summaryrefslogtreecommitdiffstats
path: root/src/crypto/bio/bio_test.cc
blob: e0193f8ea5307edfca44e1e8e7736378f6a1386a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/* Copyright (c) 2014, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 201410L
#endif

#include <openssl/base.h>

#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#else
#include <io.h>
#pragma warning(push, 3)
#include <winsock2.h>
#include <ws2tcpip.h>
#pragma warning(pop)
#endif

#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/mem.h>

#include <algorithm>

#include "../test/scoped_types.h"


#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) {
  return close(sock);
}

static void PrintSocketError(const char *func) {
  perror(func);
}
#else
static void PrintSocketError(const char *func) {
  fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif

class ScopedSocket {
 public:
  ScopedSocket(int sock) : sock_(sock) {}
  ~ScopedSocket() {
    closesocket(sock_);
  }

 private:
  const int sock_;
};

static bool TestSocketConnect() {
  static const char kTestMessage[] = "test";

  int listening_sock = socket(AF_INET, SOCK_STREAM, 0);
  if (listening_sock == -1) {
    PrintSocketError("socket");
    return false;
  }
  ScopedSocket listening_sock_closer(listening_sock);

  struct sockaddr_in sin;
  memset(&sin, 0, sizeof(sin));
  sin.sin_family = AF_INET;
  if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
    PrintSocketError("inet_pton");
    return false;
  }
  if (bind(listening_sock, (struct sockaddr *)&sin, sizeof(sin)) != 0) {
    PrintSocketError("bind");
    return false;
  }
  if (listen(listening_sock, 1)) {
    PrintSocketError("listen");
    return false;
  }
  socklen_t sockaddr_len = sizeof(sin);
  if (getsockname(listening_sock, (struct sockaddr *)&sin, &sockaddr_len) ||
      sockaddr_len != sizeof(sin)) {
    PrintSocketError("getsockname");
    return false;
  }

  char hostname[80];
  BIO_snprintf(hostname, sizeof(hostname), "%s:%d", "127.0.0.1",
               ntohs(sin.sin_port));
  ScopedBIO bio(BIO_new_connect(hostname));
  if (!bio) {
    fprintf(stderr, "BIO_new_connect failed.\n");
    return false;
  }

  if (BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)) !=
      sizeof(kTestMessage)) {
    fprintf(stderr, "BIO_write failed.\n");
    ERR_print_errors_fp(stderr);
    return false;
  }

  int sock = accept(listening_sock, (struct sockaddr *) &sin, &sockaddr_len);
  if (sock == -1) {
    PrintSocketError("accept");
    return false;
  }
  ScopedSocket sock_closer(sock);

  char buf[5];
  if (recv(sock, buf, sizeof(buf), 0) != sizeof(kTestMessage)) {
    PrintSocketError("read");
    return false;
  }
  if (memcmp(buf, kTestMessage, sizeof(kTestMessage))) {
    return false;
  }

  return true;
}


// BioReadZeroCopyWrapper is a wrapper around the zero-copy APIs to make
// testing easier.
static size_t BioReadZeroCopyWrapper(BIO *bio, uint8_t *data, size_t len) {
  uint8_t *read_buf;
  size_t read_buf_offset;
  size_t available_bytes;
  size_t len_read = 0;

  do {
    if (!BIO_zero_copy_get_read_buf(bio, &read_buf, &read_buf_offset,
                                    &available_bytes)) {
      return 0;
    }

    available_bytes = std::min(available_bytes, len - len_read);
    memmove(data + len_read, read_buf + read_buf_offset, available_bytes);

    BIO_zero_copy_get_read_buf_done(bio, available_bytes);

    len_read += available_bytes;
  } while (len - len_read > 0 && available_bytes > 0);

  return len_read;
}

// BioWriteZeroCopyWrapper is a wrapper around the zero-copy APIs to make
// testing easier.
static size_t BioWriteZeroCopyWrapper(BIO *bio, const uint8_t *data,
                                      size_t len) {
  uint8_t *write_buf;
  size_t write_buf_offset;
  size_t available_bytes;
  size_t len_written = 0;

  do {
    if (!BIO_zero_copy_get_write_buf(bio, &write_buf, &write_buf_offset,
                                     &available_bytes)) {
      return 0;
    }

    available_bytes = std::min(available_bytes, len - len_written);
    memmove(write_buf + write_buf_offset, data + len_written, available_bytes);

    BIO_zero_copy_get_write_buf_done(bio, available_bytes);

    len_written += available_bytes;
  } while (len - len_written > 0 && available_bytes > 0);

  return len_written;
}

static bool TestZeroCopyBioPairs() {
  // Test read and write, especially triggering the ring buffer wrap-around.
  uint8_t bio1_application_send_buffer[1024];
  uint8_t bio2_application_recv_buffer[1024];

  const size_t kLengths[] = {254, 255, 256, 257, 510, 511, 512, 513};

  // These trigger ring buffer wrap around.
  const size_t kPartialLengths[] = {0, 1, 2, 3, 128, 255, 256, 257, 511, 512};

  static const size_t kBufferSize = 512;

  srand(1);
  for (size_t i = 0; i < sizeof(bio1_application_send_buffer); i++) {
    bio1_application_send_buffer[i] = rand() & 255;
  }

  // Transfer bytes from bio1_application_send_buffer to
  // bio2_application_recv_buffer in various ways.
  for (size_t i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) {
    for (size_t j = 0; j < sizeof(kPartialLengths) / sizeof(kPartialLengths[0]);
         j++) {
      size_t total_write = 0;
      size_t total_read = 0;

      BIO *bio1, *bio2;
      if (!BIO_new_bio_pair(&bio1, kBufferSize, &bio2, kBufferSize)) {
        return false;
      }
      ScopedBIO bio1_scoper(bio1);
      ScopedBIO bio2_scoper(bio2);

      total_write += BioWriteZeroCopyWrapper(
          bio1, bio1_application_send_buffer, kLengths[i]);

      // This tests interleaved read/write calls. Do a read between zero copy
      // write calls.
      uint8_t *write_buf;
      size_t write_buf_offset;
      size_t available_bytes;
      if (!BIO_zero_copy_get_write_buf(bio1, &write_buf, &write_buf_offset,
                                       &available_bytes)) {
        return false;
      }

      // Free kPartialLengths[j] bytes in the beginning of bio1 write buffer.
      // This enables ring buffer wrap around for the next write.
      total_read += BIO_read(bio2, bio2_application_recv_buffer + total_read,
                             kPartialLengths[j]);

      size_t interleaved_write_len = std::min(kPartialLengths[j],
                                              available_bytes);

      // Write the data for the interleaved write call. If the buffer becomes
      // empty after a read, the write offset is normally set to 0. Check that
      // this does not happen for interleaved read/write and that
      // |write_buf_offset| is still valid.
      memcpy(write_buf + write_buf_offset,
             bio1_application_send_buffer + total_write, interleaved_write_len);
      if (BIO_zero_copy_get_write_buf_done(bio1, interleaved_write_len)) {
        total_write += interleaved_write_len;
      }

      // Do another write in case |write_buf_offset| was wrapped.
      total_write += BioWriteZeroCopyWrapper(
          bio1, bio1_application_send_buffer + total_write,
          kPartialLengths[j] - interleaved_write_len);

      // Drain the rest.
      size_t bytes_left = BIO_pending(bio2);
      total_read += BioReadZeroCopyWrapper(
          bio2, bio2_application_recv_buffer + total_read, bytes_left);

      if (total_read != total_write) {
        fprintf(stderr, "Lengths not equal in round (%u, %u)\n", (unsigned)i,
                (unsigned)j);
        return false;
      }
      if (total_read > kLengths[i] + kPartialLengths[j]) {
        fprintf(stderr, "Bad lengths in round (%u, %u)\n", (unsigned)i,
                (unsigned)j);
        return false;
      }
      if (memcmp(bio1_application_send_buffer, bio2_application_recv_buffer,
                 total_read) != 0) {
        fprintf(stderr, "Buffers not equal in round (%u, %u)\n", (unsigned)i,
                (unsigned)j);
        return false;
      }
    }
  }

  return true;
}

static bool TestPrintf() {
  // Test a short output, a very long one, and various sizes around
  // 256 (the size of the buffer) to ensure edge cases are correct.
  static const size_t kLengths[] = { 5, 250, 251, 252, 253, 254, 1023 };

  ScopedBIO bio(BIO_new(BIO_s_mem()));
  if (!bio) {
    fprintf(stderr, "BIO_new failed\n");
    return false;
  }

  for (size_t i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) {
    char string[1024];
    if (kLengths[i] >= sizeof(string)) {
      fprintf(stderr, "Bad test string length\n");
      return false;
    }
    memset(string, 'a', sizeof(string));
    string[kLengths[i]] = '\0';

    int ret = BIO_printf(bio.get(), "test %s", string);
    if (ret < 0 || static_cast<size_t>(ret) != 5 + kLengths[i]) {
      fprintf(stderr, "BIO_printf failed: %d\n", ret);
      return false;
    }
    const uint8_t *contents;
    size_t len;
    if (!BIO_mem_contents(bio.get(), &contents, &len)) {
      fprintf(stderr, "BIO_mem_contents failed\n");
      return false;
    }
    if (len != 5 + kLengths[i] ||
        strncmp((const char *)contents, "test ", 5) != 0 ||
        strncmp((const char *)contents + 5, string, kLengths[i]) != 0) {
      fprintf(stderr, "Contents did not match: %.*s\n", (int)len, contents);
      return false;
    }

    if (!BIO_reset(bio.get())) {
      fprintf(stderr, "BIO_reset failed\n");
      return false;
    }
  }

  return true;
}

static bool ReadASN1(bool should_succeed, const uint8_t *data, size_t data_len,
                     size_t expected_len, size_t max_len) {
  ScopedBIO bio(BIO_new_mem_buf(const_cast<uint8_t*>(data), data_len));

  uint8_t *out;
  size_t out_len;
  int ok = BIO_read_asn1(bio.get(), &out, &out_len, max_len);
  if (!ok) {
    out = nullptr;
  }
  ScopedOpenSSLBytes out_storage(out);

  if (should_succeed != (ok == 1)) {
    return false;
  }

  if (should_succeed &&
      (out_len != expected_len || memcmp(data, out, expected_len) != 0)) {
    return false;
  }

  return true;
}

static bool TestASN1() {
  static const uint8_t kData1[] = {0x30, 2, 1, 2, 0, 0};
  static const uint8_t kData2[] = {0x30, 3, 1, 2};  /* truncated */
  static const uint8_t kData3[] = {0x30, 0x81, 1, 1};  /* should be short len */
  static const uint8_t kData4[] = {0x30, 0x82, 0, 1, 1};  /* zero padded. */

  if (!ReadASN1(true, kData1, sizeof(kData1), 4, 100) ||
      !ReadASN1(false, kData2, sizeof(kData2), 0, 100) ||
      !ReadASN1(false, kData3, sizeof(kData3), 0, 100) ||
      !ReadASN1(false, kData4, sizeof(kData4), 0, 100)) {
    return false;
  }

  static const size_t kLargePayloadLen = 8000;
  static const uint8_t kLargePrefix[] = {0x30, 0x82, kLargePayloadLen >> 8,
                                         kLargePayloadLen & 0xff};
  ScopedOpenSSLBytes large(reinterpret_cast<uint8_t *>(
      OPENSSL_malloc(sizeof(kLargePrefix) + kLargePayloadLen)));
  memset(large.get() + sizeof(kLargePrefix), 0, kLargePayloadLen);
  memcpy(large.get(), kLargePrefix, sizeof(kLargePrefix));

  if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
                sizeof(kLargePrefix) + kLargePayloadLen,
                kLargePayloadLen * 2)) {
    fprintf(stderr, "Large payload test failed.\n");
    return false;
  }

  if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
                sizeof(kLargePrefix) + kLargePayloadLen,
                kLargePayloadLen - 1)) {
    fprintf(stderr, "max_len test failed.\n");
    return false;
  }

  static const uint8_t kIndefPrefix[] = {0x30, 0x80};
  memcpy(large.get(), kIndefPrefix, sizeof(kIndefPrefix));
  if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
                sizeof(kLargePrefix) + kLargePayloadLen,
                kLargePayloadLen*2)) {
    fprintf(stderr, "indefinite length test failed.\n");
    return false;
  }

  if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
                sizeof(kLargePrefix) + kLargePayloadLen,
                kLargePayloadLen-1)) {
    fprintf(stderr, "indefinite length, max_len test failed.\n");
    return false;
  }

  return true;
}

int main(void) {
  CRYPTO_library_init();
  ERR_load_crypto_strings();

#if defined(OPENSSL_WINDOWS)
  // Initialize Winsock.
  WORD wsa_version = MAKEWORD(2, 2);
  WSADATA wsa_data;
  int wsa_err = WSAStartup(wsa_version, &wsa_data);
  if (wsa_err != 0) {
    fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
    return 1;
  }
  if (wsa_data.wVersion != wsa_version) {
    fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
    return 1;
  }
#endif

  if (!TestSocketConnect() ||
      !TestPrintf() ||
      !TestZeroCopyBioPairs() ||
      !TestASN1()) {
    return 1;
  }

  printf("PASS\n");
  return 0;
}