diff options
author | Owen Anderson <resistor@mac.com> | 2008-05-29 08:45:13 +0000 |
---|---|---|
committer | Owen Anderson <resistor@mac.com> | 2008-05-29 08:45:13 +0000 |
commit | 871d8eb8662e66a3c2642fc8477d515973ecfe0b (patch) | |
tree | 12d9bb821fab51c14ed8c31b95761797b4a531ba | |
parent | dea99367632d9e326909dbac319fbe04f70f3697 (diff) | |
download | external_llvm-871d8eb8662e66a3c2642fc8477d515973ecfe0b.zip external_llvm-871d8eb8662e66a3c2642fc8477d515973ecfe0b.tar.gz external_llvm-871d8eb8662e66a3c2642fc8477d515973ecfe0b.tar.bz2 |
Replace the old ADCE implementation with a new one that more simply solves
the one case that ADCE catches that normal DCE doesn't: non-induction variable
loop computations.
This implementation handles this problem without using postdominators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51668 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r-- | lib/Transforms/Scalar/ADCE.cpp | 519 | ||||
-rw-r--r-- | test/Transforms/ADCE/2003-12-19-MergeReturn.ll | 27 | ||||
-rw-r--r-- | test/Transforms/ADCE/dead-phi-edge.ll | 17 |
3 files changed, 62 insertions, 501 deletions
diff --git a/lib/Transforms/Scalar/ADCE.cpp b/lib/Transforms/Scalar/ADCE.cpp index 11fb1e3..5c3b833 100644 --- a/lib/Transforms/Scalar/ADCE.cpp +++ b/lib/Transforms/Scalar/ADCE.cpp @@ -1,4 +1,4 @@ -//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// +//===- DCE.cpp - Code to perform dead code elimination --------------------===// // // The LLVM Compiler Infrastructure // @@ -7,481 +7,86 @@ // //===----------------------------------------------------------------------===// // -// This file implements "aggressive" dead code elimination. ADCE is DCe where -// values are assumed to be dead until proven otherwise. This is similar to -// SCCP, except applied to the liveness of values. +// This file implements the Aggressive Dead Code Elimination pass. This pass +// optimistically assumes that all instructions are dead until proven otherwise, +// allowing it to eliminate dead computations that other DCE passes do not +// catch, particularly involving loop computations. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "adce" #include "llvm/Transforms/Scalar.h" -#include "llvm/Constants.h" #include "llvm/Instructions.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/PostDominators.h" -#include "llvm/Support/CFG.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" +#include "llvm/Pass.h" #include "llvm/Support/Compiler.h" -#include <algorithm> +#include "llvm/Support/InstIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/SmallPtrSet.h" + using namespace llvm; -STATISTIC(NumBlockRemoved, "Number of basic blocks removed"); -STATISTIC(NumInstRemoved , "Number of instructions removed"); -STATISTIC(NumCallRemoved , "Number of calls removed"); +STATISTIC(NumRemoved, "Number of instructions removed"); namespace { -//===----------------------------------------------------------------------===// -// ADCE Class -// -// This class does all of the work of Aggressive Dead Code Elimination. -// It's public interface consists of a constructor and a doADCE() method. -// -class VISIBILITY_HIDDEN ADCE : public FunctionPass { - Function *Func; // The function that we are working on - std::vector<Instruction*> WorkList; // Instructions that just became live - std::set<Instruction*> LiveSet; // The set of live instructions - - //===--------------------------------------------------------------------===// - // The public interface for this class - // -public: - static char ID; // Pass identification, replacement for typeid - ADCE() : FunctionPass((intptr_t)&ID) {} - - // Execute the Aggressive Dead Code Elimination Algorithm - // - virtual bool runOnFunction(Function &F) { - Func = &F; - bool Changed = doADCE(); - assert(WorkList.empty()); - LiveSet.clear(); - return Changed; - } - // getAnalysisUsage - We require post dominance frontiers (aka Control - // Dependence Graph) - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - // We require that all function nodes are unified, because otherwise code - // can be marked live that wouldn't necessarily be otherwise. - AU.addRequired<UnifyFunctionExitNodes>(); - AU.addRequired<AliasAnalysis>(); - AU.addRequired<PostDominatorTree>(); - AU.addRequired<PostDominanceFrontier>(); - } - - - //===--------------------------------------------------------------------===// - // The implementation of this class - // -private: - // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning - // true if the function was modified. - // - bool doADCE(); - - void markBlockAlive(BasicBlock *BB); - - - // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in - // the specified basic block, deleting ones that are dead according to - // LiveSet. - bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); - - TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); - - inline void markInstructionLive(Instruction *I) { - if (!LiveSet.insert(I).second) return; - DOUT << "Insn Live: " << *I; - WorkList.push_back(I); - } - - inline void markTerminatorLive(const BasicBlock *BB) { - DOUT << "Terminator Live: " << *BB->getTerminator(); - markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); - } -}; -} // End of anonymous namespace - -char ADCE::ID = 0; -static RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); - -FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } - -void ADCE::markBlockAlive(BasicBlock *BB) { - // Mark the basic block as being newly ALIVE... and mark all branches that - // this block is control dependent on as being alive also... - // - PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); - - PostDominanceFrontier::const_iterator It = CDG.find(BB); - if (It != CDG.end()) { - // Get the blocks that this node is control dependent on... - const PostDominanceFrontier::DomSetType &CDB = It->second; - for (PostDominanceFrontier::DomSetType::const_iterator I = - CDB.begin(), E = CDB.end(); I != E; ++I) - markTerminatorLive(*I); // Mark all their terminators as live - } - - // If this basic block is live, and it ends in an unconditional branch, then - // the branch is alive as well... - if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) - if (BI->isUnconditional()) - markTerminatorLive(BB); -} - -// deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the -// specified basic block, deleting ones that are dead according to LiveSet. -bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { - bool Changed = false; - for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { - Instruction *I = II++; - if (!LiveSet.count(I)) { // Is this instruction alive? - if (!I->use_empty()) - I->replaceAllUsesWith(UndefValue::get(I->getType())); - - // Nope... remove the instruction from it's basic block... - if (isa<CallInst>(I)) - ++NumCallRemoved; - else - ++NumInstRemoved; - BB->getInstList().erase(I); - Changed = true; + struct VISIBILITY_HIDDEN ADCE : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + ADCE() : FunctionPass((intptr_t)&ID) {} + + virtual bool runOnFunction(Function& F); + + virtual void getAnalysisUsage(AnalysisUsage& AU) const { + AU.setPreservesCFG(); } - } - return Changed; -} - - -/// convertToUnconditionalBranch - Transform this conditional terminator -/// instruction into an unconditional branch because we don't care which of the -/// successors it goes to. This eliminate a use of the condition as well. -/// -TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { - BranchInst *NB = BranchInst::Create(TI->getSuccessor(0), TI); - BasicBlock *BB = TI->getParent(); - - // Remove entries from PHI nodes to avoid confusing ourself later... - for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) - TI->getSuccessor(i)->removePredecessor(BB); - - // Delete the old branch itself... - BB->getInstList().erase(TI); - return NB; + + }; } +char ADCE::ID = 0; +static RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); -// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning -// true if the function was modified. -// -bool ADCE::doADCE() { - bool MadeChanges = false; - - AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); - - // Iterate over all of the instructions in the function, eliminating trivially - // dead instructions, and marking instructions live that are known to be - // needed. Perform the walk in depth first order so that we avoid marking any - // instructions live in basic blocks that are unreachable. These blocks will - // be eliminated later, along with the instructions inside. - // - std::set<BasicBlock*> ReachableBBs; - std::vector<BasicBlock*> Stack; - Stack.push_back(&Func->getEntryBlock()); +bool ADCE::runOnFunction(Function& F) { + SmallPtrSet<Instruction*, 32> alive; + std::vector<Instruction*> worklist; - while (!Stack.empty()) { - BasicBlock* BB = Stack.back(); - if (ReachableBBs.count(BB)) { - Stack.pop_back(); - continue; - } else { - ReachableBBs.insert(BB); - } - - for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { - Instruction *I = II++; - if (CallInst *CI = dyn_cast<CallInst>(I)) { - if (AA.onlyReadsMemory(CI)) { - if (CI->use_empty()) { - BB->getInstList().erase(CI); - ++NumCallRemoved; - } - } else { - markInstructionLive(I); - } - } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || - isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { - // FIXME: Unreachable instructions should not be marked intrinsically - // live here. - markInstructionLive(I); - } else if (isInstructionTriviallyDead(I)) { - // Remove the instruction from it's basic block... - BB->getInstList().erase(I); - ++NumInstRemoved; - } + // Collect the set of "root" instructions that are known live. + for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) + if (isa<TerminatorInst>(I.getInstructionIterator()) || + I->mayWriteToMemory()) { + alive.insert(I.getInstructionIterator()); + worklist.push_back(I.getInstructionIterator()); } - for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { - // Back edges (as opposed to cross edges) indicate loops, so implicitly - // mark them live. - if (std::find(Stack.begin(), Stack.end(), *SI) != Stack.end()) - markInstructionLive(BB->getTerminator()); - if (!ReachableBBs.count(*SI)) - Stack.push_back(*SI); - } - } - - // Check to ensure we have an exit node for this CFG. If we don't, we won't - // have any post-dominance information, thus we cannot perform our - // transformations safely. - // - PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); - if (DT[&Func->getEntryBlock()] == 0) { - WorkList.clear(); - return MadeChanges; - } - - // Scan the function marking blocks without post-dominance information as - // live. Blocks without post-dominance information occur when there is an - // infinite loop in the program. Because the infinite loop could contain a - // function which unwinds, exits or has side-effects, we don't want to delete - // the infinite loop or those blocks leading up to it. - for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) - if (DT[I] == 0 && ReachableBBs.count(I)) - for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) - markInstructionLive((*PI)->getTerminator()); - - DOUT << "Processing work list\n"; - - // AliveBlocks - Set of basic blocks that we know have instructions that are - // alive in them... - // - std::set<BasicBlock*> AliveBlocks; - - // Process the work list of instructions that just became live... if they - // became live, then that means that all of their operands are necessary as - // well... make them live as well. - // - while (!WorkList.empty()) { - Instruction *I = WorkList.back(); // Get an instruction that became live... - WorkList.pop_back(); - - BasicBlock *BB = I->getParent(); - if (!ReachableBBs.count(BB)) continue; - if (AliveBlocks.insert(BB).second) // Basic block not alive yet. - markBlockAlive(BB); // Make it so now! - - // PHI nodes are a special case, because the incoming values are actually - // defined in the predecessor nodes of this block, meaning that the PHI - // makes the predecessors alive. - // - if (PHINode *PN = dyn_cast<PHINode>(I)) { - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - // If the incoming edge is clearly dead, it won't have control - // dependence information. Do not mark it live. - BasicBlock *PredBB = PN->getIncomingBlock(i); - if (ReachableBBs.count(PredBB)) { - // FIXME: This should mark the control dependent edge as live, not - // necessarily the predecessor itself! - if (AliveBlocks.insert(PredBB).second) - markBlockAlive(PN->getIncomingBlock(i)); // Block is newly ALIVE! - if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) - markInstructionLive(Op); - } - } - } else { - // Loop over all of the operands of the live instruction, making sure that - // they are known to be alive as well. - // - for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) - if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) - markInstructionLive(Operand); - } + // Propagate liveness backwards to operands. + while (!worklist.empty()) { + Instruction* curr = worklist.back(); + worklist.pop_back(); + + for (Instruction::op_iterator OI = curr->op_begin(), OE = curr->op_end(); + OI != OE; ++OI) + if (Instruction* Inst = dyn_cast<Instruction>(OI)) + if (alive.insert(Inst)) + worklist.push_back(Inst); } - - DEBUG( - DOUT << "Current Function: X = Live\n"; - for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ - DOUT << I->getName() << ":\t" - << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); - for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ - if (LiveSet.count(BI)) DOUT << "X "; - DOUT << *BI; - } - }); - - // All blocks being live is a common case, handle it specially. - if (AliveBlocks.size() == Func->size()) { // No dead blocks? - for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { - // Loop over all of the instructions in the function deleting instructions - // to drop their references. - deleteDeadInstructionsInLiveBlock(I); - - // Check to make sure the terminator instruction is live. If it isn't, - // this means that the condition that it branches on (we know it is not an - // unconditional branch), is not needed to make the decision of where to - // go to, because all outgoing edges go to the same place. We must remove - // the use of the condition (because it's probably dead), so we convert - // the terminator to an unconditional branch. - // - TerminatorInst *TI = I->getTerminator(); - if (!LiveSet.count(TI)) - convertToUnconditionalBranch(TI); + + // The inverse of the live set is the dead set. These are those instructions + // which have no side effects and do not influence the control flow or return + // value of the function, and may therefore be deleted safely. + SmallPtrSet<Instruction*, 32> dead; + for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) + if (!alive.count(I.getInstructionIterator())) { + dead.insert(I.getInstructionIterator()); + I->dropAllReferences(); } - - return MadeChanges; - } - - - // If the entry node is dead, insert a new entry node to eliminate the entry - // node as a special case. - // - if (!AliveBlocks.count(&Func->front())) { - BasicBlock *NewEntry = BasicBlock::Create(); - BranchInst::Create(&Func->front(), NewEntry); - Func->getBasicBlockList().push_front(NewEntry); - AliveBlocks.insert(NewEntry); // This block is always alive! - LiveSet.insert(NewEntry->getTerminator()); // The branch is live + + for (SmallPtrSet<Instruction*, 32>::iterator I = dead.begin(), + E = dead.end(); I != E; ++I) { + NumRemoved++; + (*I)->eraseFromParent(); } - - // Loop over all of the alive blocks in the function. If any successor - // blocks are not alive, we adjust the outgoing branches to branch to the - // first live postdominator of the live block, adjusting any PHI nodes in - // the block to reflect this. - // - for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) - if (AliveBlocks.count(I)) { - BasicBlock *BB = I; - TerminatorInst *TI = BB->getTerminator(); - - // If the terminator instruction is alive, but the block it is contained - // in IS alive, this means that this terminator is a conditional branch on - // a condition that doesn't matter. Make it an unconditional branch to - // ONE of the successors. This has the side effect of dropping a use of - // the conditional value, which may also be dead. - if (!LiveSet.count(TI)) - TI = convertToUnconditionalBranch(TI); - - // Loop over all of the successors, looking for ones that are not alive. - // We cannot save the number of successors in the terminator instruction - // here because we may remove them if we don't have a postdominator. - // - for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) - if (!AliveBlocks.count(TI->getSuccessor(i))) { - // Scan up the postdominator tree, looking for the first - // postdominator that is alive, and the last postdominator that is - // dead... - // - DomTreeNode *LastNode = DT[TI->getSuccessor(i)]; - DomTreeNode *NextNode = 0; - - if (LastNode) { - NextNode = LastNode->getIDom(); - while (!AliveBlocks.count(NextNode->getBlock())) { - LastNode = NextNode; - NextNode = NextNode->getIDom(); - if (NextNode == 0) { - LastNode = 0; - break; - } - } - } - - // There is a special case here... if there IS no post-dominator for - // the block we have nowhere to point our branch to. Instead, convert - // it to a return. This can only happen if the code branched into an - // infinite loop. Note that this may not be desirable, because we - // _are_ altering the behavior of the code. This is a well known - // drawback of ADCE, so in the future if we choose to revisit the - // decision, this is where it should be. - // - if (LastNode == 0) { // No postdominator! - if (!isa<InvokeInst>(TI)) { - // Call RemoveSuccessor to transmogrify the terminator instruction - // to not contain the outgoing branch, or to create a new - // terminator if the form fundamentally changes (i.e., - // unconditional branch to return). Note that this will change a - // branch into an infinite loop into a return instruction! - // - RemoveSuccessor(TI, i); - - // RemoveSuccessor may replace TI... make sure we have a fresh - // pointer. - // - TI = BB->getTerminator(); - - // Rescan this successor... - --i; - } else { - - } - } else { - // Get the basic blocks that we need... - BasicBlock *LastDead = LastNode->getBlock(); - BasicBlock *NextAlive = NextNode->getBlock(); - - // Make the conditional branch now go to the next alive block... - TI->getSuccessor(i)->removePredecessor(BB); - TI->setSuccessor(i, NextAlive); - - // If there are PHI nodes in NextAlive, we need to add entries to - // the PHI nodes for the new incoming edge. The incoming values - // should be identical to the incoming values for LastDead. - // - for (BasicBlock::iterator II = NextAlive->begin(); - isa<PHINode>(II); ++II) { - PHINode *PN = cast<PHINode>(II); - if (LiveSet.count(PN)) { // Only modify live phi nodes - // Get the incoming value for LastDead... - int OldIdx = PN->getBasicBlockIndex(LastDead); - assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); - Value *InVal = PN->getIncomingValue(OldIdx); - - // Add an incoming value for BB now... - PN->addIncoming(InVal, BB); - } - } - } - } - - // Now loop over all of the instructions in the basic block, deleting - // dead instructions. This is so that the next sweep over the program - // can safely delete dead instructions without other dead instructions - // still referring to them. - // - deleteDeadInstructionsInLiveBlock(BB); - } - - // Loop over all of the basic blocks in the function, dropping references of - // the dead basic blocks. We must do this after the previous step to avoid - // dropping references to PHIs which still have entries... - // - std::vector<BasicBlock*> DeadBlocks; - for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) - if (!AliveBlocks.count(BB)) { - // Remove PHI node entries for this block in live successor blocks. - for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) - if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) - (*SI)->removePredecessor(BB); - - BB->dropAllReferences(); - MadeChanges = true; - DeadBlocks.push_back(BB); - } - - NumBlockRemoved += DeadBlocks.size(); - - // Now loop through all of the blocks and delete the dead ones. We can safely - // do this now because we know that there are no references to dead blocks - // (because they have dropped all of their references). - for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), - E = DeadBlocks.end(); I != E; ++I) - Func->getBasicBlockList().erase(*I); - - return MadeChanges; + + return !dead.empty(); } + +FunctionPass *llvm::createAggressiveDCEPass() { + return new ADCE(); +}
\ No newline at end of file diff --git a/test/Transforms/ADCE/2003-12-19-MergeReturn.ll b/test/Transforms/ADCE/2003-12-19-MergeReturn.ll deleted file mode 100644 index b2c294b..0000000 --- a/test/Transforms/ADCE/2003-12-19-MergeReturn.ll +++ /dev/null @@ -1,27 +0,0 @@ -; This testcase was failing because without merging the return blocks, ADCE -; didn't know that it could get rid of the then.0 block. - -; RUN: llvm-as < %s | opt -adce | llvm-dis | not grep load - - -define void @main(i32 %argc, i8** %argv) { -entry: - call void @__main( ) - %tmp.1 = icmp ule i32 %argc, 5 ; <i1> [#uses=1] - br i1 %tmp.1, label %then.0, label %return - -then.0: ; preds = %entry - %tmp.8 = load i8** %argv ; <i8*> [#uses=1] - %tmp.10 = load i8* %tmp.8 ; <i8> [#uses=1] - %tmp.11 = icmp eq i8 %tmp.10, 98 ; <i1> [#uses=1] - br i1 %tmp.11, label %then.1, label %return - -then.1: ; preds = %then.0 - ret void - -return: ; preds = %then.0, %entry - ret void -} - -declare void @__main() - diff --git a/test/Transforms/ADCE/dead-phi-edge.ll b/test/Transforms/ADCE/dead-phi-edge.ll deleted file mode 100644 index 8445601..0000000 --- a/test/Transforms/ADCE/dead-phi-edge.ll +++ /dev/null @@ -1,17 +0,0 @@ -; RUN: llvm-as < %s | opt -adce | llvm-dis | not grep call - -; The call is not live just because the PHI uses the call retval! - -define i32 @test(i32 %X) { -; <label>:0 - br label %Done - -DeadBlock: ; No predecessors! - %Y = call i32 @test( i32 0 ) ; <i32> [#uses=1] - br label %Done - -Done: ; preds = %DeadBlock, %0 - %Z = phi i32 [ %X, %0 ], [ %Y, %DeadBlock ] ; <i32> [#uses=1] - ret i32 %Z -} - |