1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* ====================================================================
*
* When updating this file, also update chacha_vec_arm.S
*
* ==================================================================== */
/* This implementation is by Ted Krovetz and was submitted to SUPERCOP and
* marked as public domain. It was been altered to allow for non-aligned inputs
* and to allow the block counter to be passed in specifically. */
#include <openssl/chacha.h>
#if defined(ASM_GEN) || \
!defined(OPENSSL_WINDOWS) && \
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) && defined(__SSE2__)
#define CHACHA_RNDS 20 /* 8 (high speed), 20 (conservative), 12 (middle) */
/* Architecture-neutral way to specify 16-byte vector of ints */
typedef unsigned vec __attribute__((vector_size(16)));
/* This implementation is designed for Neon, SSE and AltiVec machines. The
* following specify how to do certain vector operations efficiently on
* each architecture, using intrinsics.
* This implementation supports parallel processing of multiple blocks,
* including potentially using general-purpose registers. */
#if __ARM_NEON__
#include <arm_neon.h>
#define GPR_TOO 1
#define VBPI 2
#define ONE (vec) vsetq_lane_u32(1, vdupq_n_u32(0), 0)
#define LOAD_ALIGNED(m) (vec)(*((vec *)(m)))
#define LOAD(m) ({ \
memcpy(alignment_buffer, m, 16); \
LOAD_ALIGNED(alignment_buffer); \
})
#define STORE(m, r) ({ \
(*((vec *)(alignment_buffer))) = (r); \
memcpy(m, alignment_buffer, 16); \
})
#define ROTV1(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 1)
#define ROTV2(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 2)
#define ROTV3(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 3)
#define ROTW16(x) (vec) vrev32q_u16((uint16x8_t)x)
#if __clang__
#define ROTW7(x) (x << ((vec) {7, 7, 7, 7})) ^ (x >> ((vec) {25, 25, 25, 25}))
#define ROTW8(x) (x << ((vec) {8, 8, 8, 8})) ^ (x >> ((vec) {24, 24, 24, 24}))
#define ROTW12(x) \
(x << ((vec) {12, 12, 12, 12})) ^ (x >> ((vec) {20, 20, 20, 20}))
#else
#define ROTW7(x) \
(vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 7), (uint32x4_t)x, 25)
#define ROTW8(x) \
(vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 8), (uint32x4_t)x, 24)
#define ROTW12(x) \
(vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 12), (uint32x4_t)x, 20)
#endif
#elif __SSE2__
#include <emmintrin.h>
#define GPR_TOO 0
#if __clang__
#define VBPI 4
#else
#define VBPI 3
#endif
#define ONE (vec) _mm_set_epi32(0, 0, 0, 1)
#define LOAD(m) (vec) _mm_loadu_si128((__m128i *)(m))
#define LOAD_ALIGNED(m) (vec) _mm_load_si128((__m128i *)(m))
#define STORE(m, r) _mm_storeu_si128((__m128i *)(m), (__m128i)(r))
#define ROTV1(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(0, 3, 2, 1))
#define ROTV2(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(1, 0, 3, 2))
#define ROTV3(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(2, 1, 0, 3))
#define ROTW7(x) \
(vec)(_mm_slli_epi32((__m128i)x, 7) ^ _mm_srli_epi32((__m128i)x, 25))
#define ROTW12(x) \
(vec)(_mm_slli_epi32((__m128i)x, 12) ^ _mm_srli_epi32((__m128i)x, 20))
#if __SSSE3__
#include <tmmintrin.h>
#define ROTW8(x) \
(vec) _mm_shuffle_epi8((__m128i)x, _mm_set_epi8(14, 13, 12, 15, 10, 9, 8, \
11, 6, 5, 4, 7, 2, 1, 0, 3))
#define ROTW16(x) \
(vec) _mm_shuffle_epi8((__m128i)x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, \
10, 5, 4, 7, 6, 1, 0, 3, 2))
#else
#define ROTW8(x) \
(vec)(_mm_slli_epi32((__m128i)x, 8) ^ _mm_srli_epi32((__m128i)x, 24))
#define ROTW16(x) \
(vec)(_mm_slli_epi32((__m128i)x, 16) ^ _mm_srli_epi32((__m128i)x, 16))
#endif
#else
#error-- Implementation supports only machines with neon or SSE2
#endif
#ifndef REVV_BE
#define REVV_BE(x) (x)
#endif
#ifndef REVW_BE
#define REVW_BE(x) (x)
#endif
#define BPI (VBPI + GPR_TOO) /* Blocks computed per loop iteration */
#define DQROUND_VECTORS(a,b,c,d) \
a += b; d ^= a; d = ROTW16(d); \
c += d; b ^= c; b = ROTW12(b); \
a += b; d ^= a; d = ROTW8(d); \
c += d; b ^= c; b = ROTW7(b); \
b = ROTV1(b); c = ROTV2(c); d = ROTV3(d); \
a += b; d ^= a; d = ROTW16(d); \
c += d; b ^= c; b = ROTW12(b); \
a += b; d ^= a; d = ROTW8(d); \
c += d; b ^= c; b = ROTW7(b); \
b = ROTV3(b); c = ROTV2(c); d = ROTV1(d);
#define QROUND_WORDS(a,b,c,d) \
a = a+b; d ^= a; d = d<<16 | d>>16; \
c = c+d; b ^= c; b = b<<12 | b>>20; \
a = a+b; d ^= a; d = d<< 8 | d>>24; \
c = c+d; b ^= c; b = b<< 7 | b>>25;
#define WRITE_XOR(in, op, d, v0, v1, v2, v3) \
STORE(op + d + 0, LOAD(in + d + 0) ^ REVV_BE(v0)); \
STORE(op + d + 4, LOAD(in + d + 4) ^ REVV_BE(v1)); \
STORE(op + d + 8, LOAD(in + d + 8) ^ REVV_BE(v2)); \
STORE(op + d +12, LOAD(in + d +12) ^ REVV_BE(v3));
#if __ARM_NEON__
/* For ARM, we can't depend on NEON support, so this function is compiled with
* a different name, along with the generic code, and can be enabled at
* run-time. */
void CRYPTO_chacha_20_neon(
#else
void CRYPTO_chacha_20(
#endif
uint8_t *out,
const uint8_t *in,
size_t inlen,
const uint8_t key[32],
const uint8_t nonce[8],
size_t counter)
{
unsigned iters, i, *op=(unsigned *)out, *ip=(unsigned *)in, *kp;
#if defined(__ARM_NEON__)
unsigned *np;
uint8_t alignment_buffer[16] __attribute__((aligned(16)));
#endif
vec s0, s1, s2, s3;
#if !defined(__ARM_NEON__) && !defined(__SSE2__)
__attribute__ ((aligned (16))) unsigned key[8], nonce[4];
#endif
__attribute__ ((aligned (16))) unsigned chacha_const[] =
{0x61707865,0x3320646E,0x79622D32,0x6B206574};
#if defined(__ARM_NEON__) || defined(__SSE2__)
kp = (unsigned *)key;
#else
((vec *)key)[0] = REVV_BE(((vec *)key)[0]);
((vec *)key)[1] = REVV_BE(((vec *)key)[1]);
nonce[0] = REVW_BE(((unsigned *)nonce)[0]);
nonce[1] = REVW_BE(((unsigned *)nonce)[1]);
nonce[2] = REVW_BE(((unsigned *)nonce)[2]);
nonce[3] = REVW_BE(((unsigned *)nonce)[3]);
kp = (unsigned *)key;
np = (unsigned *)nonce;
#endif
#if defined(__ARM_NEON__)
np = (unsigned*) nonce;
#endif
s0 = LOAD_ALIGNED(chacha_const);
s1 = LOAD_ALIGNED(&((vec*)kp)[0]);
s2 = LOAD_ALIGNED(&((vec*)kp)[1]);
s3 = (vec){
counter & 0xffffffff,
#if __ARM_NEON__ || defined(OPENSSL_X86)
0, /* can't right-shift 32 bits on a 32-bit system. */
#else
counter >> 32,
#endif
((uint32_t*)nonce)[0],
((uint32_t*)nonce)[1]
};
for (iters = 0; iters < inlen/(BPI*64); iters++)
{
#if GPR_TOO
register unsigned x0, x1, x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12, x13, x14, x15;
#endif
#if VBPI > 2
vec v8,v9,v10,v11;
#endif
#if VBPI > 3
vec v12,v13,v14,v15;
#endif
vec v0,v1,v2,v3,v4,v5,v6,v7;
v4 = v0 = s0; v5 = v1 = s1; v6 = v2 = s2; v3 = s3;
v7 = v3 + ONE;
#if VBPI > 2
v8 = v4; v9 = v5; v10 = v6;
v11 = v7 + ONE;
#endif
#if VBPI > 3
v12 = v8; v13 = v9; v14 = v10;
v15 = v11 + ONE;
#endif
#if GPR_TOO
x0 = chacha_const[0]; x1 = chacha_const[1];
x2 = chacha_const[2]; x3 = chacha_const[3];
x4 = kp[0]; x5 = kp[1]; x6 = kp[2]; x7 = kp[3];
x8 = kp[4]; x9 = kp[5]; x10 = kp[6]; x11 = kp[7];
x12 = counter+BPI*iters+(BPI-1); x13 = 0;
x14 = np[0]; x15 = np[1];
#endif
for (i = CHACHA_RNDS/2; i; i--)
{
DQROUND_VECTORS(v0,v1,v2,v3)
DQROUND_VECTORS(v4,v5,v6,v7)
#if VBPI > 2
DQROUND_VECTORS(v8,v9,v10,v11)
#endif
#if VBPI > 3
DQROUND_VECTORS(v12,v13,v14,v15)
#endif
#if GPR_TOO
QROUND_WORDS( x0, x4, x8,x12)
QROUND_WORDS( x1, x5, x9,x13)
QROUND_WORDS( x2, x6,x10,x14)
QROUND_WORDS( x3, x7,x11,x15)
QROUND_WORDS( x0, x5,x10,x15)
QROUND_WORDS( x1, x6,x11,x12)
QROUND_WORDS( x2, x7, x8,x13)
QROUND_WORDS( x3, x4, x9,x14)
#endif
}
WRITE_XOR(ip, op, 0, v0+s0, v1+s1, v2+s2, v3+s3)
s3 += ONE;
WRITE_XOR(ip, op, 16, v4+s0, v5+s1, v6+s2, v7+s3)
s3 += ONE;
#if VBPI > 2
WRITE_XOR(ip, op, 32, v8+s0, v9+s1, v10+s2, v11+s3)
s3 += ONE;
#endif
#if VBPI > 3
WRITE_XOR(ip, op, 48, v12+s0, v13+s1, v14+s2, v15+s3)
s3 += ONE;
#endif
ip += VBPI*16;
op += VBPI*16;
#if GPR_TOO
op[0] = REVW_BE(REVW_BE(ip[0]) ^ (x0 + chacha_const[0]));
op[1] = REVW_BE(REVW_BE(ip[1]) ^ (x1 + chacha_const[1]));
op[2] = REVW_BE(REVW_BE(ip[2]) ^ (x2 + chacha_const[2]));
op[3] = REVW_BE(REVW_BE(ip[3]) ^ (x3 + chacha_const[3]));
op[4] = REVW_BE(REVW_BE(ip[4]) ^ (x4 + kp[0]));
op[5] = REVW_BE(REVW_BE(ip[5]) ^ (x5 + kp[1]));
op[6] = REVW_BE(REVW_BE(ip[6]) ^ (x6 + kp[2]));
op[7] = REVW_BE(REVW_BE(ip[7]) ^ (x7 + kp[3]));
op[8] = REVW_BE(REVW_BE(ip[8]) ^ (x8 + kp[4]));
op[9] = REVW_BE(REVW_BE(ip[9]) ^ (x9 + kp[5]));
op[10] = REVW_BE(REVW_BE(ip[10]) ^ (x10 + kp[6]));
op[11] = REVW_BE(REVW_BE(ip[11]) ^ (x11 + kp[7]));
op[12] = REVW_BE(REVW_BE(ip[12]) ^ (x12 + counter+BPI*iters+(BPI-1)));
op[13] = REVW_BE(REVW_BE(ip[13]) ^ (x13));
op[14] = REVW_BE(REVW_BE(ip[14]) ^ (x14 + np[0]));
op[15] = REVW_BE(REVW_BE(ip[15]) ^ (x15 + np[1]));
s3 += ONE;
ip += 16;
op += 16;
#endif
}
for (iters = inlen%(BPI*64)/64; iters != 0; iters--)
{
vec v0 = s0, v1 = s1, v2 = s2, v3 = s3;
for (i = CHACHA_RNDS/2; i; i--)
{
DQROUND_VECTORS(v0,v1,v2,v3);
}
WRITE_XOR(ip, op, 0, v0+s0, v1+s1, v2+s2, v3+s3)
s3 += ONE;
ip += 16;
op += 16;
}
inlen = inlen % 64;
if (inlen)
{
__attribute__ ((aligned (16))) vec buf[4];
vec v0,v1,v2,v3;
v0 = s0; v1 = s1; v2 = s2; v3 = s3;
for (i = CHACHA_RNDS/2; i; i--)
{
DQROUND_VECTORS(v0,v1,v2,v3);
}
if (inlen >= 16)
{
STORE(op + 0, LOAD(ip + 0) ^ REVV_BE(v0 + s0));
if (inlen >= 32)
{
STORE(op + 4, LOAD(ip + 4) ^ REVV_BE(v1 + s1));
if (inlen >= 48)
{
STORE(op + 8, LOAD(ip + 8) ^
REVV_BE(v2 + s2));
buf[3] = REVV_BE(v3 + s3);
}
else
buf[2] = REVV_BE(v2 + s2);
}
else
buf[1] = REVV_BE(v1 + s1);
}
else
buf[0] = REVV_BE(v0 + s0);
for (i=inlen & ~15; i<inlen; i++)
((char *)op)[i] = ((char *)ip)[i] ^ ((char *)buf)[i];
}
}
#endif /* ASM_GEN || !OPENSSL_WINDOWS && (OPENSSL_X86_64 || OPENSSL_X86) && SSE2 */
|