D) { # sole purpose of this section is to provide + # option to use the generated module as drop-in + # replacement for rc4-x86_64.pl for debugging + # and testing purposes... +my ($idx,$ido)=("%r8","%r9"); +my ($dat,$len,$inp)=("%rdi","%rsi","%rdx"); + +$code.=<<___; +.globl RC4_set_key +.type RC4_set_key,\@function,3 +.align 16 +RC4_set_key: + lea 8($dat),$dat + lea ($inp,$len),$inp + neg $len + mov $len,%rcx + xor %eax,%eax + xor $ido,$ido + xor %r10,%r10 + xor %r11,%r11 + jmp .Lw1stloop + +.align 16 +.Lw1stloop: + mov %eax,($dat,%rax,4) + add \$1,%al + jnc .Lw1stloop + + xor $ido,$ido + xor $idx,$idx +.align 16 +.Lw2ndloop: + mov ($dat,$ido,4),%r10d + add ($inp,$len,1),$idx#b + add %r10b,$idx#b + add \$1,$len + mov ($dat,$idx,4),%r11d + cmovz %rcx,$len + mov %r10d,($dat,$idx,4) + mov %r11d,($dat,$ido,4) + add \$1,$ido#b + jnc .Lw2ndloop + + xor %eax,%eax + mov %eax,-8($dat) + mov %eax,-4($dat) + ret +.size RC4_set_key,.-RC4_set_key + +.globl RC4_options +.type RC4_options,\@abi-omnipotent +.align 16 +RC4_options: + lea .Lopts(%rip),%rax + ret +.align 64 +.Lopts: +.asciz "rc4(64x,int)" +.align 64 +.size RC4_options,.-RC4_options +___ +} +# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, +# CONTEXT *context,DISPATCHER_CONTEXT *disp) +if ($win64) { +my $rec="%rcx"; +my $frame="%rdx"; +my $context="%r8"; +my $disp="%r9"; + +$code.=<<___; +.extern __imp_RtlVirtualUnwind +.type se_handler,\@abi-omnipotent +.align 16 +se_handler: + push %rsi + push %rdi + push %rbx + push %rbp + push %r12 + push %r13 + push %r14 + push %r15 + pushfq + sub \$64,%rsp + + mov 120($context),%rax # pull context->Rax + mov 248($context),%rbx # pull context->Rip + + lea .Lbody(%rip),%r10 + cmp %r10,%rbx # context->Rip<.Lbody + jb .Lin_prologue + + mov 152($context),%rax # pull context->Rsp + + lea .Lepilogue(%rip),%r10 + cmp %r10,%rbx # context->Rip>=.Lepilogue + jae .Lin_prologue + + mov 40(%rax),%r15 + mov 48(%rax),%r14 + mov 56(%rax),%r13 + mov 64(%rax),%r12 + mov 72(%rax),%rbp + mov 80(%rax),%rbx + lea 88(%rax),%rax + + mov %rbx,144($context) # restore context->Rbx + mov %rbp,160($context) # restore context->Rbp + mov %r12,216($context) # restore context->R12 + mov %r13,224($context) # restore context->R12 + mov %r14,232($context) # restore context->R14 + mov %r15,240($context) # restore context->R15 + +.Lin_prologue: + mov 8(%rax),%rdi + mov 16(%rax),%rsi + mov %rax,152($context) # restore context->Rsp + mov %rsi,168($context) # restore context->Rsi + mov %rdi,176($context) # restore context->Rdi + + mov 40($disp),%rdi # disp->ContextRecord + mov $context,%rsi # context + mov \$154,%ecx # sizeof(CONTEXT) + .long 0xa548f3fc # cld; rep movsq + + mov $disp,%rsi + xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER + mov 8(%rsi),%rdx # arg2, disp->ImageBase + mov 0(%rsi),%r8 # arg3, disp->ControlPc + mov 16(%rsi),%r9 # arg4, disp->FunctionEntry + mov 40(%rsi),%r10 # disp->ContextRecord + lea 56(%rsi),%r11 # &disp->HandlerData + lea 24(%rsi),%r12 # &disp->EstablisherFrame + mov %r10,32(%rsp) # arg5 + mov %r11,40(%rsp) # arg6 + mov %r12,48(%rsp) # arg7 + mov %rcx,56(%rsp) # arg8, (NULL) + call *__imp_RtlVirtualUnwind(%rip) + + mov \$1,%eax # ExceptionContinueSearch + add \$64,%rsp + popfq + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbp + pop %rbx + pop %rdi + pop %rsi + ret +.size se_handler,.-se_handler + +.section .pdata +.align 4 + .rva .LSEH_begin_$func + .rva .LSEH_end_$func + .rva .LSEH_info_$func + +.section .xdata +.align 8 +.LSEH_info_$func: + .byte 9,0,0,0 + .rva se_handler +___ +} + +sub reg_part { +my ($reg,$conv)=@_; + if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } + elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } + elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } + elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } + return $reg; +} + +$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; +$code =~ s/\`([^\`]*)\`/eval $1/gem; +$code =~ s/pinsrw\s+\$0,/movd /gm; + +$code =~ s/#md5#//gm if ($md5); +$code =~ s/#rc4#//gm if ($rc4); + +print $code; + +close STDOUT; diff --git a/src/crypto/rc4/asm/rc4-x86_64.pl b/src/crypto/rc4/asm/rc4-x86_64.pl new file mode 100644 index 0000000..2c52ac0 --- /dev/null +++ b/src/crypto/rc4/asm/rc4-x86_64.pl @@ -0,0 +1,679 @@ +#!/usr/bin/env perl +# +# ==================================================================== +# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# July 2004 +# +# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in +# "hand-coded assembler"] doesn't stand for the whole improvement +# coefficient. It turned out that eliminating RC4_CHAR from config +# line results in ~40% improvement (yes, even for C implementation). +# Presumably it has everything to do with AMD cache architecture and +# RAW or whatever penalties. Once again! The module *requires* config +# line *without* RC4_CHAR! As for coding "secret," I bet on partial +# register arithmetics. For example instead of 'inc %r8; and $255,%r8' +# I simply 'inc %r8b'. Even though optimization manual discourages +# to operate on partial registers, it turned out to be the best bet. +# At least for AMD... How IA32E would perform remains to be seen... + +# November 2004 +# +# As was shown by Marc Bevand reordering of couple of load operations +# results in even higher performance gain of 3.3x:-) At least on +# Opteron... For reference, 1x in this case is RC4_CHAR C-code +# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. +# Latter means that if you want to *estimate* what to expect from +# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. + +# November 2004 +# +# Intel P4 EM64T core was found to run the AMD64 code really slow... +# The only way to achieve comparable performance on P4 was to keep +# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to +# compose blended code, which would perform even within 30% marginal +# on either AMD and Intel platforms, I implement both cases. See +# rc4_skey.c for further details... + +# April 2005 +# +# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing +# those with add/sub results in 50% performance improvement of folded +# loop... + +# May 2005 +# +# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T +# performance by >30% [unlike P4 32-bit case that is]. But this is +# provided that loads are reordered even more aggressively! Both code +# pathes, AMD64 and EM64T, reorder loads in essentially same manner +# as my IA-64 implementation. On Opteron this resulted in modest 5% +# improvement [I had to test it], while final Intel P4 performance +# achieves respectful 432MBps on 2.8GHz processor now. For reference. +# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than +# RC4_INT code-path. While if executed on Opteron, it's only 25% +# slower than the RC4_INT one [meaning that if CPU µ-arch detection +# is not implemented, then this final RC4_CHAR code-path should be +# preferred, as it provides better *all-round* performance]. + +# March 2007 +# +# Intel Core2 was observed to perform poorly on both code paths:-( It +# apparently suffers from some kind of partial register stall, which +# occurs in 64-bit mode only [as virtually identical 32-bit loop was +# observed to outperform 64-bit one by almost 50%]. Adding two movzb to +# cloop1 boosts its performance by 80%! This loop appears to be optimal +# fit for Core2 and therefore the code was modified to skip cloop8 on +# this CPU. + +# May 2010 +# +# Intel Westmere was observed to perform suboptimally. Adding yet +# another movzb to cloop1 improved performance by almost 50%! Core2 +# performance is improved too, but nominally... + +# May 2011 +# +# The only code path that was not modified is P4-specific one. Non-P4 +# Intel code path optimization is heavily based on submission by Maxim +# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used +# some of the ideas even in attempt to optmize the original RC4_INT +# code path... Current performance in cycles per processed byte (less +# is better) and improvement coefficients relative to previous +# version of this module are: +# +# Opteron 5.3/+0%(*) +# P4 6.5 +# Core2 6.2/+15%(**) +# Westmere 4.2/+60% +# Sandy Bridge 4.2/+120% +# Atom 9.3/+80% +# +# (*) But corresponding loop has less instructions, which should have +# positive effect on upcoming Bulldozer, which has one less ALU. +# For reference, Intel code runs at 6.8 cpb rate on Opteron. +# (**) Note that Core2 result is ~15% lower than corresponding result +# for 32-bit code, meaning that it's possible to improve it, +# but more than likely at the cost of the others (see rc4-586.pl +# to get the idea)... + +$flavour = shift; +$output = shift; +if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } + +$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or +( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or +die "can't locate x86_64-xlate.pl"; + +open OUT,"| \"$^X\" $xlate $flavour $output"; +*STDOUT=*OUT; + +$dat="%rdi"; # arg1 +$len="%rsi"; # arg2 +$inp="%rdx"; # arg3 +$out="%rcx"; # arg4 + +{ +$code=<<___; +.text +.extern OPENSSL_ia32cap_P + +.globl asm_RC4 +.type asm_RC4,\@function,4 +.align 16 +asm_RC4: + or $len,$len + jne .Lentry + ret +.Lentry: + push %rbx + push %r12 + push %r13 +.Lprologue: + mov $len,%r11 + mov $inp,%r12 + mov $out,%r13 +___ +my $len="%r11"; # reassign input arguments +my $inp="%r12"; +my $out="%r13"; + +my @XX=("%r10","%rsi"); +my @TX=("%rax","%rbx"); +my $YY="%rcx"; +my $TY="%rdx"; + +$code.=<<___; + xor $XX[0],$XX[0] + xor $YY,$YY + + lea 8($dat),$dat + mov -8($dat),$XX[0]#b + mov -4($dat),$YY#b + cmpl \$-1,256($dat) + je .LRC4_CHAR + mov OPENSSL_ia32cap_P(%rip),%r8d + xor $TX[1],$TX[1] + inc $XX[0]#b + sub $XX[0],$TX[1] + sub $inp,$out + movl ($dat,$XX[0],4),$TX[0]#d + test \$-16,$len + jz .Lloop1 + bt \$30,%r8d # Intel CPU? + jc .Lintel + and \$7,$TX[1] + lea 1($XX[0]),$XX[1] + jz .Loop8 + sub $TX[1],$len +.Loop8_warmup: + add $TX[0]#b,$YY#b + movl ($dat,$YY,4),$TY#d + movl $TX[0]#d,($dat,$YY,4) + movl $TY#d,($dat,$XX[0],4) + add $TY#b,$TX[0]#b + inc $XX[0]#b + movl ($dat,$TX[0],4),$TY#d + movl ($dat,$XX[0],4),$TX[0]#d + xorb ($inp),$TY#b + movb $TY#b,($out,$inp) + lea 1($inp),$inp + dec $TX[1] + jnz .Loop8_warmup + + lea 1($XX[0]),$XX[1] + jmp .Loop8 +.align 16 +.Loop8: +___ +for ($i=0;$i<8;$i++) { +$code.=<<___ if ($i==7); + add \$8,$XX[1]#b +___ +$code.=<<___; + add $TX[0]#b,$YY#b + movl ($dat,$YY,4),$TY#d + movl $TX[0]#d,($dat,$YY,4) + movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d + ror \$8,%r8 # ror is redundant when $i=0 + movl $TY#d,4*$i($dat,$XX[0],4) + add $TX[0]#b,$TY#b + movb ($dat,$TY,4),%r8b +___ +push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers +} +$code.=<<___; + add \$8,$XX[0]#b + ror \$8,%r8 + sub \$8,$len + + xor ($inp),%r8 + mov %r8,($out,$inp) + lea 8($inp),$inp + + test \$-8,$len + jnz .Loop8 + cmp \$0,$len + jne .Lloop1 + jmp .Lexit + +.align 16 +.Lintel: + test \$-32,$len + jz .Lloop1 + and \$15,$TX[1] + jz .Loop16_is_hot + sub $TX[1],$len +.Loop16_warmup: + add $TX[0]#b,$YY#b + movl ($dat,$YY,4),$TY#d + movl $TX[0]#d,($dat,$YY,4) + movl $TY#d,($dat,$XX[0],4) + add $TY#b,$TX[0]#b + inc $XX[0]#b + movl ($dat,$TX[0],4),$TY#d + movl ($dat,$XX[0],4),$TX[0]#d + xorb ($inp),$TY#b + movb $TY#b,($out,$inp) + lea 1($inp),$inp + dec $TX[1] + jnz .Loop16_warmup + + mov $YY,$TX[1] + xor $YY,$YY + mov $TX[1]#b,$YY#b + +.Loop16_is_hot: + lea ($dat,$XX[0],4),$XX[1] +___ +sub RC4_loop { + my $i=shift; + my $j=$i<0?0:$i; + my $xmm="%xmm".($j&1); + + $code.=" add \$16,$XX[0]#b\n" if ($i==15); + $code.=" movdqu ($inp),%xmm2\n" if ($i==15); + $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); + $code.=" movl ($dat,$YY,4),$TY#d\n"; + $code.=" pxor %xmm0,%xmm2\n" if ($i==0); + $code.=" psllq \$8,%xmm1\n" if ($i==0); + $code.=" pxor $xmm,$xmm\n" if ($i<=1); + $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; + $code.=" add $TY#b,$TX[0]#b\n"; + $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); + $code.=" movz $TX[0]#b,$TX[0]#d\n"; + $code.=" movl $TY#d,4*$j($XX[1])\n"; + $code.=" pxor %xmm1,%xmm2\n" if ($i==0); + $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); + $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); + $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; + $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); + $code.=" lea 16($inp),$inp\n" if ($i==0); + $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); +} + RC4_loop(-1); +$code.=<<___; + jmp .Loop16_enter +.align 16 +.Loop16: +___ + +for ($i=0;$i<16;$i++) { + $code.=".Loop16_enter:\n" if ($i==1); + RC4_loop($i); + push(@TX,shift(@TX)); # "rotate" registers +} +$code.=<<___; + mov $YY,$TX[1] + xor $YY,$YY # keyword to partial register + sub \$16,$len + mov $TX[1]#b,$YY#b + test \$-16,$len + jnz .Loop16 + + psllq \$8,%xmm1 + pxor %xmm0,%xmm2 + pxor %xmm1,%xmm2 + movdqu %xmm2,($out,$inp) + lea 16($inp),$inp + + cmp \$0,$len + jne .Lloop1 + jmp .Lexit + +.align 16 +.Lloop1: + add $TX[0]#b,$YY#b + movl ($dat,$YY,4),$TY#d + movl $TX[0]#d,($dat,$YY,4) + movl $TY#d,($dat,$XX[0],4) + add $TY#b,$TX[0]#b + inc $XX[0]#b + movl ($dat,$TX[0],4),$TY#d + movl ($dat,$XX[0],4),$TX[0]#d + xorb ($inp),$TY#b + movb $TY#b,($out,$inp) + lea 1($inp),$inp + dec $len + jnz .Lloop1 + jmp .Lexit + +.align 16 +.LRC4_CHAR: + add \$1,$XX[0]#b + movzb ($dat,$XX[0]),$TX[0]#d + test \$-8,$len + jz .Lcloop1 + jmp .Lcloop8 +.align 16 +.Lcloop8: + mov ($inp),%r8d + mov 4($inp),%r9d +___ +# unroll 2x4-wise, because 64-bit rotates kill Intel P4... +for ($i=0;$i<4;$i++) { +$code.=<<___; + add $TX[0]#b,$YY#b + lea 1($XX[0]),$XX[1] + movzb ($dat,$YY),$TY#d + movzb $XX[1]#b,$XX[1]#d + movzb ($dat,$XX[1]),$TX[1]#d + movb $TX[0]#b,($dat,$YY) + cmp $XX[1],$YY + movb $TY#b,($dat,$XX[0]) + jne .Lcmov$i # Intel cmov is sloooow... + mov $TX[0],$TX[1] +.Lcmov$i: + add $TX[0]#b,$TY#b + xor ($dat,$TY),%r8b + ror \$8,%r8d +___ +push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers +} +for ($i=4;$i<8;$i++) { +$code.=<<___; + add $TX[0]#b,$YY#b + lea 1($XX[0]),$XX[1] + movzb ($dat,$YY),$TY#d + movzb $XX[1]#b,$XX[1]#d + movzb ($dat,$XX[1]),$TX[1]#d + movb $TX[0]#b,($dat,$YY) + cmp $XX[1],$YY + movb $TY#b,($dat,$XX[0]) + jne .Lcmov$i # Intel cmov is sloooow... + mov $TX[0],$TX[1] +.Lcmov$i: + add $TX[0]#b,$TY#b + xor ($dat,$TY),%r9b + ror \$8,%r9d +___ +push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers +} +$code.=<<___; + lea -8($len),$len + mov %r8d,($out) + lea 8($inp),$inp + mov %r9d,4($out) + lea 8($out),$out + + test \$-8,$len + jnz .Lcloop8 + cmp \$0,$len + jne .Lcloop1 + jmp .Lexit +___ +$code.=<<___; +.align 16 +.Lcloop1: + add $TX[0]#b,$YY#b + movzb $YY#b,$YY#d + movzb ($dat,$YY),$TY#d + movb $TX[0]#b,($dat,$YY) + movb $TY#b,($dat,$XX[0]) + add $TX[0]#b,$TY#b + add \$1,$XX[0]#b + movzb $TY#b,$TY#d + movzb $XX[0]#b,$XX[0]#d + movzb ($dat,$TY),$TY#d + movzb ($dat,$XX[0]),$TX[0]#d + xorb ($inp),$TY#b + lea 1($inp),$inp + movb $TY#b,($out) + lea 1($out),$out + sub \$1,$len + jnz .Lcloop1 + jmp .Lexit + +.align 16 +.Lexit: + sub \$1,$XX[0]#b + movl $XX[0]#d,-8($dat) + movl $YY#d,-4($dat) + + mov (%rsp),%r13 + mov 8(%rsp),%r12 + mov 16(%rsp),%rbx + add \$24,%rsp +.Lepilogue: + ret +.size asm_RC4,.-asm_RC4 +___ +} + +$idx="%r8"; +$ido="%r9"; + +$code.=<<___; +.globl asm_RC4_set_key +.type asm_RC4_set_key,\@function,3 +.align 16 +asm_RC4_set_key: + lea 8($dat),$dat + lea ($inp,$len),$inp + neg $len + mov $len,%rcx + xor %eax,%eax + xor $ido,$ido + xor %r10,%r10 + xor %r11,%r11 + + mov OPENSSL_ia32cap_P(%rip),$idx#d + bt \$20,$idx#d # RC4_CHAR? + jc .Lc1stloop + jmp .Lw1stloop + +.align 16 +.Lw1stloop: + mov %eax,($dat,%rax,4) + add \$1,%al + jnc .Lw1stloop + + xor $ido,$ido + xor $idx,$idx +.align 16 +.Lw2ndloop: + mov ($dat,$ido,4),%r10d + add ($inp,$len,1),$idx#b + add %r10b,$idx#b + add \$1,$len + mov ($dat,$idx,4),%r11d + cmovz %rcx,$len + mov %r10d,($dat,$idx,4) + mov %r11d,($dat,$ido,4) + add \$1,$ido#b + jnc .Lw2ndloop + jmp .Lexit_key + +.align 16 +.Lc1stloop: + mov %al,($dat,%rax) + add \$1,%al + jnc .Lc1stloop + + xor $ido,$ido + xor $idx,$idx +.align 16 +.Lc2ndloop: + mov ($dat,$ido),%r10b + add ($inp,$len),$idx#b + add %r10b,$idx#b + add \$1,$len + mov ($dat,$idx),%r11b + jnz .Lcnowrap + mov %rcx,$len +.Lcnowrap: + mov %r10b,($dat,$idx) + mov %r11b,($dat,$ido) + add \$1,$ido#b + jnc .Lc2ndloop + movl \$-1,256($dat) + +.align 16 +.Lexit_key: + xor %eax,%eax + mov %eax,-8($dat) + mov %eax,-4($dat) + ret +.size asm_RC4_set_key,.-asm_RC4_set_key + +.globl RC4_options +.type RC4_options,\@abi-omnipotent +.align 16 +RC4_options: + lea .Lopts(%rip),%rax + mov OPENSSL_ia32cap_P(%rip),%rdx + mov (%rdx),%edx + bt \$20,%edx + jc .L8xchar + bt \$30,%edx + jnc .Ldone + add \$25,%rax + ret +.L8xchar: + add \$12,%rax +.Ldone: + ret +.align 64 +.Lopts: +.asciz "rc4(8x,int)" +.asciz "rc4(8x,char)" +.asciz "rc4(16x,int)" +.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" +.align 64 +.size RC4_options,.-RC4_options +___ + +# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, +# CONTEXT *context,DISPATCHER_CONTEXT *disp) +if ($win64) { +$rec="%rcx"; +$frame="%rdx"; +$context="%r8"; +$disp="%r9"; + +$code.=<<___; +.extern __imp_RtlVirtualUnwind +.type stream_se_handler,\@abi-omnipotent +.align 16 +stream_se_handler: + push %rsi + push %rdi + push %rbx + push %rbp + push %r12 + push %r13 + push %r14 + push %r15 + pushfq + sub \$64,%rsp + + mov 120($context),%rax # pull context->Rax + mov 248($context),%rbx # pull context->Rip + + lea .Lprologue(%rip),%r10 + cmp %r10,%rbx # context->Rip<prologue label + jb .Lin_prologue + + mov 152($context),%rax # pull context->Rsp + + lea .Lepilogue(%rip),%r10 + cmp %r10,%rbx # context->Rip>=epilogue label + jae .Lin_prologue + + lea 24(%rax),%rax + + mov -8(%rax),%rbx + mov -16(%rax),%r12 + mov -24(%rax),%r13 + mov %rbx,144($context) # restore context->Rbx + mov %r12,216($context) # restore context->R12 + mov %r13,224($context) # restore context->R13 + +.Lin_prologue: + mov 8(%rax),%rdi + mov 16(%rax),%rsi + mov %rax,152($context) # restore context->Rsp + mov %rsi,168($context) # restore context->Rsi + mov %rdi,176($context) # restore context->Rdi + + jmp .Lcommon_seh_exit +.size stream_se_handler,.-stream_se_handler + +.type key_se_handler,\@abi-omnipotent +.align 16 +key_se_handler: + push %rsi + push %rdi + push %rbx + push %rbp + push %r12 + push %r13 + push %r14 + push %r15 + pushfq + sub \$64,%rsp + + mov 152($context),%rax # pull context->Rsp + mov 8(%rax),%rdi + mov 16(%rax),%rsi + mov %rsi,168($context) # restore context->Rsi + mov %rdi,176($context) # restore context->Rdi + +.Lcommon_seh_exit: + + mov 40($disp),%rdi # disp->ContextRecord + mov $context,%rsi # context + mov \$154,%ecx # sizeof(CONTEXT) + .long 0xa548f3fc # cld; rep movsq + + mov $disp,%rsi + xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER + mov 8(%rsi),%rdx # arg2, disp->ImageBase + mov 0(%rsi),%r8 # arg3, disp->ControlPc + mov 16(%rsi),%r9 # arg4, disp->FunctionEntry + mov 40(%rsi),%r10 # disp->ContextRecord + lea 56(%rsi),%r11 # &disp->HandlerData + lea 24(%rsi),%r12 # &disp->EstablisherFrame + mov %r10,32(%rsp) # arg5 + mov %r11,40(%rsp) # arg6 + mov %r12,48(%rsp) # arg7 + mov %rcx,56(%rsp) # arg8, (NULL) + call *__imp_RtlVirtualUnwind(%rip) + + mov \$1,%eax # ExceptionContinueSearch + add \$64,%rsp + popfq + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbp + pop %rbx + pop %rdi + pop %rsi + ret +.size key_se_handler,.-key_se_handler + +.section .pdata +.align 4 + .rva .LSEH_begin_asm_RC4 + .rva .LSEH_end_asm_RC4 + .rva .LSEH_info_asm_RC4 + + .rva .LSEH_begin_asm_RC4_set_key + .rva .LSEH_end_asm_RC4_set_key + .rva .LSEH_info_asm_RC4_set_key + +.section .xdata +.align 8 +.LSEH_info_asm_RC4: + .byte 9,0,0,0 + .rva stream_se_handler +.LSEH_info_asm_RC4_set_key: + .byte 9,0,0,0 + .rva key_se_handler +___ +} + +sub reg_part { +my ($reg,$conv)=@_; + if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } + elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } + elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } + elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } + return $reg; +} + +$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; +$code =~ s/\`([^\`]*)\`/eval $1/gem; + +print $code; + +close STDOUT; |