aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2004-10-11 05:54:41 +0000
committerChris Lattner <sabre@nondot.org>2004-10-11 05:54:41 +0000
commit30ba5690cf7a6f4db8913463d03f239f82d17440 (patch)
tree0a82e8b945db161b307ea8f3439355fae354665a
parentc58cf5b921b8fc57fde7322d6545e8fc85798a48 (diff)
downloadexternal_llvm-30ba5690cf7a6f4db8913463d03f239f82d17440.zip
external_llvm-30ba5690cf7a6f4db8913463d03f239f82d17440.tar.gz
external_llvm-30ba5690cf7a6f4db8913463d03f239f82d17440.tar.bz2
This patch implements two things (sorry).
First, it allows SRA of globals that have embedded arrays, implementing GlobalOpt/globalsra-partial.llx. This comes up infrequently, but does allow, for example, deleting several stores to dead parts of globals in dhrystone. Second, this implements GlobalOpt/malloc-promote-*.llx, which is the following nifty transformation: Basically if a global pointer is initialized with malloc, and we can tell that the program won't notice, we transform this: struct foo *FooPtr; ... FooPtr = malloc(sizeof(struct foo)); ... FooPtr->A FooPtr->B Into: struct foo FooPtrBody; ... FooPtrBody.A FooPtrBody.B This comes up occasionally, for example, the 'disp' global in 183.equake (where the xform speeds the CBE version of the program up from 56.16s to 52.40s (7%) on apoc), and the 'desired_accept', 'fixLRBT', 'macroArray', & 'key_queue' globals in 300.twolf (speeding it up from 22.29s to 21.55s (3.4%)). The nice thing about this xform is that it exposes the resulting global to global variable optimization and makes alias analysis easier in addition to eliminating a few loads. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16916 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/IPO/GlobalOpt.cpp207
1 files changed, 182 insertions, 25 deletions
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
index fa1d3f3..dc8832c 100644
--- a/lib/Transforms/IPO/GlobalOpt.cpp
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -21,6 +21,8 @@
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <set>
@@ -36,7 +38,14 @@ namespace {
Statistic<> NumGlobUses ("globalopt", "Number of global uses devirtualized");
struct GlobalOpt : public ModulePass {
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetData>();
+ }
+
bool runOnModule(Module &M);
+
+ private:
+ bool ProcessInternalGlobal(GlobalVariable *GV, Module::giterator &GVI);
};
RegisterOpt<GlobalOpt> X("globalopt", "Global Variable Optimizer");
@@ -161,10 +170,22 @@ static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
}
} else if (I->getOpcode() == Instruction::GetElementPtr) {
if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
- // Theoretically we could SRA globals with GEP insts if all indexes are
- // constants. In practice, these GEPs would already be constant exprs
- // if that was the case though.
- GS.isNotSuitableForSRA = true;
+
+ // If the first two indices are constants, this can be SRA'd.
+ if (isa<GlobalVariable>(I->getOperand(0))) {
+ if (I->getNumOperands() < 3 || !isa<Constant>(I->getOperand(1)) ||
+ !cast<Constant>(I->getOperand(1))->isNullValue() ||
+ !isa<ConstantInt>(I->getOperand(2)))
+ GS.isNotSuitableForSRA = true;
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I->getOperand(0))){
+ if (CE->getOpcode() != Instruction::GetElementPtr ||
+ CE->getNumOperands() < 3 || I->getNumOperands() < 2 ||
+ !isa<Constant>(I->getOperand(0)) ||
+ !cast<Constant>(I->getOperand(0))->isNullValue())
+ GS.isNotSuitableForSRA = true;
+ } else {
+ GS.isNotSuitableForSRA = true;
+ }
} else if (I->getOpcode() == Instruction::Select) {
if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
GS.isNotSuitableForSRA = true;
@@ -323,7 +344,7 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
else
assert(0 && "Unknown aggregate sequential type!");
- if (NumElements > 16) return 0; // It's not worth it.
+ if (NumElements > 16 && GV->use_size() > 16) return 0; // It's not worth it.
NewGlobals.reserve(NumElements);
for (unsigned i = 0, e = NumElements; i != e; ++i) {
Constant *In = getAggregateConstantElement(Init,
@@ -341,38 +362,66 @@ static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
if (NewGlobals.empty())
return 0;
+ DEBUG(std::cerr << "PERFORMING GLOBAL SRA ON: " << *GV);
+
Constant *NullInt = Constant::getNullValue(Type::IntTy);
// Loop over all of the uses of the global, replacing the constantexpr geps,
// with smaller constantexpr geps or direct references.
while (!GV->use_empty()) {
- ConstantExpr *CE = cast<ConstantExpr>(GV->use_back());
- assert(CE->getOpcode() == Instruction::GetElementPtr &&
- "NonGEP CE's are not SRAable!");
+ User *GEP = GV->use_back();
+ assert(((isa<ConstantExpr>(GEP) &&
+ cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
+ isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
+
// Ignore the 1th operand, which has to be zero or else the program is quite
// broken (undefined). Get the 2nd operand, which is the structure or array
// index.
- unsigned Val = cast<ConstantInt>(CE->getOperand(2))->getRawValue();
+ unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
- Constant *NewPtr = NewGlobals[Val];
+ Value *NewPtr = NewGlobals[Val];
// Form a shorter GEP if needed.
- if (CE->getNumOperands() > 3) {
- std::vector<Constant*> Idxs;
- Idxs.push_back(NullInt);
- for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
- Idxs.push_back(CE->getOperand(i));
- NewPtr = ConstantExpr::getGetElementPtr(NewPtr, Idxs);
- }
- CE->replaceAllUsesWith(NewPtr);
- CE->destroyConstant();
+ if (GEP->getNumOperands() > 3)
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
+ std::vector<Constant*> Idxs;
+ Idxs.push_back(NullInt);
+ for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
+ Idxs.push_back(CE->getOperand(i));
+ NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
+ } else {
+ GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
+ std::vector<Value*> Idxs;
+ Idxs.push_back(NullInt);
+ for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
+ Idxs.push_back(GEPI->getOperand(i));
+ NewPtr = new GetElementPtrInst(NewPtr, Idxs,
+ GEPI->getName()+"."+utostr(Val), GEPI);
+ }
+ GEP->replaceAllUsesWith(NewPtr);
+
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
+ GEPI->getParent()->getInstList().erase(GEPI);
+ else
+ cast<ConstantExpr>(GEP)->destroyConstant();
}
// Delete the old global, now that it is dead.
Globals.erase(GV);
++NumSRA;
- return NewGlobals[0];
+
+ // Loop over the new globals array deleting any globals that are obviously
+ // dead. This can arise due to scalarization of a structure or an array that
+ // has elements that are dead.
+ unsigned FirstGlobal = 0;
+ for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
+ if (NewGlobals[i]->use_empty()) {
+ Globals.erase(NewGlobals[i]);
+ if (FirstGlobal == i) ++FirstGlobal;
+ }
+
+ return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
}
/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
@@ -535,10 +584,98 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
return Changed;
}
+/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
+/// instructions that are foldable.
+static void ConstantPropUsersOf(Value *V) {
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
+ if (Instruction *I = dyn_cast<Instruction>(*UI++))
+ if (Constant *NewC = ConstantFoldInstruction(I)) {
+ I->replaceAllUsesWith(NewC);
+
+ // Back up UI to avoid invalidating it!
+ bool AtBegin = false;
+ if (UI == V->use_begin())
+ AtBegin = true;
+ else
+ --UI;
+ I->getParent()->getInstList().erase(I);
+ if (AtBegin)
+ UI = V->use_begin();
+ else
+ ++UI;
+ }
+}
+
+/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
+/// variable, and transforms the program as if it always contained the result of
+/// the specified malloc. Because it is always the result of the specified
+/// malloc, there is no reason to actually DO the malloc. Instead, turn the
+/// malloc into a global, and any laods of GV as uses of the new global.
+static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
+ MallocInst *MI) {
+ DEBUG(std::cerr << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " <<*MI);
+ ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
+
+ if (NElements->getRawValue() != 1) {
+ // If we have an array allocation, transform it to a single element
+ // allocation to make the code below simpler.
+ Type *NewTy = ArrayType::get(MI->getAllocatedType(),
+ NElements->getRawValue());
+ MallocInst *NewMI =
+ new MallocInst(NewTy, Constant::getNullValue(Type::UIntTy),
+ MI->getName(), MI);
+ std::vector<Value*> Indices;
+ Indices.push_back(Constant::getNullValue(Type::IntTy));
+ Indices.push_back(Indices[0]);
+ Value *NewGEP = new GetElementPtrInst(NewMI, Indices,
+ NewMI->getName()+".el0", MI);
+ MI->replaceAllUsesWith(NewGEP);
+ MI->getParent()->getInstList().erase(MI);
+ MI = NewMI;
+ }
+
+ // Create the new global variable.
+ Constant *Init = Constant::getNullValue(MI->getAllocatedType());
+ GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
+ GlobalValue::InternalLinkage, Init,
+ GV->getName()+".body");
+ GV->getParent()->getGlobalList().insert(GV, NewGV);
+
+ // Anything that used the malloc now uses the global directly.
+ MI->replaceAllUsesWith(NewGV);
+ MI->getParent()->getInstList().erase(MI);
+
+ Constant *RepValue = NewGV;
+ if (NewGV->getType() != GV->getType()->getElementType())
+ RepValue = ConstantExpr::getCast(RepValue, GV->getType()->getElementType());
+
+ // Loop over all uses of GV, processing them in turn.
+ while (!GV->use_empty())
+ if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
+ LI->replaceAllUsesWith(RepValue);
+ LI->getParent()->getInstList().erase(LI);
+ } else {
+ StoreInst *SI = cast<StoreInst>(GV->use_back());
+ SI->getParent()->getInstList().erase(SI);
+ }
+
+ // Now the GV is dead, nuke it.
+ GV->getParent()->getGlobalList().erase(GV);
+
+ // To further other optimizations, loop over all users of NewGV and try to
+ // constant prop them. This will promote GEP instructions with constant
+ // indices into GEP constant-exprs, which will allow global-opt to hack on it.
+ ConstantPropUsersOf(NewGV);
+ if (RepValue != NewGV)
+ ConstantPropUsersOf(RepValue);
+
+ return NewGV;
+}
// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
// that only one value (besides its initializer) is ever stored to the global.
-static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal) {
+static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
+ Module::giterator &GVI, TargetData &TD) {
if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
StoredOnceVal = CI->getOperand(0);
else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
@@ -567,15 +704,35 @@ static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal) {
// Optimize away any trapping uses of the loaded value.
if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
return true;
+ } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
+ // If we have a global that is only initialized with a fixed size malloc,
+ // and if all users of the malloc trap, and if the malloc'd address is not
+ // put anywhere else, transform the program to use global memory instead
+ // of malloc'd memory. This eliminates dynamic allocation (good) and
+ // exposes the resultant global to further GlobalOpt (even better). Note
+ // that we restrict this transformation to only working on small
+ // allocations (2048 bytes currently), as we don't want to introduce a 16M
+ // global or something.
+ if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize()))
+ if (MI->getAllocatedType()->isSized() &&
+ NElements->getRawValue()*
+ TD.getTypeSize(MI->getAllocatedType()) < 2048 &&
+ AllUsesOfLoadedValueWillTrapIfNull(GV)) {
+ // FIXME: do more correctness checking to make sure the result of the
+ // malloc isn't squirrelled away somewhere.
+ GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
+ return true;
+ }
}
- //if (isa<MallocInst>(StoredOnceValue))
}
+
return false;
}
/// ProcessInternalGlobal - Analyze the specified global variable and optimize
/// it if possible. If we make a change, return true.
-static bool ProcessInternalGlobal(GlobalVariable *GV, Module::giterator &GVI) {
+bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
+ Module::giterator &GVI) {
std::set<PHINode*> PHIUsers;
GlobalStatus GS;
PHIUsers.clear();
@@ -625,7 +782,6 @@ static bool ProcessInternalGlobal(GlobalVariable *GV, Module::giterator &GVI) {
return true;
} else if (!GS.isNotSuitableForSRA &&
!GV->getInitializer()->getType()->isFirstClassType()) {
- DEBUG(std::cerr << "PERFORMING GLOBAL SRA ON: " << *GV);
if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
GVI = FirstNewGV; // Don't skip the newly produced globals!
return true;
@@ -633,7 +789,8 @@ static bool ProcessInternalGlobal(GlobalVariable *GV, Module::giterator &GVI) {
} else if (GS.StoredType == GlobalStatus::isStoredOnce) {
// Try to optimize globals based on the knowledge that only one value
// (besides its initializer) is ever stored to the global.
- if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue))
+ if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
+ getAnalysis<TargetData>()))
return true;
}
}