summaryrefslogtreecommitdiffstats
path: root/src/crypto/bn/div.c
blob: 3588ea118a743055d17ac814ca38f6d81b70bc4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.] */

#include <openssl/bn.h>

#include <limits.h>
#include <openssl/err.h>

#include "internal.h"


#define asm __asm__

#if !defined(OPENSSL_NO_ASM)
# if defined(__GNUC__) && __GNUC__>=2
#  if defined(OPENSSL_X86)
   /*
    * There were two reasons for implementing this template:
    * - GNU C generates a call to a function (__udivdi3 to be exact)
    *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
    *   understand why...);
    * - divl doesn't only calculate quotient, but also leaves
    *   remainder in %edx which we can definitely use here:-)
    *
    *					<appro@fy.chalmers.se>
    */
#undef div_asm
#  define div_asm(n0,n1,d0)		\
	({  asm volatile (			\
		"divl	%4"			\
		: "=a"(q), "=d"(rem)		\
		: "a"(n1), "d"(n0), "g"(d0)	\
		: "cc");			\
	    q;					\
	})
#  define REMAINDER_IS_ALREADY_CALCULATED
#  elif defined(OPENSSL_X86_64)
   /*
    * Same story here, but it's 128-bit by 64-bit division. Wow!
    *					<appro@fy.chalmers.se>
    */
#  undef div_asm
#  define div_asm(n0,n1,d0)		\
	({  asm volatile (			\
		"divq	%4"			\
		: "=a"(q), "=d"(rem)		\
		: "a"(n1), "d"(n0), "g"(d0)	\
		: "cc");			\
	    q;					\
	})
#  define REMAINDER_IS_ALREADY_CALCULATED
#  endif /* __<cpu> */
# endif /* __GNUC__ */
#endif /* OPENSSL_NO_ASM */

/* BN_div computes  dv := num / divisor,  rounding towards
 * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
 * Thus:
 *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
 *     rm->neg == num->neg                 (unless the remainder is zero)
 * If 'dv' or 'rm' is NULL, the respective value is not returned. */
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
           BN_CTX *ctx) {
  int norm_shift, i, loop;
  BIGNUM *tmp, wnum, *snum, *sdiv, *res;
  BN_ULONG *resp, *wnump;
  BN_ULONG d0, d1;
  int num_n, div_n;
  int no_branch = 0;

  /* Invalid zero-padding would have particularly bad consequences
   * so don't just rely on bn_check_top() here */
  if ((num->top > 0 && num->d[num->top - 1] == 0) ||
      (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
    OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED);
    return 0;
  }

  if ((num->flags & BN_FLG_CONSTTIME) != 0 ||
      (divisor->flags & BN_FLG_CONSTTIME) != 0) {
    no_branch = 1;
  }

  if (BN_is_zero(divisor)) {
    OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO);
    return 0;
  }

  if (!no_branch && BN_ucmp(num, divisor) < 0) {
    if (rm != NULL) {
      if (BN_copy(rm, num) == NULL) {
        return 0;
      }
    }
    if (dv != NULL) {
      BN_zero(dv);
    }
    return 1;
  }

  BN_CTX_start(ctx);
  tmp = BN_CTX_get(ctx);
  snum = BN_CTX_get(ctx);
  sdiv = BN_CTX_get(ctx);
  if (dv == NULL) {
    res = BN_CTX_get(ctx);
  } else {
    res = dv;
  }
  if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
    goto err;
  }

  /* First we normalise the numbers */
  norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
  if (!(BN_lshift(sdiv, divisor, norm_shift))) {
    goto err;
  }
  sdiv->neg = 0;
  norm_shift += BN_BITS2;
  if (!(BN_lshift(snum, num, norm_shift))) {
    goto err;
  }
  snum->neg = 0;

  if (no_branch) {
    /* Since we don't know whether snum is larger than sdiv,
     * we pad snum with enough zeroes without changing its
     * value.
     */
    if (snum->top <= sdiv->top + 1) {
      if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
        goto err;
      }
      for (i = snum->top; i < sdiv->top + 2; i++) {
        snum->d[i] = 0;
      }
      snum->top = sdiv->top + 2;
    } else {
      if (bn_wexpand(snum, snum->top + 1) == NULL) {
        goto err;
      }
      snum->d[snum->top] = 0;
      snum->top++;
    }
  }

  div_n = sdiv->top;
  num_n = snum->top;
  loop = num_n - div_n;
  /* Lets setup a 'window' into snum
   * This is the part that corresponds to the current
   * 'area' being divided */
  wnum.neg = 0;
  wnum.d = &(snum->d[loop]);
  wnum.top = div_n;
  /* only needed when BN_ucmp messes up the values between top and max */
  wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */

  /* Get the top 2 words of sdiv */
  /* div_n=sdiv->top; */
  d0 = sdiv->d[div_n - 1];
  d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];

  /* pointer to the 'top' of snum */
  wnump = &(snum->d[num_n - 1]);

  /* Setup to 'res' */
  res->neg = (num->neg ^ divisor->neg);
  if (!bn_wexpand(res, (loop + 1))) {
    goto err;
  }
  res->top = loop - no_branch;
  resp = &(res->d[loop - 1]);

  /* space for temp */
  if (!bn_wexpand(tmp, (div_n + 1))) {
    goto err;
  }

  if (!no_branch) {
    if (BN_ucmp(&wnum, sdiv) >= 0) {
      bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
      *resp = 1;
    } else {
      res->top--;
    }
  }

  /* if res->top == 0 then clear the neg value otherwise decrease
   * the resp pointer */
  if (res->top == 0) {
    res->neg = 0;
  } else {
    resp--;
  }

  for (i = 0; i < loop - 1; i++, wnump--, resp--) {
    BN_ULONG q, l0;
    /* the first part of the loop uses the top two words of snum and sdiv to
     * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
    BN_ULONG n0, n1, rem = 0;

    n0 = wnump[0];
    n1 = wnump[-1];
    if (n0 == d0) {
      q = BN_MASK2;
    } else {
      /* n0 < d0 */
#ifdef BN_LLONG
      BN_ULLONG t2;

#if defined(BN_LLONG) && !defined(div_asm)
      q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0);
#else
      q = div_asm(n0, n1, d0);
#endif

#ifndef REMAINDER_IS_ALREADY_CALCULATED
      /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0,
       * isn't it? */
      rem = (n1 - q * d0) & BN_MASK2;
#endif

      t2 = (BN_ULLONG)d1 * q;

      for (;;) {
        if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) {
          break;
        }
        q--;
        rem += d0;
        if (rem < d0) {
          break; /* don't let rem overflow */
        }
        t2 -= d1;
      }
#else /* !BN_LLONG */
      BN_ULONG t2l, t2h;

#if defined(div_asm)
      q = div_asm(n0, n1, d0);
#else
      q = bn_div_words(n0, n1, d0);
#endif

#ifndef REMAINDER_IS_ALREADY_CALCULATED
      rem = (n1 - q * d0) & BN_MASK2;
#endif

#if defined(BN_UMULT_LOHI)
      BN_UMULT_LOHI(t2l, t2h, d1, q);
#elif defined(BN_UMULT_HIGH)
      t2l = d1 * q;
      t2h = BN_UMULT_HIGH(d1, q);
#else
      {
        BN_ULONG ql, qh;
        t2l = LBITS(d1);
        t2h = HBITS(d1);
        ql = LBITS(q);
        qh = HBITS(q);
        mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
      }
#endif

      for (;;) {
        if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) {
          break;
        }
        q--;
        rem += d0;
        if (rem < d0) {
          break; /* don't let rem overflow */
        }
        if (t2l < d1) {
          t2h--;
        }
        t2l -= d1;
      }
#endif /* !BN_LLONG */
    }

    l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
    tmp->d[div_n] = l0;
    wnum.d--;
    /* ingore top values of the bignums just sub the two
     * BN_ULONG arrays with bn_sub_words */
    if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
      /* Note: As we have considered only the leading
       * two BN_ULONGs in the calculation of q, sdiv * q
       * might be greater than wnum (but then (q-1) * sdiv
       * is less or equal than wnum)
       */
      q--;
      if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
        /* we can't have an overflow here (assuming
         * that q != 0, but if q == 0 then tmp is
         * zero anyway) */
        (*wnump)++;
      }
    }
    /* store part of the result */
    *resp = q;
  }
  bn_correct_top(snum);
  if (rm != NULL) {
    /* Keep a copy of the neg flag in num because if rm==num
     * BN_rshift() will overwrite it.
     */
    int neg = num->neg;
    if (!BN_rshift(rm, snum, norm_shift)) {
      goto err;
    }
    if (!BN_is_zero(rm)) {
      rm->neg = neg;
    }
  }
  if (no_branch) {
    bn_correct_top(res);
  }
  BN_CTX_end(ctx);
  return 1;

err:
  BN_CTX_end(ctx);
  return 0;
}

int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
  if (!(BN_mod(r, m, d, ctx))) {
    return 0;
  }
  if (!r->neg) {
    return 1;
  }

  /* now -|d| < r < 0, so we have to set r := r + |d|. */
  return (d->neg ? BN_sub : BN_add)(r, r, d);
}

int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
               BN_CTX *ctx) {
  if (!BN_add(r, a, b)) {
    return 0;
  }
  return BN_nnmod(r, r, m, ctx);
}

int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
                     const BIGNUM *m) {
  if (!BN_uadd(r, a, b)) {
    return 0;
  }
  if (BN_ucmp(r, m) >= 0) {
    return BN_usub(r, r, m);
  }
  return 1;
}

int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
               BN_CTX *ctx) {
  if (!BN_sub(r, a, b)) {
    return 0;
  }
  return BN_nnmod(r, r, m, ctx);
}

/* BN_mod_sub variant that may be used if both  a  and  b  are non-negative
 * and less than  m */
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
                     const BIGNUM *m) {
  if (!BN_sub(r, a, b)) {
    return 0;
  }
  if (r->neg) {
    return BN_add(r, r, m);
  }
  return 1;
}

int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
               BN_CTX *ctx) {
  BIGNUM *t;
  int ret = 0;

  BN_CTX_start(ctx);
  t = BN_CTX_get(ctx);
  if (t == NULL) {
    goto err;
  }

  if (a == b) {
    if (!BN_sqr(t, a, ctx)) {
      goto err;
    }
  } else {
    if (!BN_mul(t, a, b, ctx)) {
      goto err;
    }
  }

  if (!BN_nnmod(r, t, m, ctx)) {
    goto err;
  }

  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}

int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
  if (!BN_sqr(r, a, ctx)) {
    return 0;
  }

  /* r->neg == 0,  thus we don't need BN_nnmod */
  return BN_mod(r, r, m, ctx);
}

int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
                  BN_CTX *ctx) {
  BIGNUM *abs_m = NULL;
  int ret;

  if (!BN_nnmod(r, a, m, ctx)) {
    return 0;
  }

  if (m->neg) {
    abs_m = BN_dup(m);
    if (abs_m == NULL) {
      return 0;
    }
    abs_m->neg = 0;
  }

  ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));

  BN_free(abs_m);
  return ret;
}

int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
  if (r != a) {
    if (BN_copy(r, a) == NULL) {
      return 0;
    }
  }

  while (n > 0) {
    int max_shift;

    /* 0 < r < m */
    max_shift = BN_num_bits(m) - BN_num_bits(r);
    /* max_shift >= 0 */

    if (max_shift < 0) {
      OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED);
      return 0;
    }

    if (max_shift > n) {
      max_shift = n;
    }

    if (max_shift) {
      if (!BN_lshift(r, r, max_shift)) {
        return 0;
      }
      n -= max_shift;
    } else {
      if (!BN_lshift1(r, r)) {
        return 0;
      }
      --n;
    }

    /* BN_num_bits(r) <= BN_num_bits(m) */
    if (BN_cmp(r, m) >= 0) {
      if (!BN_sub(r, r, m)) {
        return 0;
      }
    }
  }

  return 1;
}

int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
  if (!BN_lshift1(r, a)) {
    return 0;
  }

  return BN_nnmod(r, r, m, ctx);
}

int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
  if (!BN_lshift1(r, a)) {
    return 0;
  }
  if (BN_cmp(r, m) >= 0) {
    return BN_sub(r, r, m);
  }

  return 1;
}

BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
  BN_ULONG ret = 0;
  int i, j;

  w &= BN_MASK2;

  if (!w) {
    /* actually this an error (division by zero) */
    return (BN_ULONG) - 1;
  }

  if (a->top == 0) {
    return 0;
  }

  /* normalize input (so bn_div_words doesn't complain) */
  j = BN_BITS2 - BN_num_bits_word(w);
  w <<= j;
  if (!BN_lshift(a, a, j)) {
    return (BN_ULONG) - 1;
  }

  for (i = a->top - 1; i >= 0; i--) {
    BN_ULONG l, d;

    l = a->d[i];
    d = bn_div_words(ret, l, w);
    ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
    a->d[i] = d;
  }

  if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
    a->top--;
  }

  ret >>= j;
  return ret;
}

BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
#ifndef BN_LLONG
  BN_ULONG ret = 0;
#else
  BN_ULLONG ret = 0;
#endif
  int i;

  if (w == 0) {
    return (BN_ULONG) -1;
  }

  w &= BN_MASK2;
  for (i = a->top - 1; i >= 0; i--) {
#ifndef BN_LLONG
    ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
    ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
#else
    ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
#endif
  }
  return (BN_ULONG)ret;
}