summaryrefslogtreecommitdiffstats
path: root/src/ssl/t1_enc.c
blob: 014bc88ffeb89f0c4c4f7a8fe09db39da41277bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
/* ====================================================================
 * Copyright 2005 Nokia. All rights reserved.
 *
 * The portions of the attached software ("Contribution") is developed by
 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
 * license.
 *
 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
 * support (see RFC 4279) to OpenSSL.
 *
 * No patent licenses or other rights except those expressly stated in
 * the OpenSSL open source license shall be deemed granted or received
 * expressly, by implication, estoppel, or otherwise.
 *
 * No assurances are provided by Nokia that the Contribution does not
 * infringe the patent or other intellectual property rights of any third
 * party or that the license provides you with all the necessary rights
 * to make use of the Contribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
 * OTHERWISE. */

#include <stdio.h>
#include <assert.h>

#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rand.h>

#include "ssl_locl.h"


/* tls1_P_hash computes the TLS P_<hash> function as described in RFC 5246,
 * section 5. It writes |out_len| bytes to |out|, using |md| as the hash and
 * |secret| as the secret. |seed1| through |seed3| are concatenated to form the
 * seed parameter. It returns one on success and zero on failure. */
static int tls1_P_hash(uint8_t *out, size_t out_len, const EVP_MD *md,
                       const uint8_t *secret, size_t secret_len,
                       const uint8_t *seed1, size_t seed1_len,
                       const uint8_t *seed2, size_t seed2_len,
                       const uint8_t *seed3, size_t seed3_len) {
  size_t chunk;
  HMAC_CTX ctx, ctx_tmp, ctx_init;
  uint8_t A1[EVP_MAX_MD_SIZE];
  unsigned A1_len;
  int ret = 0;

  chunk = EVP_MD_size(md);

  HMAC_CTX_init(&ctx);
  HMAC_CTX_init(&ctx_tmp);
  HMAC_CTX_init(&ctx_init);
  if (!HMAC_Init_ex(&ctx_init, secret, secret_len, md, NULL) ||
      !HMAC_CTX_copy_ex(&ctx, &ctx_init) ||
      (seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) ||
      (seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) ||
      (seed3_len && !HMAC_Update(&ctx, seed3, seed3_len)) ||
      !HMAC_Final(&ctx, A1, &A1_len)) {
    goto err;
  }

  for (;;) {
    /* Reinit mac contexts. */
    if (!HMAC_CTX_copy_ex(&ctx, &ctx_init) ||
        !HMAC_Update(&ctx, A1, A1_len) ||
        (out_len > chunk && !HMAC_CTX_copy_ex(&ctx_tmp, &ctx)) ||
        (seed1_len && !HMAC_Update(&ctx, seed1, seed1_len)) ||
        (seed2_len && !HMAC_Update(&ctx, seed2, seed2_len)) ||
        (seed3_len && !HMAC_Update(&ctx, seed3, seed3_len))) {
      goto err;
    }

    if (out_len > chunk) {
      unsigned len;
      if (!HMAC_Final(&ctx, out, &len)) {
        goto err;
      }
      assert(len == chunk);
      out += len;
      out_len -= len;
      /* Calculate the next A1 value. */
      if (!HMAC_Final(&ctx_tmp, A1, &A1_len)) {
        goto err;
      }
    } else {
      /* Last chunk. */
      if (!HMAC_Final(&ctx, A1, &A1_len)) {
        goto err;
      }
      memcpy(out, A1, out_len);
      break;
    }
  }

  ret = 1;

err:
  HMAC_CTX_cleanup(&ctx);
  HMAC_CTX_cleanup(&ctx_tmp);
  HMAC_CTX_cleanup(&ctx_init);
  OPENSSL_cleanse(A1, sizeof(A1));
  return ret;
}

int tls1_prf(SSL *s, uint8_t *out, size_t out_len, const uint8_t *secret,
             size_t secret_len, const char *label, size_t label_len,
             const uint8_t *seed1, size_t seed1_len,
             const uint8_t *seed2, size_t seed2_len) {
  size_t idx, len, count, i;
  const uint8_t *S1;
  long m;
  const EVP_MD *md;
  int ret = 0;
  uint8_t *tmp;

  if (out_len == 0) {
    return 1;
  }

  /* Allocate a temporary buffer. */
  tmp = OPENSSL_malloc(out_len);
  if (tmp == NULL) {
    OPENSSL_PUT_ERROR(SSL, tls1_prf, ERR_R_MALLOC_FAILURE);
    return 0;
  }

  /* Count number of digests and partition |secret| evenly. */
  count = 0;
  for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
    if ((m << TLS1_PRF_DGST_SHIFT) & ssl_get_algorithm2(s)) {
      count++;
    }
  }
  /* TODO(davidben): The only case where count isn't 1 is the old MD5/SHA-1
   * combination. The logic around multiple handshake digests can probably be
   * simplified. */
  assert(count == 1 || count == 2);
  len = secret_len / count;
  if (count == 1) {
    secret_len = 0;
  }
  S1 = secret;
  memset(out, 0, out_len);
  for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
    if ((m << TLS1_PRF_DGST_SHIFT) & ssl_get_algorithm2(s)) {
      /* If |count| is 2 and |secret_len| is odd, |secret| is partitioned into
       * two halves with an overlapping byte. */
      if (!tls1_P_hash(tmp, out_len, md, S1, len + (secret_len & 1),
                       (const uint8_t *)label, label_len, seed1, seed1_len,
                       seed2, seed2_len)) {
        goto err;
      }
      S1 += len;
      for (i = 0; i < out_len; i++) {
        out[i] ^= tmp[i];
      }
    }
  }
  ret = 1;

err:
  OPENSSL_cleanse(tmp, out_len);
  OPENSSL_free(tmp);
  return ret;
}

static int tls1_generate_key_block(SSL *s, uint8_t *out, size_t out_len) {
  return s->enc_method->prf(s, out, out_len, s->session->master_key,
                            s->session->master_key_length,
                            TLS_MD_KEY_EXPANSION_CONST,
                            TLS_MD_KEY_EXPANSION_CONST_SIZE,
                            s->s3->server_random, SSL3_RANDOM_SIZE,
                            s->s3->client_random,
                            SSL3_RANDOM_SIZE);
}

/* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It
 * returns 0 on malloc error. */
static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx) {
  if (*aead_ctx != NULL) {
    EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
  } else {
    *aead_ctx = (SSL_AEAD_CTX *)OPENSSL_malloc(sizeof(SSL_AEAD_CTX));
    if (*aead_ctx == NULL) {
      OPENSSL_PUT_ERROR(SSL, tls1_aead_ctx_init, ERR_R_MALLOC_FAILURE);
      return 0;
    }
  }

  return 1;
}

static int tls1_change_cipher_state_aead(SSL *s, char is_read,
                                         const uint8_t *key, unsigned key_len,
                                         const uint8_t *iv, unsigned iv_len,
                                         const uint8_t *mac_secret,
                                         unsigned mac_secret_len) {
  const EVP_AEAD *aead = s->s3->tmp.new_aead;
  SSL_AEAD_CTX *aead_ctx;
  /* merged_key is used to merge the MAC, cipher, and IV keys for an AEAD which
   * simulates pre-AEAD cipher suites. */
  uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH];

  if (mac_secret_len > 0) {
    /* This is a "stateful" AEAD (for compatibility with pre-AEAD cipher
     * suites). */
    if (mac_secret_len + key_len + iv_len > sizeof(merged_key)) {
      OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead,
                        ERR_R_INTERNAL_ERROR);
      return 0;
    }
    memcpy(merged_key, mac_secret, mac_secret_len);
    memcpy(merged_key + mac_secret_len, key, key_len);
    memcpy(merged_key + mac_secret_len + key_len, iv, iv_len);
    key = merged_key;
    key_len += mac_secret_len;
    key_len += iv_len;
  }

  if (is_read) {
    if (!tls1_aead_ctx_init(&s->aead_read_ctx)) {
      return 0;
    }
    aead_ctx = s->aead_read_ctx;
  } else {
    /* When updating the cipher state for DTLS, we do not wish to overwrite the
     * old ones because DTLS stores pointers to them in order to implement
     * retransmission. See dtls1_hm_fragment_free.
     *
     * TODO(davidben): Simplify aead_write_ctx ownership, probably by just
     * forbidding DTLS renego. */
    if (SSL_IS_DTLS(s)) {
      s->aead_write_ctx = NULL;
    }
    if (!tls1_aead_ctx_init(&s->aead_write_ctx)) {
      return 0;
    }
    aead_ctx = s->aead_write_ctx;
  }

  if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
                         EVP_AEAD_DEFAULT_TAG_LENGTH, NULL /* engine */)) {
    OPENSSL_free(aead_ctx);
    if (is_read) {
      s->aead_read_ctx = NULL;
    } else {
      s->aead_write_ctx = NULL;
    }

    return 0;
  }

  if (mac_secret_len == 0) {
    /* For a real AEAD, the IV is the fixed part of the nonce. */
    if (iv_len > sizeof(aead_ctx->fixed_nonce)) {
      OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
      return 0;
    }

    memcpy(aead_ctx->fixed_nonce, iv, iv_len);
    aead_ctx->fixed_nonce_len = iv_len;
    aead_ctx->variable_nonce_included_in_record =
      (s->s3->tmp.new_cipher->algorithm2 &
       SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0;
    aead_ctx->random_variable_nonce = 0;
    aead_ctx->omit_length_in_ad = 0;
  } else {
    aead_ctx->fixed_nonce_len = 0;
    aead_ctx->variable_nonce_included_in_record = 1;
    aead_ctx->random_variable_nonce = 1;
    aead_ctx->omit_length_in_ad = 1;
  }
  aead_ctx->variable_nonce_len = s->s3->tmp.new_variable_iv_len;
  aead_ctx->omit_version_in_ad = (s->version == SSL3_VERSION);

  if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len !=
      EVP_AEAD_nonce_length(aead)) {
    OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
    return 0;
  }
  aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);

  return 1;
}

int tls1_change_cipher_state(SSL *s, int which) {
  /* is_read is true if we have just read a ChangeCipherSpec message - i.e. we
   * need to update the read cipherspec. Otherwise we have just written one. */
  const char is_read = (which & SSL3_CC_READ) != 0;
  /* use_client_keys is true if we wish to use the keys for the "client write"
   * direction. This is the case if we're a client sending a ChangeCipherSpec,
   * or a server reading a client's ChangeCipherSpec. */
  const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE ||
                               which == SSL3_CHANGE_CIPHER_SERVER_READ;
  const uint8_t *client_write_mac_secret, *server_write_mac_secret, *mac_secret;
  const uint8_t *client_write_key, *server_write_key, *key;
  const uint8_t *client_write_iv, *server_write_iv, *iv;
  const EVP_AEAD *aead = s->s3->tmp.new_aead;
  size_t key_len, iv_len, mac_secret_len;
  const uint8_t *key_data;

  /* Reset sequence number to zero. */
  if (!SSL_IS_DTLS(s)) {
    memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8);
  }

  mac_secret_len = s->s3->tmp.new_mac_secret_len;
  iv_len = s->s3->tmp.new_fixed_iv_len;

  if (aead == NULL) {
    OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  key_len = EVP_AEAD_key_length(aead);
  if (mac_secret_len > 0) {
    /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher
     * suites) the key length reported by |EVP_AEAD_key_length| will
     * include the MAC and IV key bytes. */
    if (key_len < mac_secret_len + iv_len) {
      OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
      return 0;
    }
    key_len -= mac_secret_len + iv_len;
  }

  key_data = s->s3->tmp.key_block;
  client_write_mac_secret = key_data;
  key_data += mac_secret_len;
  server_write_mac_secret = key_data;
  key_data += mac_secret_len;
  client_write_key = key_data;
  key_data += key_len;
  server_write_key = key_data;
  key_data += key_len;
  client_write_iv = key_data;
  key_data += iv_len;
  server_write_iv = key_data;
  key_data += iv_len;

  if (use_client_keys) {
    mac_secret = client_write_mac_secret;
    key = client_write_key;
    iv = client_write_iv;
  } else {
    mac_secret = server_write_mac_secret;
    key = server_write_key;
    iv = server_write_iv;
  }

  if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length) {
    OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  return tls1_change_cipher_state_aead(s, is_read, key, key_len, iv, iv_len,
                                       mac_secret, mac_secret_len);
}

int tls1_setup_key_block(SSL *s) {
  uint8_t *p;
  const EVP_AEAD *aead = NULL;
  int ret = 0;
  size_t mac_secret_len, fixed_iv_len, variable_iv_len, key_len;
  size_t key_block_len;

  if (s->s3->tmp.key_block_length != 0) {
    return 1;
  }

  if (s->session->cipher == NULL) {
    goto cipher_unavailable_err;
  }

  if (!ssl_cipher_get_evp_aead(&aead, &mac_secret_len, &fixed_iv_len,
                               s->session->cipher,
                               ssl3_version_from_wire(s, s->version))) {
    goto cipher_unavailable_err;
  }
  key_len = EVP_AEAD_key_length(aead);
  variable_iv_len = EVP_AEAD_nonce_length(aead);
  if (mac_secret_len > 0) {
    /* For "stateful" AEADs (i.e. compatibility with pre-AEAD cipher suites) the
     * key length reported by |EVP_AEAD_key_length| will include the MAC key
     * bytes and initial implicit IV. */
    if (key_len < mac_secret_len + fixed_iv_len) {
      OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR);
      return 0;
    }
    key_len -= mac_secret_len + fixed_iv_len;
  } else {
    /* The nonce is split into a fixed portion and a variable portion. */
    if (variable_iv_len < fixed_iv_len) {
      OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_INTERNAL_ERROR);
      return 0;
    }
    variable_iv_len -= fixed_iv_len;
  }

  assert(mac_secret_len < 256);
  assert(fixed_iv_len < 256);
  assert(variable_iv_len < 256);

  s->s3->tmp.new_aead = aead;
  s->s3->tmp.new_mac_secret_len = (uint8_t)mac_secret_len;
  s->s3->tmp.new_fixed_iv_len = (uint8_t)fixed_iv_len;
  s->s3->tmp.new_variable_iv_len = (uint8_t)variable_iv_len;

  key_block_len = key_len + mac_secret_len + fixed_iv_len;
  key_block_len *= 2;

  ssl3_cleanup_key_block(s);

  p = (uint8_t *)OPENSSL_malloc(key_block_len);
  if (p == NULL) {
    OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE);
    goto err;
  }

  s->s3->tmp.key_block_length = key_block_len;
  s->s3->tmp.key_block = p;

  if (!tls1_generate_key_block(s, p, key_block_len)) {
    goto err;
  }

  if (!SSL_USE_EXPLICIT_IV(s) &&
      (s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0) {
    /* enable vulnerability countermeasure for CBC ciphers with known-IV
     * problem (http://www.openssl.org/~bodo/tls-cbc.txt). */
    s->s3->need_record_splitting = 1;

    if (s->session->cipher != NULL &&
        s->session->cipher->algorithm_enc == SSL_RC4) {
      s->s3->need_record_splitting = 0;
    }
  }

  ret = 1;

err:
  return ret;

cipher_unavailable_err:
  OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block,
                    SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
  return 0;
}

/* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|,
 * respectively. It returns one on success and zero on failure. */
int tls1_enc(SSL *s, int send) {
  SSL3_RECORD *rec;
  const SSL_AEAD_CTX *aead;

  if (send) {
    rec = &s->s3->wrec;
    aead = s->aead_write_ctx;
  } else {
    rec = &s->s3->rrec;
    aead = s->aead_read_ctx;
  }

  if (s->session == NULL || aead == NULL) {
    /* Handle the initial NULL cipher. */
    memmove(rec->data, rec->input, rec->length);
    rec->input = rec->data;
    return 1;
  }

  uint8_t ad[13], *seq, *in, *out, nonce[EVP_AEAD_MAX_NONCE_LENGTH];
  unsigned nonce_used;
  size_t n, ad_len;

  seq = send ? s->s3->write_sequence : s->s3->read_sequence;

  if (SSL_IS_DTLS(s)) {
    uint8_t dtlsseq[9], *p = dtlsseq;

    s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p);
    memcpy(p, &seq[2], 6);
    memcpy(ad, dtlsseq, 8);
  } else {
    int i;
    memcpy(ad, seq, 8);
    for (i = 7; i >= 0; i--) {
      ++seq[i];
      if (seq[i] != 0) {
        break;
      }
    }
  }

  ad[8] = rec->type;
  ad_len = 9;
  if (!aead->omit_version_in_ad) {
    ad[ad_len++] = (uint8_t)(s->version >> 8);
    ad[ad_len++] = (uint8_t)(s->version);
  }

  if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce)) {
    OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
  nonce_used = aead->fixed_nonce_len;

  if (send) {
    size_t len = rec->length;
    size_t eivlen = 0;
    in = rec->input;
    out = rec->data;

    uint8_t *variable_nonce = nonce + nonce_used;
    if (aead->random_variable_nonce) {
      assert(aead->variable_nonce_included_in_record);
      if (!RAND_bytes(nonce + nonce_used, aead->variable_nonce_len)) {
        return 0;
      }
    } else {
      /* When sending we use the sequence number as the variable part of the
       * nonce. */
      if (aead->variable_nonce_len != 8) {
        OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR);
        return 0;
      }
      memcpy(nonce + nonce_used, ad, aead->variable_nonce_len);
    }
    nonce_used += aead->variable_nonce_len;

    /* in do_ssl3_write, rec->input is moved forward by variable_nonce_len in
     * order to leave space for the variable nonce. Thus we can copy the
     * sequence number bytes into place without overwriting any of the
     * plaintext. */
    if (aead->variable_nonce_included_in_record) {
      memcpy(out, variable_nonce, aead->variable_nonce_len);
      len -= aead->variable_nonce_len;
      eivlen = aead->variable_nonce_len;
    }

    if (!aead->omit_length_in_ad) {
      ad[ad_len++] = len >> 8;
      ad[ad_len++] = len & 0xff;
    }

    if (!EVP_AEAD_CTX_seal(&aead->ctx, out + eivlen, &n, len + aead->tag_len,
                           nonce, nonce_used, in + eivlen, len, ad, ad_len)) {
      return 0;
    }

    if (aead->variable_nonce_included_in_record) {
      n += aead->variable_nonce_len;
    }
  } else {
    /* receive */
    size_t len = rec->length;

    if (rec->data != rec->input) {
      OPENSSL_PUT_ERROR(SSL, tls1_enc, ERR_R_INTERNAL_ERROR);
      return 0;
    }
    out = in = rec->input;

    if (len < aead->variable_nonce_len) {
      return 0;
    }
    memcpy(nonce + nonce_used,
           aead->variable_nonce_included_in_record ? in : ad,
           aead->variable_nonce_len);
    nonce_used += aead->variable_nonce_len;

    if (aead->variable_nonce_included_in_record) {
      in += aead->variable_nonce_len;
      len -= aead->variable_nonce_len;
      out += aead->variable_nonce_len;
    }

    if (!aead->omit_length_in_ad) {
      if (len < aead->tag_len) {
        return 0;
      }
      size_t plaintext_len = len - aead->tag_len;

      ad[ad_len++] = plaintext_len >> 8;
      ad[ad_len++] = plaintext_len & 0xff;
    }

    if (!EVP_AEAD_CTX_open(&aead->ctx, out, &n, rec->length, nonce, nonce_used, in,
                           len, ad, ad_len)) {
      return 0;
    }

    rec->data = rec->input = out;
  }

  rec->length = n;
  return 1;
}

int tls1_cert_verify_mac(SSL *s, int md_nid, uint8_t *out) {
  unsigned int ret;
  EVP_MD_CTX ctx, *d = NULL;
  int i;

  if (s->s3->handshake_buffer &&
      !ssl3_digest_cached_records(s, free_handshake_buffer)) {
    return 0;
  }

  for (i = 0; i < SSL_MAX_DIGEST; i++) {
    if (s->s3->handshake_dgst[i] &&
        EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) {
      d = s->s3->handshake_dgst[i];
      break;
    }
  }

  if (!d) {
    OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST);
    return 0;
  }

  EVP_MD_CTX_init(&ctx);
  EVP_MD_CTX_copy_ex(&ctx, d);
  EVP_DigestFinal_ex(&ctx, out, &ret);
  EVP_MD_CTX_cleanup(&ctx);

  return ret;
}

/* tls1_handshake_digest calculates the current handshake hash and writes it to
 * |out|, which has space for |out_len| bytes. It returns the number of bytes
 * written or -1 in the event of an error. This function works on a copy of the
 * underlying digests so can be called multiple times and prior to the final
 * update etc. */
int tls1_handshake_digest(SSL *s, uint8_t *out, size_t out_len) {
  const EVP_MD *md;
  EVP_MD_CTX ctx;
  int err = 0, len = 0;
  size_t i;
  long mask;

  EVP_MD_CTX_init(&ctx);

  for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) {
    size_t hash_size;
    unsigned int digest_len;
    EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i];

    if ((mask & ssl_get_algorithm2(s)) == 0) {
      continue;
    }

    hash_size = EVP_MD_size(md);
    if (!hdgst ||
        hash_size > out_len ||
        !EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
        !EVP_DigestFinal_ex(&ctx, out, &digest_len) ||
        digest_len != hash_size /* internal error */) {
      err = 1;
      break;
    }

    out += digest_len;
    out_len -= digest_len;
    len += digest_len;
  }

  EVP_MD_CTX_cleanup(&ctx);

  if (err != 0) {
    return -1;
  }
  return len;
}

int tls1_final_finish_mac(SSL *s, const char *str, int slen, uint8_t *out) {
  uint8_t buf[2 * EVP_MAX_MD_SIZE];
  int err = 0;
  int digests_len;

  if (s->s3->handshake_buffer &&
      !ssl3_digest_cached_records(s, free_handshake_buffer)) {
    return 0;
  }

  digests_len = tls1_handshake_digest(s, buf, sizeof(buf));
  if (digests_len < 0) {
    err = 1;
    digests_len = 0;
  }

  if (!s->enc_method->prf(s, out, 12, s->session->master_key,
                          s->session->master_key_length, str, slen, buf,
                          digests_len, NULL, 0)) {
    err = 1;
  }

  if (err) {
    return 0;
  } else {
    return 12;
  }
}

int tls1_generate_master_secret(SSL *s, uint8_t *out, const uint8_t *premaster,
                                size_t premaster_len) {
  if (s->s3->tmp.extended_master_secret) {
    uint8_t digests[2 * EVP_MAX_MD_SIZE];
    int digests_len;

    /* The master secret is based on the handshake hash just after sending the
     * ClientKeyExchange. However, we might have a client certificate to send,
     * in which case we might need different hashes for the verification and
     * thus still need the handshake buffer around. Keeping both a handshake
     * buffer *and* running hashes isn't yet supported so, when it comes to
     * calculating the Finished hash, we'll have to hash the handshake buffer
     * again. */
    if (s->s3->handshake_buffer &&
        !ssl3_digest_cached_records(s, dont_free_handshake_buffer)) {
      return 0;
    }

    digests_len = tls1_handshake_digest(s, digests, sizeof(digests));
    if (digests_len == -1) {
      return 0;
    }

    if (!s->enc_method->prf(s, out, SSL3_MASTER_SECRET_SIZE, premaster,
                            premaster_len, TLS_MD_EXTENDED_MASTER_SECRET_CONST,
                            TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, digests,
                            digests_len, NULL, 0)) {
      return 0;
    }
  } else {
    if (!s->enc_method->prf(s, out, SSL3_MASTER_SECRET_SIZE, premaster,
                            premaster_len, TLS_MD_MASTER_SECRET_CONST,
                            TLS_MD_MASTER_SECRET_CONST_SIZE,
                            s->s3->client_random, SSL3_RANDOM_SIZE,
                            s->s3->server_random, SSL3_RANDOM_SIZE)) {
      return 0;
    }
  }

  return SSL3_MASTER_SECRET_SIZE;
}

int tls1_export_keying_material(SSL *s, uint8_t *out, size_t olen,
                                const char *label, size_t llen,
                                const uint8_t *context, size_t contextlen,
                                int use_context) {
  uint8_t *val = NULL;
  size_t vallen, currentvalpos;
  int ret;

  /* construct PRF arguments we construct the PRF argument ourself rather than
   * passing separate values into the TLS PRF to ensure that the concatenation
   * of values does not create a prohibited label. */
  vallen = llen + SSL3_RANDOM_SIZE * 2;
  if (use_context) {
    vallen += 2 + contextlen;
  }

  val = OPENSSL_malloc(vallen);
  if (val == NULL) {
    goto err2;
  }

  currentvalpos = 0;
  memcpy(val + currentvalpos, (uint8_t *)label, llen);
  currentvalpos += llen;
  memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
  currentvalpos += SSL3_RANDOM_SIZE;
  memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
  currentvalpos += SSL3_RANDOM_SIZE;

  if (use_context) {
    val[currentvalpos] = (contextlen >> 8) & 0xff;
    currentvalpos++;
    val[currentvalpos] = contextlen & 0xff;
    currentvalpos++;
    if (contextlen > 0 || context != NULL) {
      memcpy(val + currentvalpos, context, contextlen);
    }
  }

  /* disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
   * label len) = 15, so size of val > max(prohibited label len) = 15 and the
   * comparisons won't have buffer overflow. */
  if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
             TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0 ||
      memcmp(val, TLS_MD_SERVER_FINISH_CONST,
             TLS_MD_SERVER_FINISH_CONST_SIZE) == 0 ||
      memcmp(val, TLS_MD_MASTER_SECRET_CONST,
             TLS_MD_MASTER_SECRET_CONST_SIZE) == 0 ||
      memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
             TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) {
    goto err1;
  }

  /* SSL_export_keying_material is not implemented for SSLv3, so passing
   * everything through the label parameter works. */
  assert(s->version != SSL3_VERSION);
  ret = s->enc_method->prf(s, out, olen, s->session->master_key,
                           s->session->master_key_length, (const char *)val,
                           vallen, NULL, 0, NULL, 0);
  goto out;

err1:
  OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material,
                    SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
  ret = 0;
  goto out;

err2:
  OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE);
  ret = 0;

out:
  if (val != NULL) {
    OPENSSL_free(val);
  }

  return ret;
}

int tls1_alert_code(int code) {
  switch (code) {
    case SSL_AD_CLOSE_NOTIFY:
      return SSL3_AD_CLOSE_NOTIFY;

    case SSL_AD_UNEXPECTED_MESSAGE:
      return SSL3_AD_UNEXPECTED_MESSAGE;

    case SSL_AD_BAD_RECORD_MAC:
      return SSL3_AD_BAD_RECORD_MAC;

    case SSL_AD_DECRYPTION_FAILED:
      return TLS1_AD_DECRYPTION_FAILED;

    case SSL_AD_RECORD_OVERFLOW:
      return TLS1_AD_RECORD_OVERFLOW;

    case SSL_AD_DECOMPRESSION_FAILURE:
      return SSL3_AD_DECOMPRESSION_FAILURE;

    case SSL_AD_HANDSHAKE_FAILURE:
      return SSL3_AD_HANDSHAKE_FAILURE;

    case SSL_AD_NO_CERTIFICATE:
      return -1;

    case SSL_AD_BAD_CERTIFICATE:
      return SSL3_AD_BAD_CERTIFICATE;

    case SSL_AD_UNSUPPORTED_CERTIFICATE:
      return SSL3_AD_UNSUPPORTED_CERTIFICATE;

    case SSL_AD_CERTIFICATE_REVOKED:
      return SSL3_AD_CERTIFICATE_REVOKED;

    case SSL_AD_CERTIFICATE_EXPIRED:
      return SSL3_AD_CERTIFICATE_EXPIRED;

    case SSL_AD_CERTIFICATE_UNKNOWN:
      return SSL3_AD_CERTIFICATE_UNKNOWN;

    case SSL_AD_ILLEGAL_PARAMETER:
      return SSL3_AD_ILLEGAL_PARAMETER;

    case SSL_AD_UNKNOWN_CA:
      return TLS1_AD_UNKNOWN_CA;

    case SSL_AD_ACCESS_DENIED:
      return TLS1_AD_ACCESS_DENIED;

    case SSL_AD_DECODE_ERROR:
      return TLS1_AD_DECODE_ERROR;

    case SSL_AD_DECRYPT_ERROR:
      return TLS1_AD_DECRYPT_ERROR;
    case SSL_AD_EXPORT_RESTRICTION:
      return TLS1_AD_EXPORT_RESTRICTION;

    case SSL_AD_PROTOCOL_VERSION:
      return TLS1_AD_PROTOCOL_VERSION;

    case SSL_AD_INSUFFICIENT_SECURITY:
      return TLS1_AD_INSUFFICIENT_SECURITY;

    case SSL_AD_INTERNAL_ERROR:
      return TLS1_AD_INTERNAL_ERROR;

    case SSL_AD_USER_CANCELLED:
      return TLS1_AD_USER_CANCELLED;

    case SSL_AD_NO_RENEGOTIATION:
      return TLS1_AD_NO_RENEGOTIATION;

    case SSL_AD_UNSUPPORTED_EXTENSION:
      return TLS1_AD_UNSUPPORTED_EXTENSION;

    case SSL_AD_CERTIFICATE_UNOBTAINABLE:
      return TLS1_AD_CERTIFICATE_UNOBTAINABLE;

    case SSL_AD_UNRECOGNIZED_NAME:
      return TLS1_AD_UNRECOGNIZED_NAME;

    case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
      return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE;

    case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
      return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE;

    case SSL_AD_UNKNOWN_PSK_IDENTITY:
      return TLS1_AD_UNKNOWN_PSK_IDENTITY;

    case SSL_AD_INAPPROPRIATE_FALLBACK:
      return SSL3_AD_INAPPROPRIATE_FALLBACK;

    default:
      return -1;
  }
}