summaryrefslogtreecommitdiffstats
path: root/src/tool/speed.cc
blob: b60db8c001d644010ecef61aeed9e8708ec4136d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/* Copyright (c) 2014, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <string>
#include <functional>
#include <memory>
#include <vector>

#include <stdint.h>
#include <string.h>
#include <time.h>

#include <openssl/aead.h>
#include <openssl/bio.h>
#include <openssl/digest.h>
#include <openssl/obj.h>
#include <openssl/rsa.h>

#if defined(OPENSSL_WINDOWS)
#pragma warning(push, 3)
#include <windows.h>
#pragma warning(pop)
#elif defined(OPENSSL_APPLE)
#include <sys/time.h>
#endif


extern "C" {
// These values are DER encoded, RSA private keys.
extern const uint8_t kDERRSAPrivate2048[];
extern size_t kDERRSAPrivate2048Len;
extern const uint8_t kDERRSAPrivate4096[];
extern size_t kDERRSAPrivate4096Len;
}

// TimeResults represents the results of benchmarking a function.
struct TimeResults {
  // num_calls is the number of function calls done in the time period.
  unsigned num_calls;
  // us is the number of microseconds that elapsed in the time period.
  unsigned us;

  void Print(const std::string &description) {
    printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
           description.c_str(), us,
           (static_cast<double>(num_calls) / us) * 1000000);
  }

  void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
    printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
           num_calls, description.c_str(), us,
           (static_cast<double>(num_calls) / us) * 1000000,
           static_cast<double>(bytes_per_call * num_calls) / us);
  }
};

#if defined(OPENSSL_WINDOWS)
static uint64_t time_now() { return GetTickCount64() * 1000; }
#elif defined(OPENSSL_APPLE)
static uint64_t time_now() {
  struct timeval tv;
  uint64_t ret;

  gettimeofday(&tv, NULL);
  ret = tv.tv_sec;
  ret *= 1000000;
  ret += tv.tv_usec;
  return ret;
}
#else
static uint64_t time_now() {
  struct timespec ts;
  clock_gettime(CLOCK_MONOTONIC, &ts);

  uint64_t ret = ts.tv_sec;
  ret *= 1000000;
  ret += ts.tv_nsec / 1000;
  return ret;
}
#endif

static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
  // kTotalMS is the total amount of time that we'll aim to measure a function
  // for.
  static const uint64_t kTotalUS = 3000000;
  uint64_t start = time_now(), now, delta;
  unsigned done = 0, iterations_between_time_checks;

  if (!func()) {
    return false;
  }
  now = time_now();
  delta = now - start;
  if (delta == 0) {
    iterations_between_time_checks = 250;
  } else {
    // Aim for about 100ms between time checks.
    iterations_between_time_checks =
        static_cast<double>(100000) / static_cast<double>(delta);
    if (iterations_between_time_checks > 1000) {
      iterations_between_time_checks = 1000;
    } else if (iterations_between_time_checks < 1) {
      iterations_between_time_checks = 1;
    }
  }

  for (;;) {
    for (unsigned i = 0; i < iterations_between_time_checks; i++) {
      if (!func()) {
        return false;
      }
      done++;
    }

    now = time_now();
    if (now - start > kTotalUS) {
      break;
    }
  }

  results->us = now - start;
  results->num_calls = done;
  return true;
}

static bool SpeedRSA(const std::string& key_name, RSA *key) {
  TimeResults results;

  std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
  const uint8_t fake_sha256_hash[32] = {0};
  unsigned sig_len;

  if (!TimeFunction(&results,
                    [key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
        return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
                        sig.get(), &sig_len, key);
      })) {
    fprintf(stderr, "RSA_sign failed.\n");
    BIO_print_errors_fp(stderr);
    return false;
  }
  results.Print(key_name + " signing");

  if (!TimeFunction(&results,
                    [key, &fake_sha256_hash, &sig, sig_len]() -> bool {
        return RSA_verify(NID_sha256, fake_sha256_hash,
                          sizeof(fake_sha256_hash), sig.get(), sig_len, key);
      })) {
    fprintf(stderr, "RSA_verify failed.\n");
    BIO_print_errors_fp(stderr);
    return false;
  }
  results.Print(key_name + " verify");

  return true;
}

template<typename T>
struct free_functor {
  void operator()(T* ptr) {
    free(ptr);
  }
};

static uint8_t *align(uint8_t *in, unsigned alignment) {
  return reinterpret_cast<uint8_t *>(
      (reinterpret_cast<uintptr_t>(in) + alignment) & ~(alignment - 1));
}

static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
                           size_t chunk_len, size_t ad_len) {
  static const unsigned kAlignment = 16;

  EVP_AEAD_CTX ctx;
  const size_t key_len = EVP_AEAD_key_length(aead);
  const size_t nonce_len = EVP_AEAD_nonce_length(aead);
  const size_t overhead_len = EVP_AEAD_max_overhead(aead);

  std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
  memset(key.get(), 0, key_len);
  std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
  memset(nonce.get(), 0, nonce_len);
  std::unique_ptr<uint8_t, free_functor<uint8_t>> in_storage(
      new uint8_t[chunk_len + kAlignment]);
  std::unique_ptr<uint8_t, free_functor<uint8_t>> out_storage(
      new uint8_t[chunk_len + overhead_len + kAlignment]);
  std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
  memset(ad.get(), 0, ad_len);

  uint8_t *const in = align(in_storage.get(), kAlignment);
  memset(in, 0, chunk_len);
  uint8_t *const out = align(out_storage.get(), kAlignment);
  memset(out, 0, chunk_len + overhead_len);

  if (!EVP_AEAD_CTX_init(&ctx, aead, key.get(), key_len,
                         EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) {
    fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
    BIO_print_errors_fp(stderr);
    return false;
  }

  TimeResults results;
  if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in,
                               out, &ctx, &nonce, &ad]() -> bool {
        size_t out_len;

        return EVP_AEAD_CTX_seal(
            &ctx, out, &out_len, chunk_len + overhead_len, nonce.get(),
            nonce_len, in, chunk_len, ad.get(), ad_len);
      })) {
    fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
    BIO_print_errors_fp(stderr);
    return false;
  }

  results.PrintWithBytes(name + " seal", chunk_len);

  EVP_AEAD_CTX_cleanup(&ctx);

  return true;
}

static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
                      size_t ad_len) {
  return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len) &&
         SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len) &&
         SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len);
}

static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
                           size_t chunk_len) {
  EVP_MD_CTX *ctx = EVP_MD_CTX_create();
  uint8_t scratch[8192];

  if (chunk_len > sizeof(scratch)) {
    return false;
  }

  TimeResults results;
  if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
        uint8_t digest[EVP_MAX_MD_SIZE];
        unsigned int md_len;

        return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
               EVP_DigestUpdate(ctx, scratch, chunk_len) &&
               EVP_DigestFinal_ex(ctx, digest, &md_len);
      })) {
    fprintf(stderr, "EVP_DigestInit_ex failed.\n");
    BIO_print_errors_fp(stderr);
    return false;
  }

  results.PrintWithBytes(name, chunk_len);

  EVP_MD_CTX_destroy(ctx);

  return true;
}
static bool SpeedHash(const EVP_MD *md, const std::string &name) {
  return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
         SpeedHashChunk(md, name + " (256 bytes)", 256) &&
         SpeedHashChunk(md, name + " (8192 bytes)", 8192);
}

bool Speed(const std::vector<std::string> &args) {
  const uint8_t *inp;

  RSA *key = NULL;
  inp = kDERRSAPrivate2048;
  if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) {
    fprintf(stderr, "Failed to parse RSA key.\n");
    BIO_print_errors_fp(stderr);
    return false;
  }

  if (!SpeedRSA("RSA 2048", key)) {
    return false;
  }

  RSA_free(key);
  key = NULL;

  inp = kDERRSAPrivate4096;
  if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) {
    fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
    BIO_print_errors_fp(stderr);
    return 1;
  }

  if (!SpeedRSA("RSA 4096", key)) {
    return false;
  }

  RSA_free(key);

  // kTLSADLen is the number of bytes of additional data that TLS passes to
  // AEADs.
  static const size_t kTLSADLen = 13;
  // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
  // These are AEADs that weren't originally defined as AEADs, but which we use
  // via the AEAD interface. In order for that to work, they have some TLS
  // knowledge in them and construct a couple of the AD bytes internally.
  static const size_t kLegacyADLen = kTLSADLen - 2;

  if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen) ||
      !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen) ||
      !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen) ||
      !SpeedAEAD(EVP_aead_rc4_md5_tls(), "RC4-MD5", kLegacyADLen) ||
      !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen) ||
      !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen) ||
      !SpeedHash(EVP_sha1(), "SHA-1") ||
      !SpeedHash(EVP_sha256(), "SHA-256") ||
      !SpeedHash(EVP_sha512(), "SHA-512")) {
    return false;
  }

  return 0;
}