summaryrefslogtreecommitdiffstats
path: root/src/crypto/sha/sha512.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/sha/sha512.c')
-rw-r--r--src/crypto/sha/sha512.c593
1 files changed, 593 insertions, 0 deletions
diff --git a/src/crypto/sha/sha512.c b/src/crypto/sha/sha512.c
new file mode 100644
index 0000000..59be8c1
--- /dev/null
+++ b/src/crypto/sha/sha512.c
@@ -0,0 +1,593 @@
+/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
+ * All rights reserved.
+ *
+ * This package is an SSL implementation written
+ * by Eric Young (eay@cryptsoft.com).
+ * The implementation was written so as to conform with Netscapes SSL.
+ *
+ * This library is free for commercial and non-commercial use as long as
+ * the following conditions are aheared to. The following conditions
+ * apply to all code found in this distribution, be it the RC4, RSA,
+ * lhash, DES, etc., code; not just the SSL code. The SSL documentation
+ * included with this distribution is covered by the same copyright terms
+ * except that the holder is Tim Hudson (tjh@cryptsoft.com).
+ *
+ * Copyright remains Eric Young's, and as such any Copyright notices in
+ * the code are not to be removed.
+ * If this package is used in a product, Eric Young should be given attribution
+ * as the author of the parts of the library used.
+ * This can be in the form of a textual message at program startup or
+ * in documentation (online or textual) provided with the package.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * "This product includes cryptographic software written by
+ * Eric Young (eay@cryptsoft.com)"
+ * The word 'cryptographic' can be left out if the rouines from the library
+ * being used are not cryptographic related :-).
+ * 4. If you include any Windows specific code (or a derivative thereof) from
+ * the apps directory (application code) you must include an acknowledgement:
+ * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * The licence and distribution terms for any publically available version or
+ * derivative of this code cannot be changed. i.e. this code cannot simply be
+ * copied and put under another distribution licence
+ * [including the GNU Public Licence.] */
+
+#include <openssl/sha.h>
+
+#include <string.h>
+
+#include <openssl/mem.h>
+
+#include "../internal.h"
+
+
+/* IMPLEMENTATION NOTES.
+ *
+ * As you might have noticed 32-bit hash algorithms:
+ *
+ * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
+ * - optimized versions implement two transform functions: one operating
+ * on [aligned] data in host byte order and one - on data in input
+ * stream byte order;
+ * - share common byte-order neutral collector and padding function
+ * implementations, ../md32_common.h;
+ *
+ * Neither of the above applies to this SHA-512 implementations. Reasons
+ * [in reverse order] are:
+ *
+ * - it's the only 64-bit hash algorithm for the moment of this writing,
+ * there is no need for common collector/padding implementation [yet];
+ * - by supporting only one transform function [which operates on
+ * *aligned* data in input stream byte order, big-endian in this case]
+ * we minimize burden of maintenance in two ways: a) collector/padding
+ * function is simpler; b) only one transform function to stare at;
+ * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
+ * apply a number of optimizations to mitigate potential performance
+ * penalties caused by previous design decision; */
+
+#if !defined(OPENSSL_NO_ASM) && \
+ (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
+ defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
+#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
+#define SHA512_ASM
+#endif
+
+int SHA384_Init(SHA512_CTX *sha) {
+ sha->h[0] = OPENSSL_U64(0xcbbb9d5dc1059ed8);
+ sha->h[1] = OPENSSL_U64(0x629a292a367cd507);
+ sha->h[2] = OPENSSL_U64(0x9159015a3070dd17);
+ sha->h[3] = OPENSSL_U64(0x152fecd8f70e5939);
+ sha->h[4] = OPENSSL_U64(0x67332667ffc00b31);
+ sha->h[5] = OPENSSL_U64(0x8eb44a8768581511);
+ sha->h[6] = OPENSSL_U64(0xdb0c2e0d64f98fa7);
+ sha->h[7] = OPENSSL_U64(0x47b5481dbefa4fa4);
+
+ sha->Nl = 0;
+ sha->Nh = 0;
+ sha->num = 0;
+ sha->md_len = SHA384_DIGEST_LENGTH;
+ return 1;
+}
+
+
+int SHA512_Init(SHA512_CTX *sha) {
+ sha->h[0] = OPENSSL_U64(0x6a09e667f3bcc908);
+ sha->h[1] = OPENSSL_U64(0xbb67ae8584caa73b);
+ sha->h[2] = OPENSSL_U64(0x3c6ef372fe94f82b);
+ sha->h[3] = OPENSSL_U64(0xa54ff53a5f1d36f1);
+ sha->h[4] = OPENSSL_U64(0x510e527fade682d1);
+ sha->h[5] = OPENSSL_U64(0x9b05688c2b3e6c1f);
+ sha->h[6] = OPENSSL_U64(0x1f83d9abfb41bd6b);
+ sha->h[7] = OPENSSL_U64(0x5be0cd19137e2179);
+
+ sha->Nl = 0;
+ sha->Nh = 0;
+ sha->num = 0;
+ sha->md_len = SHA512_DIGEST_LENGTH;
+ return 1;
+}
+
+uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
+ SHA512_CTX ctx;
+ static uint8_t buf[SHA384_DIGEST_LENGTH];
+
+ /* TODO(fork): remove this static buffer. */
+ if (out == NULL) {
+ out = buf;
+ }
+
+ SHA384_Init(&ctx);
+ SHA512_Update(&ctx, data, len);
+ SHA512_Final(out, &ctx);
+ OPENSSL_cleanse(&ctx, sizeof(ctx));
+ return out;
+}
+
+uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
+ SHA512_CTX ctx;
+ static uint8_t buf[SHA512_DIGEST_LENGTH];
+
+ /* TODO(fork): remove this static buffer. */
+ if (out == NULL) {
+ out = buf;
+ }
+ SHA512_Init(&ctx);
+ SHA512_Update(&ctx, data, len);
+ SHA512_Final(out, &ctx);
+ OPENSSL_cleanse(&ctx, sizeof(ctx));
+ return out;
+}
+
+#if !defined(SHA512_ASM)
+static
+#endif
+void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
+
+
+int SHA384_Final(unsigned char *md, SHA512_CTX *sha) {
+ return SHA512_Final(md, sha);
+}
+
+int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
+ return SHA512_Update(sha, data, len);
+}
+
+void SHA512_Transform(SHA512_CTX *c, const unsigned char *data) {
+#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
+ if ((size_t)data % sizeof(c->u.d[0]) != 0) {
+ memcpy(c->u.p, data, sizeof(c->u.p));
+ data = c->u.p;
+ }
+#endif
+ sha512_block_data_order(c, data, 1);
+}
+
+int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
+ uint64_t l;
+ uint8_t *p = c->u.p;
+ const uint8_t *data = (const uint8_t *)in_data;
+
+ if (len == 0)
+ return 1;
+
+ l = (c->Nl + (((uint64_t)len) << 3)) & OPENSSL_U64(0xffffffffffffffff);
+ if (l < c->Nl) {
+ c->Nh++;
+ }
+ if (sizeof(len) >= 8) {
+ c->Nh += (((uint64_t)len) >> 61);
+ }
+ c->Nl = l;
+
+ if (c->num != 0) {
+ size_t n = sizeof(c->u) - c->num;
+
+ if (len < n) {
+ memcpy(p + c->num, data, len);
+ c->num += (unsigned int)len;
+ return 1;
+ } else {
+ memcpy(p + c->num, data, n), c->num = 0;
+ len -= n;
+ data += n;
+ sha512_block_data_order(c, p, 1);
+ }
+ }
+
+ if (len >= sizeof(c->u)) {
+#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
+ if ((size_t)data % sizeof(c->u.d[0]) != 0)
+ while (len >= sizeof(c->u))
+ memcpy(p, data, sizeof(c->u)), sha512_block_data_order(c, p, 1),
+ len -= sizeof(c->u), data += sizeof(c->u);
+ else
+#endif
+ sha512_block_data_order(c, data, len / sizeof(c->u)), data += len,
+ len %= sizeof(c->u), data -= len;
+ }
+
+ if (len != 0) {
+ memcpy(p, data, len);
+ c->num = (int)len;
+ }
+
+ return 1;
+}
+
+int SHA512_Final(unsigned char *md, SHA512_CTX *sha) {
+ uint8_t *p = (uint8_t *)sha->u.p;
+ size_t n = sha->num;
+
+ p[n] = 0x80; /* There always is a room for one */
+ n++;
+ if (n > (sizeof(sha->u) - 16)) {
+ memset(p + n, 0, sizeof(sha->u) - n);
+ n = 0;
+ sha512_block_data_order(sha, p, 1);
+ }
+
+ memset(p + n, 0, sizeof(sha->u) - 16 - n);
+ p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
+ p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
+ p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
+ p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
+ p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
+ p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
+ p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
+ p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
+ p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
+ p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
+ p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
+ p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
+ p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
+ p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
+ p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
+ p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
+
+ sha512_block_data_order(sha, p, 1);
+
+ if (md == 0) {
+ return 0;
+ }
+
+ switch (sha->md_len) {
+ /* Let compiler decide if it's appropriate to unroll... */
+ case SHA384_DIGEST_LENGTH:
+ for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
+ uint64_t t = sha->h[n];
+
+ *(md++) = (uint8_t)(t >> 56);
+ *(md++) = (uint8_t)(t >> 48);
+ *(md++) = (uint8_t)(t >> 40);
+ *(md++) = (uint8_t)(t >> 32);
+ *(md++) = (uint8_t)(t >> 24);
+ *(md++) = (uint8_t)(t >> 16);
+ *(md++) = (uint8_t)(t >> 8);
+ *(md++) = (uint8_t)(t);
+ }
+ break;
+ case SHA512_DIGEST_LENGTH:
+ for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
+ uint64_t t = sha->h[n];
+
+ *(md++) = (uint8_t)(t >> 56);
+ *(md++) = (uint8_t)(t >> 48);
+ *(md++) = (uint8_t)(t >> 40);
+ *(md++) = (uint8_t)(t >> 32);
+ *(md++) = (uint8_t)(t >> 24);
+ *(md++) = (uint8_t)(t >> 16);
+ *(md++) = (uint8_t)(t >> 8);
+ *(md++) = (uint8_t)(t);
+ }
+ break;
+ /* ... as well as make sure md_len is not abused. */
+ default:
+ return 0;
+ }
+
+ return 1;
+}
+
+#ifndef SHA512_ASM
+static const uint64_t K512[80] = {
+ 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,
+ 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,
+ 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,
+ 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
+ 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
+ 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
+ 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,
+ 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
+ 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,
+ 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
+ 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,
+ 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
+ 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,
+ 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
+ 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
+ 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
+ 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,
+ 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
+ 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,
+ 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
+ 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,
+ 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,
+ 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,
+ 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
+ 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
+ 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
+ 0x5fcb6fab3ad6faec, 0x6c44198c4a475817};
+
+#if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
+#if defined(__x86_64) || defined(__x86_64__)
+#define ROTR(a, n) \
+ ({ \
+ uint64_t ret; \
+ asm("rorq %1,%0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
+ ret; \
+ })
+#define PULL64(x) \
+ ({ \
+ uint64_t ret = *((const uint64_t *)(&(x))); \
+ asm("bswapq %0" : "=r"(ret) : "0"(ret)); \
+ ret; \
+ })
+#elif(defined(__i386) || defined(__i386__))
+#define PULL64(x) \
+ ({ \
+ const unsigned int *p = (const unsigned int *)(&(x)); \
+ unsigned int hi = p[0], lo = p[1]; \
+ asm("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
+ ((uint64_t)hi) << 32 | lo; \
+ })
+#elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
+#define ROTR(a, n) \
+ ({ \
+ uint64_t ret; \
+ asm("rotrdi %0,%1,%2" : "=r"(ret) : "r"(a), "K"(n)); \
+ ret; \
+ })
+#elif defined(__aarch64__)
+#define ROTR(a, n) \
+ ({ \
+ uint64_t ret; \
+ asm("ror %0,%1,%2" : "=r"(ret) : "r"(a), "I"(n)); \
+ ret; \
+ })
+#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
+ __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+#define PULL64(x) \
+ ({ \
+ uint64_t ret; \
+ asm("rev %0,%1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
+ ret; \
+ })
+#endif
+#endif
+#elif defined(_MSC_VER)
+#if defined(_WIN64) /* applies to both IA-64 and AMD64 */
+#pragma intrinsic(_rotr64)
+#define ROTR(a, n) _rotr64((a), n)
+#endif
+#if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
+static uint64_t __fastcall __pull64be(const void *x) {
+ _asm mov edx, [ecx + 0]
+ _asm mov eax, [ecx + 4]
+ _asm bswap edx
+ _asm bswap eax
+}
+#define PULL64(x) __pull64be(&(x))
+#if _MSC_VER <= 1200
+#pragma inline_depth(0)
+#endif
+#endif
+#endif
+
+#ifndef PULL64
+#define B(x, j) \
+ (((uint64_t)(*(((const unsigned char *)(&x)) + j))) << ((7 - j) * 8))
+#define PULL64(x) \
+ (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
+ B(x, 7))
+#endif
+
+#ifndef ROTR
+#define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
+#endif
+
+#define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
+#define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
+#define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
+#define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
+
+#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
+#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+
+#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
+/*
+ * This code should give better results on 32-bit CPU with less than
+ * ~24 registers, both size and performance wise...
+ */
+static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
+ size_t num) {
+ const uint64_t *W = in;
+ uint64_t A, E, T;
+ uint64_t X[9 + 80], *F;
+ int i;
+
+ while (num--) {
+ F = X + 80;
+ A = ctx->h[0];
+ F[1] = ctx->h[1];
+ F[2] = ctx->h[2];
+ F[3] = ctx->h[3];
+ E = ctx->h[4];
+ F[5] = ctx->h[5];
+ F[6] = ctx->h[6];
+ F[7] = ctx->h[7];
+
+ for (i = 0; i < 16; i++, F--) {
+ T = PULL64(W[i]);
+ F[0] = A;
+ F[4] = E;
+ F[8] = T;
+ T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
+ E = F[3] + T;
+ A = T + Sigma0(A) + Maj(A, F[1], F[2]);
+ }
+
+ for (; i < 80; i++, F--) {
+ T = sigma0(F[8 + 16 - 1]);
+ T += sigma1(F[8 + 16 - 14]);
+ T += F[8 + 16] + F[8 + 16 - 9];
+
+ F[0] = A;
+ F[4] = E;
+ F[8] = T;
+ T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
+ E = F[3] + T;
+ A = T + Sigma0(A) + Maj(A, F[1], F[2]);
+ }
+
+ ctx->h[0] += A;
+ ctx->h[1] += F[1];
+ ctx->h[2] += F[2];
+ ctx->h[3] += F[3];
+ ctx->h[4] += E;
+ ctx->h[5] += F[5];
+ ctx->h[6] += F[6];
+ ctx->h[7] += F[7];
+
+ W += 16;
+ }
+}
+
+#else
+
+#define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
+ do { \
+ T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
+ h = Sigma0(a) + Maj(a, b, c); \
+ d += T1; \
+ h += T1; \
+ } while (0)
+
+#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
+ do { \
+ s0 = X[(j + 1) & 0x0f]; \
+ s0 = sigma0(s0); \
+ s1 = X[(j + 14) & 0x0f]; \
+ s1 = sigma1(s1); \
+ T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
+ ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
+ } while (0)
+
+static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
+ size_t num) {
+ const uint64_t *W = in;
+ uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
+ uint64_t X[16];
+ int i;
+
+ while (num--) {
+
+ a = ctx->h[0];
+ b = ctx->h[1];
+ c = ctx->h[2];
+ d = ctx->h[3];
+ e = ctx->h[4];
+ f = ctx->h[5];
+ g = ctx->h[6];
+ h = ctx->h[7];
+
+ T1 = X[0] = PULL64(W[0]);
+ ROUND_00_15(0, a, b, c, d, e, f, g, h);
+ T1 = X[1] = PULL64(W[1]);
+ ROUND_00_15(1, h, a, b, c, d, e, f, g);
+ T1 = X[2] = PULL64(W[2]);
+ ROUND_00_15(2, g, h, a, b, c, d, e, f);
+ T1 = X[3] = PULL64(W[3]);
+ ROUND_00_15(3, f, g, h, a, b, c, d, e);
+ T1 = X[4] = PULL64(W[4]);
+ ROUND_00_15(4, e, f, g, h, a, b, c, d);
+ T1 = X[5] = PULL64(W[5]);
+ ROUND_00_15(5, d, e, f, g, h, a, b, c);
+ T1 = X[6] = PULL64(W[6]);
+ ROUND_00_15(6, c, d, e, f, g, h, a, b);
+ T1 = X[7] = PULL64(W[7]);
+ ROUND_00_15(7, b, c, d, e, f, g, h, a);
+ T1 = X[8] = PULL64(W[8]);
+ ROUND_00_15(8, a, b, c, d, e, f, g, h);
+ T1 = X[9] = PULL64(W[9]);
+ ROUND_00_15(9, h, a, b, c, d, e, f, g);
+ T1 = X[10] = PULL64(W[10]);
+ ROUND_00_15(10, g, h, a, b, c, d, e, f);
+ T1 = X[11] = PULL64(W[11]);
+ ROUND_00_15(11, f, g, h, a, b, c, d, e);
+ T1 = X[12] = PULL64(W[12]);
+ ROUND_00_15(12, e, f, g, h, a, b, c, d);
+ T1 = X[13] = PULL64(W[13]);
+ ROUND_00_15(13, d, e, f, g, h, a, b, c);
+ T1 = X[14] = PULL64(W[14]);
+ ROUND_00_15(14, c, d, e, f, g, h, a, b);
+ T1 = X[15] = PULL64(W[15]);
+ ROUND_00_15(15, b, c, d, e, f, g, h, a);
+
+ for (i = 16; i < 80; i += 16) {
+ ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
+ ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
+ ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
+ ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
+ ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
+ ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
+ ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
+ ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
+ ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
+ ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
+ ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
+ ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
+ ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
+ ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
+ ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
+ ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
+ }
+
+ ctx->h[0] += a;
+ ctx->h[1] += b;
+ ctx->h[2] += c;
+ ctx->h[3] += d;
+ ctx->h[4] += e;
+ ctx->h[5] += f;
+ ctx->h[6] += g;
+ ctx->h[7] += h;
+
+ W += 16;
+ }
+}
+
+#endif
+
+#endif /* SHA512_ASM */