aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2010-01-05 07:32:13 +0000
committerChris Lattner <sabre@nondot.org>2010-01-05 07:32:13 +0000
commit753a2b464d0628231bd3dce645edd05dfbaa3a06 (patch)
treeea28203d09ad449c718fbf60a962a1652ccd7405
parent16507fe9fd3518dc89bea4c6e7f98893ce89b2d1 (diff)
downloadexternal_llvm-753a2b464d0628231bd3dce645edd05dfbaa3a06.zip
external_llvm-753a2b464d0628231bd3dce645edd05dfbaa3a06.tar.gz
external_llvm-753a2b464d0628231bd3dce645edd05dfbaa3a06.tar.bz2
split call handling out to InstCombineCalls.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92707 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/InstCombine/CMakeLists.txt1
-rw-r--r--lib/Transforms/InstCombine/InstCombineCalls.cpp1130
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp1112
3 files changed, 1133 insertions, 1110 deletions
diff --git a/lib/Transforms/InstCombine/CMakeLists.txt b/lib/Transforms/InstCombine/CMakeLists.txt
index 1e65942..142b462 100644
--- a/lib/Transforms/InstCombine/CMakeLists.txt
+++ b/lib/Transforms/InstCombine/CMakeLists.txt
@@ -1,6 +1,7 @@
add_llvm_library(LLVMInstCombine
InstructionCombining.cpp
InstCombineAddSub.cpp
+ InstCombineCalls.cpp
InstCombineCasts.cpp
InstCombineCompares.cpp
InstCombineLoadStoreAlloca.cpp
diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp
new file mode 100644
index 0000000..da54659
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -0,0 +1,1130 @@
+//===- InstCombineCalls.cpp -----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitCall and visitInvoke functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+using namespace llvm;
+
+/// getPromotedType - Return the specified type promoted as it would be to pass
+/// though a va_arg area.
+static const Type *getPromotedType(const Type *Ty) {
+ if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
+ if (ITy->getBitWidth() < 32)
+ return Type::getInt32Ty(Ty->getContext());
+ }
+ return Ty;
+}
+
+/// EnforceKnownAlignment - If the specified pointer points to an object that
+/// we control, modify the object's alignment to PrefAlign. This isn't
+/// often possible though. If alignment is important, a more reliable approach
+/// is to simply align all global variables and allocation instructions to
+/// their preferred alignment from the beginning.
+///
+static unsigned EnforceKnownAlignment(Value *V,
+ unsigned Align, unsigned PrefAlign) {
+
+ User *U = dyn_cast<User>(V);
+ if (!U) return Align;
+
+ switch (Operator::getOpcode(U)) {
+ default: break;
+ case Instruction::BitCast:
+ return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
+ case Instruction::GetElementPtr: {
+ // If all indexes are zero, it is just the alignment of the base pointer.
+ bool AllZeroOperands = true;
+ for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
+ if (!isa<Constant>(*i) ||
+ !cast<Constant>(*i)->isNullValue()) {
+ AllZeroOperands = false;
+ break;
+ }
+
+ if (AllZeroOperands) {
+ // Treat this like a bitcast.
+ return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
+ }
+ break;
+ }
+ }
+
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // If there is a large requested alignment and we can, bump up the alignment
+ // of the global.
+ if (!GV->isDeclaration()) {
+ if (GV->getAlignment() >= PrefAlign)
+ Align = GV->getAlignment();
+ else {
+ GV->setAlignment(PrefAlign);
+ Align = PrefAlign;
+ }
+ }
+ } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ // If there is a requested alignment and if this is an alloca, round up.
+ if (AI->getAlignment() >= PrefAlign)
+ Align = AI->getAlignment();
+ else {
+ AI->setAlignment(PrefAlign);
+ Align = PrefAlign;
+ }
+ }
+
+ return Align;
+}
+
+/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
+/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
+/// and it is more than the alignment of the ultimate object, see if we can
+/// increase the alignment of the ultimate object, making this check succeed.
+unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
+ unsigned PrefAlign) {
+ unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
+ sizeof(PrefAlign) * CHAR_BIT;
+ APInt Mask = APInt::getAllOnesValue(BitWidth);
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
+ unsigned TrailZ = KnownZero.countTrailingOnes();
+ unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
+
+ if (PrefAlign > Align)
+ Align = EnforceKnownAlignment(V, Align, PrefAlign);
+
+ // We don't need to make any adjustment.
+ return Align;
+}
+
+Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
+ unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
+ unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
+ unsigned MinAlign = std::min(DstAlign, SrcAlign);
+ unsigned CopyAlign = MI->getAlignment();
+
+ if (CopyAlign < MinAlign) {
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ MinAlign, false));
+ return MI;
+ }
+
+ // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
+ // load/store.
+ ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
+ if (MemOpLength == 0) return 0;
+
+ // Source and destination pointer types are always "i8*" for intrinsic. See
+ // if the size is something we can handle with a single primitive load/store.
+ // A single load+store correctly handles overlapping memory in the memmove
+ // case.
+ unsigned Size = MemOpLength->getZExtValue();
+ if (Size == 0) return MI; // Delete this mem transfer.
+
+ if (Size > 8 || (Size&(Size-1)))
+ return 0; // If not 1/2/4/8 bytes, exit.
+
+ // Use an integer load+store unless we can find something better.
+ Type *NewPtrTy =
+ PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
+
+ // Memcpy forces the use of i8* for the source and destination. That means
+ // that if you're using memcpy to move one double around, you'll get a cast
+ // from double* to i8*. We'd much rather use a double load+store rather than
+ // an i64 load+store, here because this improves the odds that the source or
+ // dest address will be promotable. See if we can find a better type than the
+ // integer datatype.
+ Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
+ if (StrippedDest != MI->getOperand(1)) {
+ const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
+ ->getElementType();
+ if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
+ // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
+ // down through these levels if so.
+ while (!SrcETy->isSingleValueType()) {
+ if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
+ if (STy->getNumElements() == 1)
+ SrcETy = STy->getElementType(0);
+ else
+ break;
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
+ if (ATy->getNumElements() == 1)
+ SrcETy = ATy->getElementType();
+ else
+ break;
+ } else
+ break;
+ }
+
+ if (SrcETy->isSingleValueType())
+ NewPtrTy = PointerType::getUnqual(SrcETy);
+ }
+ }
+
+
+ // If the memcpy/memmove provides better alignment info than we can
+ // infer, use it.
+ SrcAlign = std::max(SrcAlign, CopyAlign);
+ DstAlign = std::max(DstAlign, CopyAlign);
+
+ Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
+ Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
+ Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
+ InsertNewInstBefore(L, *MI);
+ InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
+
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
+ return MI;
+}
+
+Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
+ unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
+ if (MI->getAlignment() < Alignment) {
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ Alignment, false));
+ return MI;
+ }
+
+ // Extract the length and alignment and fill if they are constant.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
+ ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
+ if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(MI->getContext()))
+ return 0;
+ uint64_t Len = LenC->getZExtValue();
+ Alignment = MI->getAlignment();
+
+ // If the length is zero, this is a no-op
+ if (Len == 0) return MI; // memset(d,c,0,a) -> noop
+
+ // memset(s,c,n) -> store s, c (for n=1,2,4,8)
+ if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
+ const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
+
+ Value *Dest = MI->getDest();
+ Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
+
+ // Alignment 0 is identity for alignment 1 for memset, but not store.
+ if (Alignment == 0) Alignment = 1;
+
+ // Extract the fill value and store.
+ uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
+ InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
+ Dest, false, Alignment), *MI);
+
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setLength(Constant::getNullValue(LenC->getType()));
+ return MI;
+ }
+
+ return 0;
+}
+
+
+/// visitCallInst - CallInst simplification. This mostly only handles folding
+/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
+/// the heavy lifting.
+///
+Instruction *InstCombiner::visitCallInst(CallInst &CI) {
+ if (isFreeCall(&CI))
+ return visitFree(CI);
+
+ // If the caller function is nounwind, mark the call as nounwind, even if the
+ // callee isn't.
+ if (CI.getParent()->getParent()->doesNotThrow() &&
+ !CI.doesNotThrow()) {
+ CI.setDoesNotThrow();
+ return &CI;
+ }
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
+ if (!II) return visitCallSite(&CI);
+
+ // Intrinsics cannot occur in an invoke, so handle them here instead of in
+ // visitCallSite.
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
+ bool Changed = false;
+
+ // memmove/cpy/set of zero bytes is a noop.
+ if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
+ if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
+ if (CI->getZExtValue() == 1) {
+ // Replace the instruction with just byte operations. We would
+ // transform other cases to loads/stores, but we don't know if
+ // alignment is sufficient.
+ }
+ }
+
+ // If we have a memmove and the source operation is a constant global,
+ // then the source and dest pointers can't alias, so we can change this
+ // into a call to memcpy.
+ if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
+ if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
+ if (GVSrc->isConstant()) {
+ Module *M = CI.getParent()->getParent()->getParent();
+ Intrinsic::ID MemCpyID = Intrinsic::memcpy;
+ const Type *Tys[1];
+ Tys[0] = CI.getOperand(3)->getType();
+ CI.setOperand(0,
+ Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
+ Changed = true;
+ }
+ }
+
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
+ // memmove(x,x,size) -> noop.
+ if (MTI->getSource() == MTI->getDest())
+ return EraseInstFromFunction(CI);
+ }
+
+ // If we can determine a pointer alignment that is bigger than currently
+ // set, update the alignment.
+ if (isa<MemTransferInst>(MI)) {
+ if (Instruction *I = SimplifyMemTransfer(MI))
+ return I;
+ } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
+ if (Instruction *I = SimplifyMemSet(MSI))
+ return I;
+ }
+
+ if (Changed) return II;
+ }
+
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::bswap:
+ // bswap(bswap(x)) -> x
+ if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
+ if (Operand->getIntrinsicID() == Intrinsic::bswap)
+ return ReplaceInstUsesWith(CI, Operand->getOperand(1));
+
+ // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
+ if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
+ if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
+ if (Operand->getIntrinsicID() == Intrinsic::bswap) {
+ unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
+ TI->getType()->getPrimitiveSizeInBits();
+ Value *CV = ConstantInt::get(Operand->getType(), C);
+ Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
+ return new TruncInst(V, TI->getType());
+ }
+ }
+
+ break;
+ case Intrinsic::powi:
+ if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // powi(x, 0) -> 1.0
+ if (Power->isZero())
+ return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
+ // powi(x, 1) -> x
+ if (Power->isOne())
+ return ReplaceInstUsesWith(CI, II->getOperand(1));
+ // powi(x, -1) -> 1/x
+ if (Power->isAllOnesValue())
+ return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
+ II->getOperand(1));
+ }
+ break;
+ case Intrinsic::cttz: {
+ // If all bits below the first known one are known zero,
+ // this value is constant.
+ const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
+ KnownZero, KnownOne);
+ unsigned TrailingZeros = KnownOne.countTrailingZeros();
+ APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
+ if ((Mask & KnownZero) == Mask)
+ return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
+ APInt(BitWidth, TrailingZeros)));
+
+ }
+ break;
+ case Intrinsic::ctlz: {
+ // If all bits above the first known one are known zero,
+ // this value is constant.
+ const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
+ KnownZero, KnownOne);
+ unsigned LeadingZeros = KnownOne.countLeadingZeros();
+ APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
+ if ((Mask & KnownZero) == Mask)
+ return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
+ APInt(BitWidth, LeadingZeros)));
+
+ }
+ break;
+ case Intrinsic::uadd_with_overflow: {
+ Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
+ const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt Mask = APInt::getSignBit(BitWidth);
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+ bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
+ bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
+
+ if (LHSKnownNegative || LHSKnownPositive) {
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+ bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
+ bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
+ if (LHSKnownNegative && RHSKnownNegative) {
+ // The sign bit is set in both cases: this MUST overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
+ Worklist.Add(Add);
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, Add, 0);
+ }
+
+ if (LHSKnownPositive && RHSKnownPositive) {
+ // The sign bit is clear in both cases: this CANNOT overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
+ Worklist.Add(Add);
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, Add, 0);
+ }
+ }
+ }
+ // FALL THROUGH uadd into sadd
+ case Intrinsic::sadd_with_overflow:
+ // Canonicalize constants into the RHS.
+ if (isa<Constant>(II->getOperand(1)) &&
+ !isa<Constant>(II->getOperand(2))) {
+ Value *LHS = II->getOperand(1);
+ II->setOperand(1, II->getOperand(2));
+ II->setOperand(2, LHS);
+ return II;
+ }
+
+ // X + undef -> undef
+ if (isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X + 0 -> {X, false}
+ if (RHS->isZero()) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(0)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ // undef - X -> undef
+ // X - undef -> undef
+ if (isa<UndefValue>(II->getOperand(1)) ||
+ isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X - 0 -> {X, false}
+ if (RHS->isZero()) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(1)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ // Canonicalize constants into the RHS.
+ if (isa<Constant>(II->getOperand(1)) &&
+ !isa<Constant>(II->getOperand(2))) {
+ Value *LHS = II->getOperand(1);
+ II->setOperand(1, II->getOperand(2));
+ II->setOperand(2, LHS);
+ return II;
+ }
+
+ // X * undef -> undef
+ if (isa<UndefValue>(II->getOperand(2)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
+ // X*0 -> {0, false}
+ if (RHSI->isZero())
+ return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
+
+ // X * 1 -> {X, false}
+ if (RHSI->equalsInt(1)) {
+ Constant *V[] = {
+ UndefValue::get(II->getOperand(1)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
+ return InsertValueInst::Create(Struct, II->getOperand(1), 0);
+ }
+ }
+ break;
+ case Intrinsic::ppc_altivec_lvx:
+ case Intrinsic::ppc_altivec_lvxl:
+ case Intrinsic::x86_sse_loadu_ps:
+ case Intrinsic::x86_sse2_loadu_pd:
+ case Intrinsic::x86_sse2_loadu_dq:
+ // Turn PPC lvx -> load if the pointer is known aligned.
+ // Turn X86 loadups -> load if the pointer is known aligned.
+ if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
+ PointerType::getUnqual(II->getType()));
+ return new LoadInst(Ptr);
+ }
+ break;
+ case Intrinsic::ppc_altivec_stvx:
+ case Intrinsic::ppc_altivec_stvxl:
+ // Turn stvx -> store if the pointer is known aligned.
+ if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
+ const Type *OpPtrTy =
+ PointerType::getUnqual(II->getOperand(1)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
+ return new StoreInst(II->getOperand(1), Ptr);
+ }
+ break;
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ // Turn X86 storeu -> store if the pointer is known aligned.
+ if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
+ const Type *OpPtrTy =
+ PointerType::getUnqual(II->getOperand(2)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
+ return new StoreInst(II->getOperand(2), Ptr);
+ }
+ break;
+
+ case Intrinsic::x86_sse_cvttss2si: {
+ // These intrinsics only demands the 0th element of its input vector. If
+ // we can simplify the input based on that, do so now.
+ unsigned VWidth =
+ cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
+ APInt DemandedElts(VWidth, 1);
+ APInt UndefElts(VWidth, 0);
+ if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
+ UndefElts)) {
+ II->setOperand(1, V);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::ppc_altivec_vperm:
+ // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
+ if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
+ assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
+
+ // Check that all of the elements are integer constants or undefs.
+ bool AllEltsOk = true;
+ for (unsigned i = 0; i != 16; ++i) {
+ if (!isa<ConstantInt>(Mask->getOperand(i)) &&
+ !isa<UndefValue>(Mask->getOperand(i))) {
+ AllEltsOk = false;
+ break;
+ }
+ }
+
+ if (AllEltsOk) {
+ // Cast the input vectors to byte vectors.
+ Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
+ Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
+ Value *Result = UndefValue::get(Op0->getType());
+
+ // Only extract each element once.
+ Value *ExtractedElts[32];
+ memset(ExtractedElts, 0, sizeof(ExtractedElts));
+
+ for (unsigned i = 0; i != 16; ++i) {
+ if (isa<UndefValue>(Mask->getOperand(i)))
+ continue;
+ unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
+ Idx &= 31; // Match the hardware behavior.
+
+ if (ExtractedElts[Idx] == 0) {
+ ExtractedElts[Idx] =
+ Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
+ ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ Idx&15, false), "tmp");
+ }
+
+ // Insert this value into the result vector.
+ Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
+ ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ i, false), "tmp");
+ }
+ return CastInst::Create(Instruction::BitCast, Result, CI.getType());
+ }
+ }
+ break;
+
+ case Intrinsic::stackrestore: {
+ // If the save is right next to the restore, remove the restore. This can
+ // happen when variable allocas are DCE'd.
+ if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
+ if (SS->getIntrinsicID() == Intrinsic::stacksave) {
+ BasicBlock::iterator BI = SS;
+ if (&*++BI == II)
+ return EraseInstFromFunction(CI);
+ }
+ }
+
+ // Scan down this block to see if there is another stack restore in the
+ // same block without an intervening call/alloca.
+ BasicBlock::iterator BI = II;
+ TerminatorInst *TI = II->getParent()->getTerminator();
+ bool CannotRemove = false;
+ for (++BI; &*BI != TI; ++BI) {
+ if (isa<AllocaInst>(BI) || isMalloc(BI)) {
+ CannotRemove = true;
+ break;
+ }
+ if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
+ // If there is a stackrestore below this one, remove this one.
+ if (II->getIntrinsicID() == Intrinsic::stackrestore)
+ return EraseInstFromFunction(CI);
+ // Otherwise, ignore the intrinsic.
+ } else {
+ // If we found a non-intrinsic call, we can't remove the stack
+ // restore.
+ CannotRemove = true;
+ break;
+ }
+ }
+ }
+
+ // If the stack restore is in a return/unwind block and if there are no
+ // allocas or calls between the restore and the return, nuke the restore.
+ if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
+ return EraseInstFromFunction(CI);
+ break;
+ }
+ }
+
+ return visitCallSite(II);
+}
+
+// InvokeInst simplification
+//
+Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
+ return visitCallSite(&II);
+}
+
+/// isSafeToEliminateVarargsCast - If this cast does not affect the value
+/// passed through the varargs area, we can eliminate the use of the cast.
+static bool isSafeToEliminateVarargsCast(const CallSite CS,
+ const CastInst * const CI,
+ const TargetData * const TD,
+ const int ix) {
+ if (!CI->isLosslessCast())
+ return false;
+
+ // The size of ByVal arguments is derived from the type, so we
+ // can't change to a type with a different size. If the size were
+ // passed explicitly we could avoid this check.
+ if (!CS.paramHasAttr(ix, Attribute::ByVal))
+ return true;
+
+ const Type* SrcTy =
+ cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
+ const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
+ if (!SrcTy->isSized() || !DstTy->isSized())
+ return false;
+ if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
+ return false;
+ return true;
+}
+
+// visitCallSite - Improvements for call and invoke instructions.
+//
+Instruction *InstCombiner::visitCallSite(CallSite CS) {
+ bool Changed = false;
+
+ // If the callee is a constexpr cast of a function, attempt to move the cast
+ // to the arguments of the call/invoke.
+ if (transformConstExprCastCall(CS)) return 0;
+
+ Value *Callee = CS.getCalledValue();
+
+ if (Function *CalleeF = dyn_cast<Function>(Callee))
+ if (CalleeF->getCallingConv() != CS.getCallingConv()) {
+ Instruction *OldCall = CS.getInstruction();
+ // If the call and callee calling conventions don't match, this call must
+ // be unreachable, as the call is undefined.
+ new StoreInst(ConstantInt::getTrue(Callee->getContext()),
+ UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
+ OldCall);
+ // If OldCall dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!OldCall->getType()->isVoidTy())
+ OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
+ if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
+ return EraseInstFromFunction(*OldCall);
+ return 0;
+ }
+
+ if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
+ // This instruction is not reachable, just remove it. We insert a store to
+ // undef so that we know that this code is not reachable, despite the fact
+ // that we can't modify the CFG here.
+ new StoreInst(ConstantInt::getTrue(Callee->getContext()),
+ UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
+ CS.getInstruction());
+
+ // If CS dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!CS.getInstruction()->getType()->isVoidTy())
+ CS.getInstruction()->
+ replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
+
+ if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
+ // Don't break the CFG, insert a dummy cond branch.
+ BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
+ ConstantInt::getTrue(Callee->getContext()), II);
+ }
+ return EraseInstFromFunction(*CS.getInstruction());
+ }
+
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
+ if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
+ if (In->getIntrinsicID() == Intrinsic::init_trampoline)
+ return transformCallThroughTrampoline(CS);
+
+ const PointerType *PTy = cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ if (FTy->isVarArg()) {
+ int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
+ // See if we can optimize any arguments passed through the varargs area of
+ // the call.
+ for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
+ E = CS.arg_end(); I != E; ++I, ++ix) {
+ CastInst *CI = dyn_cast<CastInst>(*I);
+ if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
+ *I = CI->getOperand(0);
+ Changed = true;
+ }
+ }
+ }
+
+ if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
+ // Inline asm calls cannot throw - mark them 'nounwind'.
+ CS.setDoesNotThrow();
+ Changed = true;
+ }
+
+ return Changed ? CS.getInstruction() : 0;
+}
+
+// transformConstExprCastCall - If the callee is a constexpr cast of a function,
+// attempt to move the cast to the arguments of the call/invoke.
+//
+bool InstCombiner::transformConstExprCastCall(CallSite CS) {
+ if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
+ ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
+ if (CE->getOpcode() != Instruction::BitCast ||
+ !isa<Function>(CE->getOperand(0)))
+ return false;
+ Function *Callee = cast<Function>(CE->getOperand(0));
+ Instruction *Caller = CS.getInstruction();
+ const AttrListPtr &CallerPAL = CS.getAttributes();
+
+ // Okay, this is a cast from a function to a different type. Unless doing so
+ // would cause a type conversion of one of our arguments, change this call to
+ // be a direct call with arguments casted to the appropriate types.
+ //
+ const FunctionType *FT = Callee->getFunctionType();
+ const Type *OldRetTy = Caller->getType();
+ const Type *NewRetTy = FT->getReturnType();
+
+ if (isa<StructType>(NewRetTy))
+ return false; // TODO: Handle multiple return values.
+
+ // Check to see if we are changing the return type...
+ if (OldRetTy != NewRetTy) {
+ if (Callee->isDeclaration() &&
+ // Conversion is ok if changing from one pointer type to another or from
+ // a pointer to an integer of the same size.
+ !((isa<PointerType>(OldRetTy) || !TD ||
+ OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
+ (isa<PointerType>(NewRetTy) || !TD ||
+ NewRetTy == TD->getIntPtrType(Caller->getContext()))))
+ return false; // Cannot transform this return value.
+
+ if (!Caller->use_empty() &&
+ // void -> non-void is handled specially
+ !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
+ return false; // Cannot transform this return value.
+
+ if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
+ Attributes RAttrs = CallerPAL.getRetAttributes();
+ if (RAttrs & Attribute::typeIncompatible(NewRetTy))
+ return false; // Attribute not compatible with transformed value.
+ }
+
+ // If the callsite is an invoke instruction, and the return value is used by
+ // a PHI node in a successor, we cannot change the return type of the call
+ // because there is no place to put the cast instruction (without breaking
+ // the critical edge). Bail out in this case.
+ if (!Caller->use_empty())
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
+ for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
+ UI != E; ++UI)
+ if (PHINode *PN = dyn_cast<PHINode>(*UI))
+ if (PN->getParent() == II->getNormalDest() ||
+ PN->getParent() == II->getUnwindDest())
+ return false;
+ }
+
+ unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
+ unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
+
+ CallSite::arg_iterator AI = CS.arg_begin();
+ for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
+ const Type *ParamTy = FT->getParamType(i);
+ const Type *ActTy = (*AI)->getType();
+
+ if (!CastInst::isCastable(ActTy, ParamTy))
+ return false; // Cannot transform this parameter value.
+
+ if (CallerPAL.getParamAttributes(i + 1)
+ & Attribute::typeIncompatible(ParamTy))
+ return false; // Attribute not compatible with transformed value.
+
+ // Converting from one pointer type to another or between a pointer and an
+ // integer of the same size is safe even if we do not have a body.
+ bool isConvertible = ActTy == ParamTy ||
+ (TD && ((isa<PointerType>(ParamTy) ||
+ ParamTy == TD->getIntPtrType(Caller->getContext())) &&
+ (isa<PointerType>(ActTy) ||
+ ActTy == TD->getIntPtrType(Caller->getContext()))));
+ if (Callee->isDeclaration() && !isConvertible) return false;
+ }
+
+ if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
+ Callee->isDeclaration())
+ return false; // Do not delete arguments unless we have a function body.
+
+ if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
+ !CallerPAL.isEmpty())
+ // In this case we have more arguments than the new function type, but we
+ // won't be dropping them. Check that these extra arguments have attributes
+ // that are compatible with being a vararg call argument.
+ for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
+ if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
+ break;
+ Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
+ if (PAttrs & Attribute::VarArgsIncompatible)
+ return false;
+ }
+
+ // Okay, we decided that this is a safe thing to do: go ahead and start
+ // inserting cast instructions as necessary...
+ std::vector<Value*> Args;
+ Args.reserve(NumActualArgs);
+ SmallVector<AttributeWithIndex, 8> attrVec;
+ attrVec.reserve(NumCommonArgs);
+
+ // Get any return attributes.
+ Attributes RAttrs = CallerPAL.getRetAttributes();
+
+ // If the return value is not being used, the type may not be compatible
+ // with the existing attributes. Wipe out any problematic attributes.
+ RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
+
+ // Add the new return attributes.
+ if (RAttrs)
+ attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
+
+ AI = CS.arg_begin();
+ for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
+ const Type *ParamTy = FT->getParamType(i);
+ if ((*AI)->getType() == ParamTy) {
+ Args.push_back(*AI);
+ } else {
+ Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
+ false, ParamTy, false);
+ Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
+ }
+
+ // Add any parameter attributes.
+ if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+ attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+ }
+
+ // If the function takes more arguments than the call was taking, add them
+ // now.
+ for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
+ Args.push_back(Constant::getNullValue(FT->getParamType(i)));
+
+ // If we are removing arguments to the function, emit an obnoxious warning.
+ if (FT->getNumParams() < NumActualArgs) {
+ if (!FT->isVarArg()) {
+ errs() << "WARNING: While resolving call to function '"
+ << Callee->getName() << "' arguments were dropped!\n";
+ } else {
+ // Add all of the arguments in their promoted form to the arg list.
+ for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
+ const Type *PTy = getPromotedType((*AI)->getType());
+ if (PTy != (*AI)->getType()) {
+ // Must promote to pass through va_arg area!
+ Instruction::CastOps opcode =
+ CastInst::getCastOpcode(*AI, false, PTy, false);
+ Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
+ } else {
+ Args.push_back(*AI);
+ }
+
+ // Add any parameter attributes.
+ if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+ attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+ }
+ }
+ }
+
+ if (Attributes FnAttrs = CallerPAL.getFnAttributes())
+ attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
+
+ if (NewRetTy->isVoidTy())
+ Caller->setName(""); // Void type should not have a name.
+
+ const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
+ attrVec.end());
+
+ Instruction *NC;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
+ Args.begin(), Args.end(),
+ Caller->getName(), Caller);
+ cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
+ cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
+ } else {
+ NC = CallInst::Create(Callee, Args.begin(), Args.end(),
+ Caller->getName(), Caller);
+ CallInst *CI = cast<CallInst>(Caller);
+ if (CI->isTailCall())
+ cast<CallInst>(NC)->setTailCall();
+ cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
+ cast<CallInst>(NC)->setAttributes(NewCallerPAL);
+ }
+
+ // Insert a cast of the return type as necessary.
+ Value *NV = NC;
+ if (OldRetTy != NV->getType() && !Caller->use_empty()) {
+ if (!NV->getType()->isVoidTy()) {
+ Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
+ OldRetTy, false);
+ NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
+
+ // If this is an invoke instruction, we should insert it after the first
+ // non-phi, instruction in the normal successor block.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
+ InsertNewInstBefore(NC, *I);
+ } else {
+ // Otherwise, it's a call, just insert cast right after the call instr
+ InsertNewInstBefore(NC, *Caller);
+ }
+ Worklist.AddUsersToWorkList(*Caller);
+ } else {
+ NV = UndefValue::get(Caller->getType());
+ }
+ }
+
+
+ if (!Caller->use_empty())
+ Caller->replaceAllUsesWith(NV);
+
+ EraseInstFromFunction(*Caller);
+ return true;
+}
+
+// transformCallThroughTrampoline - Turn a call to a function created by the
+// init_trampoline intrinsic into a direct call to the underlying function.
+//
+Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
+ Value *Callee = CS.getCalledValue();
+ const PointerType *PTy = cast<PointerType>(Callee->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ const AttrListPtr &Attrs = CS.getAttributes();
+
+ // If the call already has the 'nest' attribute somewhere then give up -
+ // otherwise 'nest' would occur twice after splicing in the chain.
+ if (Attrs.hasAttrSomewhere(Attribute::Nest))
+ return 0;
+
+ IntrinsicInst *Tramp =
+ cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
+
+ Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
+ const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
+ const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
+
+ const AttrListPtr &NestAttrs = NestF->getAttributes();
+ if (!NestAttrs.isEmpty()) {
+ unsigned NestIdx = 1;
+ const Type *NestTy = 0;
+ Attributes NestAttr = Attribute::None;
+
+ // Look for a parameter marked with the 'nest' attribute.
+ for (FunctionType::param_iterator I = NestFTy->param_begin(),
+ E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
+ if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
+ // Record the parameter type and any other attributes.
+ NestTy = *I;
+ NestAttr = NestAttrs.getParamAttributes(NestIdx);
+ break;
+ }
+
+ if (NestTy) {
+ Instruction *Caller = CS.getInstruction();
+ std::vector<Value*> NewArgs;
+ NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
+
+ SmallVector<AttributeWithIndex, 8> NewAttrs;
+ NewAttrs.reserve(Attrs.getNumSlots() + 1);
+
+ // Insert the nest argument into the call argument list, which may
+ // mean appending it. Likewise for attributes.
+
+ // Add any result attributes.
+ if (Attributes Attr = Attrs.getRetAttributes())
+ NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
+
+ {
+ unsigned Idx = 1;
+ CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+ do {
+ if (Idx == NestIdx) {
+ // Add the chain argument and attributes.
+ Value *NestVal = Tramp->getOperand(3);
+ if (NestVal->getType() != NestTy)
+ NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
+ NewArgs.push_back(NestVal);
+ NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
+ }
+
+ if (I == E)
+ break;
+
+ // Add the original argument and attributes.
+ NewArgs.push_back(*I);
+ if (Attributes Attr = Attrs.getParamAttributes(Idx))
+ NewAttrs.push_back
+ (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
+
+ ++Idx, ++I;
+ } while (1);
+ }
+
+ // Add any function attributes.
+ if (Attributes Attr = Attrs.getFnAttributes())
+ NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
+
+ // The trampoline may have been bitcast to a bogus type (FTy).
+ // Handle this by synthesizing a new function type, equal to FTy
+ // with the chain parameter inserted.
+
+ std::vector<const Type*> NewTypes;
+ NewTypes.reserve(FTy->getNumParams()+1);
+
+ // Insert the chain's type into the list of parameter types, which may
+ // mean appending it.
+ {
+ unsigned Idx = 1;
+ FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end();
+
+ do {
+ if (Idx == NestIdx)
+ // Add the chain's type.
+ NewTypes.push_back(NestTy);
+
+ if (I == E)
+ break;
+
+ // Add the original type.
+ NewTypes.push_back(*I);
+
+ ++Idx, ++I;
+ } while (1);
+ }
+
+ // Replace the trampoline call with a direct call. Let the generic
+ // code sort out any function type mismatches.
+ FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
+ FTy->isVarArg());
+ Constant *NewCallee =
+ NestF->getType() == PointerType::getUnqual(NewFTy) ?
+ NestF : ConstantExpr::getBitCast(NestF,
+ PointerType::getUnqual(NewFTy));
+ const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
+ NewAttrs.end());
+
+ Instruction *NewCaller;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ NewCaller = InvokeInst::Create(NewCallee,
+ II->getNormalDest(), II->getUnwindDest(),
+ NewArgs.begin(), NewArgs.end(),
+ Caller->getName(), Caller);
+ cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
+ cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
+ } else {
+ NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
+ Caller->getName(), Caller);
+ if (cast<CallInst>(Caller)->isTailCall())
+ cast<CallInst>(NewCaller)->setTailCall();
+ cast<CallInst>(NewCaller)->
+ setCallingConv(cast<CallInst>(Caller)->getCallingConv());
+ cast<CallInst>(NewCaller)->setAttributes(NewPAL);
+ }
+ if (!Caller->getType()->isVoidTy())
+ Caller->replaceAllUsesWith(NewCaller);
+ Caller->eraseFromParent();
+ Worklist.Remove(Caller);
+ return 0;
+ }
+ }
+
+ // Replace the trampoline call with a direct call. Since there is no 'nest'
+ // parameter, there is no need to adjust the argument list. Let the generic
+ // code sort out any function type mismatches.
+ Constant *NewCallee =
+ NestF->getType() == PTy ? NestF :
+ ConstantExpr::getBitCast(NestF, PTy);
+ CS.setCalledFunction(NewCallee);
+ return CS.getInstruction();
+}
+
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index 81640f3..b3cf013 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -47,7 +47,6 @@
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
@@ -77,16 +76,6 @@ void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
}
-// getPromotedType - Return the specified type promoted as it would be to pass
-// though a va_arg area.
-static const Type *getPromotedType(const Type *Ty) {
- if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
- if (ITy->getBitWidth() < 32)
- return Type::getInt32Ty(Ty->getContext());
- }
- return Ty;
-}
-
/// ShouldChangeType - Return true if it is desirable to convert a computation
/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
/// type for example, or from a smaller to a larger illegal type.
@@ -117,6 +106,8 @@ bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
/// getBitCastOperand - If the specified operand is a CastInst, a constant
/// expression bitcast, or a GetElementPtrInst with all zero indices, return the
/// operand value, otherwise return null.
+
+// FIXME: Value::stripPointerCasts
static Value *getBitCastOperand(Value *V) {
if (Operator *O = dyn_cast<Operator>(V)) {
if (O->getOpcode() == Instruction::BitCast)
@@ -2837,1105 +2828,6 @@ const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
}
-/// EnforceKnownAlignment - If the specified pointer points to an object that
-/// we control, modify the object's alignment to PrefAlign. This isn't
-/// often possible though. If alignment is important, a more reliable approach
-/// is to simply align all global variables and allocation instructions to
-/// their preferred alignment from the beginning.
-///
-static unsigned EnforceKnownAlignment(Value *V,
- unsigned Align, unsigned PrefAlign) {
-
- User *U = dyn_cast<User>(V);
- if (!U) return Align;
-
- switch (Operator::getOpcode(U)) {
- default: break;
- case Instruction::BitCast:
- return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
- case Instruction::GetElementPtr: {
- // If all indexes are zero, it is just the alignment of the base pointer.
- bool AllZeroOperands = true;
- for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
- if (!isa<Constant>(*i) ||
- !cast<Constant>(*i)->isNullValue()) {
- AllZeroOperands = false;
- break;
- }
-
- if (AllZeroOperands) {
- // Treat this like a bitcast.
- return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
- }
- break;
- }
- }
-
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // If there is a large requested alignment and we can, bump up the alignment
- // of the global.
- if (!GV->isDeclaration()) {
- if (GV->getAlignment() >= PrefAlign)
- Align = GV->getAlignment();
- else {
- GV->setAlignment(PrefAlign);
- Align = PrefAlign;
- }
- }
- } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- // If there is a requested alignment and if this is an alloca, round up.
- if (AI->getAlignment() >= PrefAlign)
- Align = AI->getAlignment();
- else {
- AI->setAlignment(PrefAlign);
- Align = PrefAlign;
- }
- }
-
- return Align;
-}
-
-/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
-/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
-/// and it is more than the alignment of the ultimate object, see if we can
-/// increase the alignment of the ultimate object, making this check succeed.
-unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
- unsigned PrefAlign) {
- unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
- sizeof(PrefAlign) * CHAR_BIT;
- APInt Mask = APInt::getAllOnesValue(BitWidth);
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
- unsigned TrailZ = KnownZero.countTrailingOnes();
- unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
-
- if (PrefAlign > Align)
- Align = EnforceKnownAlignment(V, Align, PrefAlign);
-
- // We don't need to make any adjustment.
- return Align;
-}
-
-Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
- unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
- unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
- unsigned MinAlign = std::min(DstAlign, SrcAlign);
- unsigned CopyAlign = MI->getAlignment();
-
- if (CopyAlign < MinAlign) {
- MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
- MinAlign, false));
- return MI;
- }
-
- // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
- // load/store.
- ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
- if (MemOpLength == 0) return 0;
-
- // Source and destination pointer types are always "i8*" for intrinsic. See
- // if the size is something we can handle with a single primitive load/store.
- // A single load+store correctly handles overlapping memory in the memmove
- // case.
- unsigned Size = MemOpLength->getZExtValue();
- if (Size == 0) return MI; // Delete this mem transfer.
-
- if (Size > 8 || (Size&(Size-1)))
- return 0; // If not 1/2/4/8 bytes, exit.
-
- // Use an integer load+store unless we can find something better.
- Type *NewPtrTy =
- PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
-
- // Memcpy forces the use of i8* for the source and destination. That means
- // that if you're using memcpy to move one double around, you'll get a cast
- // from double* to i8*. We'd much rather use a double load+store rather than
- // an i64 load+store, here because this improves the odds that the source or
- // dest address will be promotable. See if we can find a better type than the
- // integer datatype.
- if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
- const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
- if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
- // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
- // down through these levels if so.
- while (!SrcETy->isSingleValueType()) {
- if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
- if (STy->getNumElements() == 1)
- SrcETy = STy->getElementType(0);
- else
- break;
- } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
- if (ATy->getNumElements() == 1)
- SrcETy = ATy->getElementType();
- else
- break;
- } else
- break;
- }
-
- if (SrcETy->isSingleValueType())
- NewPtrTy = PointerType::getUnqual(SrcETy);
- }
- }
-
-
- // If the memcpy/memmove provides better alignment info than we can
- // infer, use it.
- SrcAlign = std::max(SrcAlign, CopyAlign);
- DstAlign = std::max(DstAlign, CopyAlign);
-
- Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
- Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
- Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
- InsertNewInstBefore(L, *MI);
- InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
-
- // Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
- return MI;
-}
-
-Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
- unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
- if (MI->getAlignment() < Alignment) {
- MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
- Alignment, false));
- return MI;
- }
-
- // Extract the length and alignment and fill if they are constant.
- ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
- ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
- if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(MI->getContext()))
- return 0;
- uint64_t Len = LenC->getZExtValue();
- Alignment = MI->getAlignment();
-
- // If the length is zero, this is a no-op
- if (Len == 0) return MI; // memset(d,c,0,a) -> noop
-
- // memset(s,c,n) -> store s, c (for n=1,2,4,8)
- if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
- const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
-
- Value *Dest = MI->getDest();
- Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
-
- // Alignment 0 is identity for alignment 1 for memset, but not store.
- if (Alignment == 0) Alignment = 1;
-
- // Extract the fill value and store.
- uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
- InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
- Dest, false, Alignment), *MI);
-
- // Set the size of the copy to 0, it will be deleted on the next iteration.
- MI->setLength(Constant::getNullValue(LenC->getType()));
- return MI;
- }
-
- return 0;
-}
-
-
-/// visitCallInst - CallInst simplification. This mostly only handles folding
-/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
-/// the heavy lifting.
-///
-Instruction *InstCombiner::visitCallInst(CallInst &CI) {
- if (isFreeCall(&CI))
- return visitFree(CI);
-
- // If the caller function is nounwind, mark the call as nounwind, even if the
- // callee isn't.
- if (CI.getParent()->getParent()->doesNotThrow() &&
- !CI.doesNotThrow()) {
- CI.setDoesNotThrow();
- return &CI;
- }
-
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
- if (!II) return visitCallSite(&CI);
-
- // Intrinsics cannot occur in an invoke, so handle them here instead of in
- // visitCallSite.
- if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
- bool Changed = false;
-
- // memmove/cpy/set of zero bytes is a noop.
- if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
- if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
- if (CI->getZExtValue() == 1) {
- // Replace the instruction with just byte operations. We would
- // transform other cases to loads/stores, but we don't know if
- // alignment is sufficient.
- }
- }
-
- // If we have a memmove and the source operation is a constant global,
- // then the source and dest pointers can't alias, so we can change this
- // into a call to memcpy.
- if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
- if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
- if (GVSrc->isConstant()) {
- Module *M = CI.getParent()->getParent()->getParent();
- Intrinsic::ID MemCpyID = Intrinsic::memcpy;
- const Type *Tys[1];
- Tys[0] = CI.getOperand(3)->getType();
- CI.setOperand(0,
- Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
- Changed = true;
- }
- }
-
- if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
- // memmove(x,x,size) -> noop.
- if (MTI->getSource() == MTI->getDest())
- return EraseInstFromFunction(CI);
- }
-
- // If we can determine a pointer alignment that is bigger than currently
- // set, update the alignment.
- if (isa<MemTransferInst>(MI)) {
- if (Instruction *I = SimplifyMemTransfer(MI))
- return I;
- } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
- if (Instruction *I = SimplifyMemSet(MSI))
- return I;
- }
-
- if (Changed) return II;
- }
-
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::bswap:
- // bswap(bswap(x)) -> x
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap)
- return ReplaceInstUsesWith(CI, Operand->getOperand(1));
-
- // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
- if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
- if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
- if (Operand->getIntrinsicID() == Intrinsic::bswap) {
- unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
- TI->getType()->getPrimitiveSizeInBits();
- Value *CV = ConstantInt::get(Operand->getType(), C);
- Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
- return new TruncInst(V, TI->getType());
- }
- }
-
- break;
- case Intrinsic::powi:
- if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
- // powi(x, 0) -> 1.0
- if (Power->isZero())
- return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
- // powi(x, 1) -> x
- if (Power->isOne())
- return ReplaceInstUsesWith(CI, II->getOperand(1));
- // powi(x, -1) -> 1/x
- if (Power->isAllOnesValue())
- return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
- II->getOperand(1));
- }
- break;
- case Intrinsic::cttz: {
- // If all bits below the first known one are known zero,
- // this value is constant.
- const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
- uint32_t BitWidth = IT->getBitWidth();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
- KnownZero, KnownOne);
- unsigned TrailingZeros = KnownOne.countTrailingZeros();
- APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
- if ((Mask & KnownZero) == Mask)
- return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
- APInt(BitWidth, TrailingZeros)));
-
- }
- break;
- case Intrinsic::ctlz: {
- // If all bits above the first known one are known zero,
- // this value is constant.
- const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
- uint32_t BitWidth = IT->getBitWidth();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
- KnownZero, KnownOne);
- unsigned LeadingZeros = KnownOne.countLeadingZeros();
- APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
- if ((Mask & KnownZero) == Mask)
- return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
- APInt(BitWidth, LeadingZeros)));
-
- }
- break;
- case Intrinsic::uadd_with_overflow: {
- Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
- const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
- uint32_t BitWidth = IT->getBitWidth();
- APInt Mask = APInt::getSignBit(BitWidth);
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
- bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
- bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
-
- if (LHSKnownNegative || LHSKnownPositive) {
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
- bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
- bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
- if (LHSKnownNegative && RHSKnownNegative) {
- // The sign bit is set in both cases: this MUST overflow.
- // Create a simple add instruction, and insert it into the struct.
- Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
- Worklist.Add(Add);
- Constant *V[] = {
- UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
- };
- Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
- return InsertValueInst::Create(Struct, Add, 0);
- }
-
- if (LHSKnownPositive && RHSKnownPositive) {
- // The sign bit is clear in both cases: this CANNOT overflow.
- // Create a simple add instruction, and insert it into the struct.
- Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
- Worklist.Add(Add);
- Constant *V[] = {
- UndefValue::get(LHS->getType()),
- ConstantInt::getFalse(II->getContext())
- };
- Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
- return InsertValueInst::Create(Struct, Add, 0);
- }
- }
- }
- // FALL THROUGH uadd into sadd
- case Intrinsic::sadd_with_overflow:
- // Canonicalize constants into the RHS.
- if (isa<Constant>(II->getOperand(1)) &&
- !isa<Constant>(II->getOperand(2))) {
- Value *LHS = II->getOperand(1);
- II->setOperand(1, II->getOperand(2));
- II->setOperand(2, LHS);
- return II;
- }
-
- // X + undef -> undef
- if (isa<UndefValue>(II->getOperand(2)))
- return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
- // X + 0 -> {X, false}
- if (RHS->isZero()) {
- Constant *V[] = {
- UndefValue::get(II->getOperand(0)->getType()),
- ConstantInt::getFalse(II->getContext())
- };
- Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
- return InsertValueInst::Create(Struct, II->getOperand(1), 0);
- }
- }
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- // undef - X -> undef
- // X - undef -> undef
- if (isa<UndefValue>(II->getOperand(1)) ||
- isa<UndefValue>(II->getOperand(2)))
- return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
- // X - 0 -> {X, false}
- if (RHS->isZero()) {
- Constant *V[] = {
- UndefValue::get(II->getOperand(1)->getType()),
- ConstantInt::getFalse(II->getContext())
- };
- Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
- return InsertValueInst::Create(Struct, II->getOperand(1), 0);
- }
- }
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- // Canonicalize constants into the RHS.
- if (isa<Constant>(II->getOperand(1)) &&
- !isa<Constant>(II->getOperand(2))) {
- Value *LHS = II->getOperand(1);
- II->setOperand(1, II->getOperand(2));
- II->setOperand(2, LHS);
- return II;
- }
-
- // X * undef -> undef
- if (isa<UndefValue>(II->getOperand(2)))
- return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
-
- if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
- // X*0 -> {0, false}
- if (RHSI->isZero())
- return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
-
- // X * 1 -> {X, false}
- if (RHSI->equalsInt(1)) {
- Constant *V[] = {
- UndefValue::get(II->getOperand(1)->getType()),
- ConstantInt::getFalse(II->getContext())
- };
- Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
- return InsertValueInst::Create(Struct, II->getOperand(1), 0);
- }
- }
- break;
- case Intrinsic::ppc_altivec_lvx:
- case Intrinsic::ppc_altivec_lvxl:
- case Intrinsic::x86_sse_loadu_ps:
- case Intrinsic::x86_sse2_loadu_pd:
- case Intrinsic::x86_sse2_loadu_dq:
- // Turn PPC lvx -> load if the pointer is known aligned.
- // Turn X86 loadups -> load if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
- Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
- PointerType::getUnqual(II->getType()));
- return new LoadInst(Ptr);
- }
- break;
- case Intrinsic::ppc_altivec_stvx:
- case Intrinsic::ppc_altivec_stvxl:
- // Turn stvx -> store if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
- const Type *OpPtrTy =
- PointerType::getUnqual(II->getOperand(1)->getType());
- Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
- return new StoreInst(II->getOperand(1), Ptr);
- }
- break;
- case Intrinsic::x86_sse_storeu_ps:
- case Intrinsic::x86_sse2_storeu_pd:
- case Intrinsic::x86_sse2_storeu_dq:
- // Turn X86 storeu -> store if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
- const Type *OpPtrTy =
- PointerType::getUnqual(II->getOperand(2)->getType());
- Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
- return new StoreInst(II->getOperand(2), Ptr);
- }
- break;
-
- case Intrinsic::x86_sse_cvttss2si: {
- // These intrinsics only demands the 0th element of its input vector. If
- // we can simplify the input based on that, do so now.
- unsigned VWidth =
- cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
- APInt DemandedElts(VWidth, 1);
- APInt UndefElts(VWidth, 0);
- if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
- UndefElts)) {
- II->setOperand(1, V);
- return II;
- }
- break;
- }
-
- case Intrinsic::ppc_altivec_vperm:
- // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
- if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
- assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
-
- // Check that all of the elements are integer constants or undefs.
- bool AllEltsOk = true;
- for (unsigned i = 0; i != 16; ++i) {
- if (!isa<ConstantInt>(Mask->getOperand(i)) &&
- !isa<UndefValue>(Mask->getOperand(i))) {
- AllEltsOk = false;
- break;
- }
- }
-
- if (AllEltsOk) {
- // Cast the input vectors to byte vectors.
- Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
- Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
- Value *Result = UndefValue::get(Op0->getType());
-
- // Only extract each element once.
- Value *ExtractedElts[32];
- memset(ExtractedElts, 0, sizeof(ExtractedElts));
-
- for (unsigned i = 0; i != 16; ++i) {
- if (isa<UndefValue>(Mask->getOperand(i)))
- continue;
- unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
- Idx &= 31; // Match the hardware behavior.
-
- if (ExtractedElts[Idx] == 0) {
- ExtractedElts[Idx] =
- Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
- ConstantInt::get(Type::getInt32Ty(II->getContext()),
- Idx&15, false), "tmp");
- }
-
- // Insert this value into the result vector.
- Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
- ConstantInt::get(Type::getInt32Ty(II->getContext()),
- i, false), "tmp");
- }
- return CastInst::Create(Instruction::BitCast, Result, CI.getType());
- }
- }
- break;
-
- case Intrinsic::stackrestore: {
- // If the save is right next to the restore, remove the restore. This can
- // happen when variable allocas are DCE'd.
- if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
- if (SS->getIntrinsicID() == Intrinsic::stacksave) {
- BasicBlock::iterator BI = SS;
- if (&*++BI == II)
- return EraseInstFromFunction(CI);
- }
- }
-
- // Scan down this block to see if there is another stack restore in the
- // same block without an intervening call/alloca.
- BasicBlock::iterator BI = II;
- TerminatorInst *TI = II->getParent()->getTerminator();
- bool CannotRemove = false;
- for (++BI; &*BI != TI; ++BI) {
- if (isa<AllocaInst>(BI) || isMalloc(BI)) {
- CannotRemove = true;
- break;
- }
- if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
- // If there is a stackrestore below this one, remove this one.
- if (II->getIntrinsicID() == Intrinsic::stackrestore)
- return EraseInstFromFunction(CI);
- // Otherwise, ignore the intrinsic.
- } else {
- // If we found a non-intrinsic call, we can't remove the stack
- // restore.
- CannotRemove = true;
- break;
- }
- }
- }
-
- // If the stack restore is in a return/unwind block and if there are no
- // allocas or calls between the restore and the return, nuke the restore.
- if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
- return EraseInstFromFunction(CI);
- break;
- }
- }
-
- return visitCallSite(II);
-}
-
-// InvokeInst simplification
-//
-Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
- return visitCallSite(&II);
-}
-
-/// isSafeToEliminateVarargsCast - If this cast does not affect the value
-/// passed through the varargs area, we can eliminate the use of the cast.
-static bool isSafeToEliminateVarargsCast(const CallSite CS,
- const CastInst * const CI,
- const TargetData * const TD,
- const int ix) {
- if (!CI->isLosslessCast())
- return false;
-
- // The size of ByVal arguments is derived from the type, so we
- // can't change to a type with a different size. If the size were
- // passed explicitly we could avoid this check.
- if (!CS.paramHasAttr(ix, Attribute::ByVal))
- return true;
-
- const Type* SrcTy =
- cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
- const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
- if (!SrcTy->isSized() || !DstTy->isSized())
- return false;
- if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
- return false;
- return true;
-}
-
-// visitCallSite - Improvements for call and invoke instructions.
-//
-Instruction *InstCombiner::visitCallSite(CallSite CS) {
- bool Changed = false;
-
- // If the callee is a constexpr cast of a function, attempt to move the cast
- // to the arguments of the call/invoke.
- if (transformConstExprCastCall(CS)) return 0;
-
- Value *Callee = CS.getCalledValue();
-
- if (Function *CalleeF = dyn_cast<Function>(Callee))
- if (CalleeF->getCallingConv() != CS.getCallingConv()) {
- Instruction *OldCall = CS.getInstruction();
- // If the call and callee calling conventions don't match, this call must
- // be unreachable, as the call is undefined.
- new StoreInst(ConstantInt::getTrue(Callee->getContext()),
- UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
- OldCall);
- // If OldCall dues not return void then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!OldCall->getType()->isVoidTy())
- OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
- if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
- return EraseInstFromFunction(*OldCall);
- return 0;
- }
-
- if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
- // This instruction is not reachable, just remove it. We insert a store to
- // undef so that we know that this code is not reachable, despite the fact
- // that we can't modify the CFG here.
- new StoreInst(ConstantInt::getTrue(Callee->getContext()),
- UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
- CS.getInstruction());
-
- // If CS dues not return void then replaceAllUsesWith undef.
- // This allows ValueHandlers and custom metadata to adjust itself.
- if (!CS.getInstruction()->getType()->isVoidTy())
- CS.getInstruction()->
- replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
-
- if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
- // Don't break the CFG, insert a dummy cond branch.
- BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
- ConstantInt::getTrue(Callee->getContext()), II);
- }
- return EraseInstFromFunction(*CS.getInstruction());
- }
-
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
- if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
- if (In->getIntrinsicID() == Intrinsic::init_trampoline)
- return transformCallThroughTrampoline(CS);
-
- const PointerType *PTy = cast<PointerType>(Callee->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- if (FTy->isVarArg()) {
- int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
- // See if we can optimize any arguments passed through the varargs area of
- // the call.
- for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
- E = CS.arg_end(); I != E; ++I, ++ix) {
- CastInst *CI = dyn_cast<CastInst>(*I);
- if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
- *I = CI->getOperand(0);
- Changed = true;
- }
- }
- }
-
- if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
- // Inline asm calls cannot throw - mark them 'nounwind'.
- CS.setDoesNotThrow();
- Changed = true;
- }
-
- return Changed ? CS.getInstruction() : 0;
-}
-
-// transformConstExprCastCall - If the callee is a constexpr cast of a function,
-// attempt to move the cast to the arguments of the call/invoke.
-//
-bool InstCombiner::transformConstExprCastCall(CallSite CS) {
- if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
- ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
- if (CE->getOpcode() != Instruction::BitCast ||
- !isa<Function>(CE->getOperand(0)))
- return false;
- Function *Callee = cast<Function>(CE->getOperand(0));
- Instruction *Caller = CS.getInstruction();
- const AttrListPtr &CallerPAL = CS.getAttributes();
-
- // Okay, this is a cast from a function to a different type. Unless doing so
- // would cause a type conversion of one of our arguments, change this call to
- // be a direct call with arguments casted to the appropriate types.
- //
- const FunctionType *FT = Callee->getFunctionType();
- const Type *OldRetTy = Caller->getType();
- const Type *NewRetTy = FT->getReturnType();
-
- if (isa<StructType>(NewRetTy))
- return false; // TODO: Handle multiple return values.
-
- // Check to see if we are changing the return type...
- if (OldRetTy != NewRetTy) {
- if (Callee->isDeclaration() &&
- // Conversion is ok if changing from one pointer type to another or from
- // a pointer to an integer of the same size.
- !((isa<PointerType>(OldRetTy) || !TD ||
- OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
- (isa<PointerType>(NewRetTy) || !TD ||
- NewRetTy == TD->getIntPtrType(Caller->getContext()))))
- return false; // Cannot transform this return value.
-
- if (!Caller->use_empty() &&
- // void -> non-void is handled specially
- !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
- return false; // Cannot transform this return value.
-
- if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
- Attributes RAttrs = CallerPAL.getRetAttributes();
- if (RAttrs & Attribute::typeIncompatible(NewRetTy))
- return false; // Attribute not compatible with transformed value.
- }
-
- // If the callsite is an invoke instruction, and the return value is used by
- // a PHI node in a successor, we cannot change the return type of the call
- // because there is no place to put the cast instruction (without breaking
- // the critical edge). Bail out in this case.
- if (!Caller->use_empty())
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
- for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
- UI != E; ++UI)
- if (PHINode *PN = dyn_cast<PHINode>(*UI))
- if (PN->getParent() == II->getNormalDest() ||
- PN->getParent() == II->getUnwindDest())
- return false;
- }
-
- unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
- unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
-
- CallSite::arg_iterator AI = CS.arg_begin();
- for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
- const Type *ParamTy = FT->getParamType(i);
- const Type *ActTy = (*AI)->getType();
-
- if (!CastInst::isCastable(ActTy, ParamTy))
- return false; // Cannot transform this parameter value.
-
- if (CallerPAL.getParamAttributes(i + 1)
- & Attribute::typeIncompatible(ParamTy))
- return false; // Attribute not compatible with transformed value.
-
- // Converting from one pointer type to another or between a pointer and an
- // integer of the same size is safe even if we do not have a body.
- bool isConvertible = ActTy == ParamTy ||
- (TD && ((isa<PointerType>(ParamTy) ||
- ParamTy == TD->getIntPtrType(Caller->getContext())) &&
- (isa<PointerType>(ActTy) ||
- ActTy == TD->getIntPtrType(Caller->getContext()))));
- if (Callee->isDeclaration() && !isConvertible) return false;
- }
-
- if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
- Callee->isDeclaration())
- return false; // Do not delete arguments unless we have a function body.
-
- if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
- !CallerPAL.isEmpty())
- // In this case we have more arguments than the new function type, but we
- // won't be dropping them. Check that these extra arguments have attributes
- // that are compatible with being a vararg call argument.
- for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
- if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
- break;
- Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
- if (PAttrs & Attribute::VarArgsIncompatible)
- return false;
- }
-
- // Okay, we decided that this is a safe thing to do: go ahead and start
- // inserting cast instructions as necessary...
- std::vector<Value*> Args;
- Args.reserve(NumActualArgs);
- SmallVector<AttributeWithIndex, 8> attrVec;
- attrVec.reserve(NumCommonArgs);
-
- // Get any return attributes.
- Attributes RAttrs = CallerPAL.getRetAttributes();
-
- // If the return value is not being used, the type may not be compatible
- // with the existing attributes. Wipe out any problematic attributes.
- RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
-
- // Add the new return attributes.
- if (RAttrs)
- attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
-
- AI = CS.arg_begin();
- for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
- const Type *ParamTy = FT->getParamType(i);
- if ((*AI)->getType() == ParamTy) {
- Args.push_back(*AI);
- } else {
- Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
- false, ParamTy, false);
- Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
- }
-
- // Add any parameter attributes.
- if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
- attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
- }
-
- // If the function takes more arguments than the call was taking, add them
- // now.
- for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
- Args.push_back(Constant::getNullValue(FT->getParamType(i)));
-
- // If we are removing arguments to the function, emit an obnoxious warning.
- if (FT->getNumParams() < NumActualArgs) {
- if (!FT->isVarArg()) {
- errs() << "WARNING: While resolving call to function '"
- << Callee->getName() << "' arguments were dropped!\n";
- } else {
- // Add all of the arguments in their promoted form to the arg list.
- for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
- const Type *PTy = getPromotedType((*AI)->getType());
- if (PTy != (*AI)->getType()) {
- // Must promote to pass through va_arg area!
- Instruction::CastOps opcode =
- CastInst::getCastOpcode(*AI, false, PTy, false);
- Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
- } else {
- Args.push_back(*AI);
- }
-
- // Add any parameter attributes.
- if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
- attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
- }
- }
- }
-
- if (Attributes FnAttrs = CallerPAL.getFnAttributes())
- attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
-
- if (NewRetTy->isVoidTy())
- Caller->setName(""); // Void type should not have a name.
-
- const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
- attrVec.end());
-
- Instruction *NC;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
- Args.begin(), Args.end(),
- Caller->getName(), Caller);
- cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
- cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
- } else {
- NC = CallInst::Create(Callee, Args.begin(), Args.end(),
- Caller->getName(), Caller);
- CallInst *CI = cast<CallInst>(Caller);
- if (CI->isTailCall())
- cast<CallInst>(NC)->setTailCall();
- cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
- cast<CallInst>(NC)->setAttributes(NewCallerPAL);
- }
-
- // Insert a cast of the return type as necessary.
- Value *NV = NC;
- if (OldRetTy != NV->getType() && !Caller->use_empty()) {
- if (!NV->getType()->isVoidTy()) {
- Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
- OldRetTy, false);
- NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
-
- // If this is an invoke instruction, we should insert it after the first
- // non-phi, instruction in the normal successor block.
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
- InsertNewInstBefore(NC, *I);
- } else {
- // Otherwise, it's a call, just insert cast right after the call instr
- InsertNewInstBefore(NC, *Caller);
- }
- Worklist.AddUsersToWorkList(*Caller);
- } else {
- NV = UndefValue::get(Caller->getType());
- }
- }
-
-
- if (!Caller->use_empty())
- Caller->replaceAllUsesWith(NV);
-
- EraseInstFromFunction(*Caller);
- return true;
-}
-
-// transformCallThroughTrampoline - Turn a call to a function created by the
-// init_trampoline intrinsic into a direct call to the underlying function.
-//
-Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
- Value *Callee = CS.getCalledValue();
- const PointerType *PTy = cast<PointerType>(Callee->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- const AttrListPtr &Attrs = CS.getAttributes();
-
- // If the call already has the 'nest' attribute somewhere then give up -
- // otherwise 'nest' would occur twice after splicing in the chain.
- if (Attrs.hasAttrSomewhere(Attribute::Nest))
- return 0;
-
- IntrinsicInst *Tramp =
- cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
-
- Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
- const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
- const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
-
- const AttrListPtr &NestAttrs = NestF->getAttributes();
- if (!NestAttrs.isEmpty()) {
- unsigned NestIdx = 1;
- const Type *NestTy = 0;
- Attributes NestAttr = Attribute::None;
-
- // Look for a parameter marked with the 'nest' attribute.
- for (FunctionType::param_iterator I = NestFTy->param_begin(),
- E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
- if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
- // Record the parameter type and any other attributes.
- NestTy = *I;
- NestAttr = NestAttrs.getParamAttributes(NestIdx);
- break;
- }
-
- if (NestTy) {
- Instruction *Caller = CS.getInstruction();
- std::vector<Value*> NewArgs;
- NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
-
- SmallVector<AttributeWithIndex, 8> NewAttrs;
- NewAttrs.reserve(Attrs.getNumSlots() + 1);
-
- // Insert the nest argument into the call argument list, which may
- // mean appending it. Likewise for attributes.
-
- // Add any result attributes.
- if (Attributes Attr = Attrs.getRetAttributes())
- NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
-
- {
- unsigned Idx = 1;
- CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- do {
- if (Idx == NestIdx) {
- // Add the chain argument and attributes.
- Value *NestVal = Tramp->getOperand(3);
- if (NestVal->getType() != NestTy)
- NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
- NewArgs.push_back(NestVal);
- NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
- }
-
- if (I == E)
- break;
-
- // Add the original argument and attributes.
- NewArgs.push_back(*I);
- if (Attributes Attr = Attrs.getParamAttributes(Idx))
- NewAttrs.push_back
- (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
-
- ++Idx, ++I;
- } while (1);
- }
-
- // Add any function attributes.
- if (Attributes Attr = Attrs.getFnAttributes())
- NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
-
- // The trampoline may have been bitcast to a bogus type (FTy).
- // Handle this by synthesizing a new function type, equal to FTy
- // with the chain parameter inserted.
-
- std::vector<const Type*> NewTypes;
- NewTypes.reserve(FTy->getNumParams()+1);
-
- // Insert the chain's type into the list of parameter types, which may
- // mean appending it.
- {
- unsigned Idx = 1;
- FunctionType::param_iterator I = FTy->param_begin(),
- E = FTy->param_end();
-
- do {
- if (Idx == NestIdx)
- // Add the chain's type.
- NewTypes.push_back(NestTy);
-
- if (I == E)
- break;
-
- // Add the original type.
- NewTypes.push_back(*I);
-
- ++Idx, ++I;
- } while (1);
- }
-
- // Replace the trampoline call with a direct call. Let the generic
- // code sort out any function type mismatches.
- FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
- FTy->isVarArg());
- Constant *NewCallee =
- NestF->getType() == PointerType::getUnqual(NewFTy) ?
- NestF : ConstantExpr::getBitCast(NestF,
- PointerType::getUnqual(NewFTy));
- const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
- NewAttrs.end());
-
- Instruction *NewCaller;
- if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
- NewCaller = InvokeInst::Create(NewCallee,
- II->getNormalDest(), II->getUnwindDest(),
- NewArgs.begin(), NewArgs.end(),
- Caller->getName(), Caller);
- cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
- cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
- } else {
- NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
- Caller->getName(), Caller);
- if (cast<CallInst>(Caller)->isTailCall())
- cast<CallInst>(NewCaller)->setTailCall();
- cast<CallInst>(NewCaller)->
- setCallingConv(cast<CallInst>(Caller)->getCallingConv());
- cast<CallInst>(NewCaller)->setAttributes(NewPAL);
- }
- if (!Caller->getType()->isVoidTy())
- Caller->replaceAllUsesWith(NewCaller);
- Caller->eraseFromParent();
- Worklist.Remove(Caller);
- return 0;
- }
- }
-
- // Replace the trampoline call with a direct call. Since there is no 'nest'
- // parameter, there is no need to adjust the argument list. Let the generic
- // code sort out any function type mismatches.
- Constant *NewCallee =
- NestF->getType() == PTy ? NestF :
- ConstantExpr::getBitCast(NestF, PTy);
- CS.setCalledFunction(NewCallee);
- return CS.getInstruction();
-}
-
-
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());