aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2008-05-19 20:18:56 +0000
committerChris Lattner <sabre@nondot.org>2008-05-19 20:18:56 +0000
commita540623ab1186d5045f40dc8659bf2330523d34c (patch)
treea9a256bdc984e3bf77700d6e3f64c3cbc4d649b0
parent13d57320bd212483463d4f8992d5787b29eda5df (diff)
downloadexternal_llvm-a540623ab1186d5045f40dc8659bf2330523d34c.zip
external_llvm-a540623ab1186d5045f40dc8659bf2330523d34c.tar.gz
external_llvm-a540623ab1186d5045f40dc8659bf2330523d34c.tar.bz2
Fold FP comparisons where one operand is converted from an integer
type and the other operand is a constant into integer comparisons. This happens surprisingly frequently (e.g. 10 times in 471.omnetpp), which are things like this: %tmp8283 = sitofp i32 %tmp82 to double %tmp1013 = fcmp ult double %tmp8283, 0.0 Clearly comparing tmp82 against i32 0 is cheaper here. this also triggers 8 times in gobmk, including this one: %tmp375376 = sitofp i32 %tmp375 to double %tmp377 = fcmp ogt double %tmp375376, 8.150000e+01 which is comparing an integer against 81.5 :). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51268 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/Scalar/InstructionCombining.cpp160
-rw-r--r--test/Transforms/InstCombine/sitofp.ll25
2 files changed, 185 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp
index 62185c6..fff6dba 100644
--- a/lib/Transforms/Scalar/InstructionCombining.cpp
+++ b/lib/Transforms/Scalar/InstructionCombining.cpp
@@ -185,6 +185,8 @@ namespace {
Instruction *visitAShr(BinaryOperator &I);
Instruction *visitLShr(BinaryOperator &I);
Instruction *commonShiftTransforms(BinaryOperator &I);
+ Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
+ Constant *RHSC);
Instruction *visitFCmpInst(FCmpInst &I);
Instruction *visitICmpInst(ICmpInst &I);
Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
@@ -418,6 +420,18 @@ static const Type *getPromotedType(const Type *Ty) {
return Ty;
}
+/// GetFPMantissaWidth - Return the width of the mantissa (aka significand) of
+/// the specified floating point type in bits. This returns -1 if unknown.
+static int GetFPMantissaWidth(const Type *FPType) {
+ if (FPType == Type::FloatTy)
+ return 24;
+ if (FPType == Type::DoubleTy)
+ return 53;
+ if (FPType == Type::X86_FP80Ty)
+ return 64;
+ return -1; // Unknown/crazy type.
+}
+
/// getBitCastOperand - If the specified operand is a CastInst or a constant
/// expression bitcast, return the operand value, otherwise return null.
static Value *getBitCastOperand(Value *V) {
@@ -5228,6 +5242,135 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
return 0;
}
+/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
+///
+Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
+ Instruction *LHSI,
+ Constant *RHSC) {
+ if (!isa<ConstantFP>(RHSC)) return 0;
+ const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
+
+ // Get the width of the mantissa. We don't want to hack on conversions that
+ // might lose information from the integer, e.g. "i64 -> float"
+ int MantissaWidth = GetFPMantissaWidth(LHSI->getType());
+ if (MantissaWidth == -1) return 0; // Unknown.
+
+ // Check to see that the input is converted from an integer type that is small
+ // enough that preserves all bits. TODO: check here for "known" sign bits.
+ // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
+ unsigned InputSize = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
+
+ // If this is a uitofp instruction, we need an extra bit to hold the sign.
+ if (isa<UIToFPInst>(LHSI))
+ ++InputSize;
+
+ // If the conversion would lose info, don't hack on this.
+ if ((int)InputSize > MantissaWidth)
+ return 0;
+
+ // Otherwise, we can potentially simplify the comparison. We know that it
+ // will always come through as an integer value and we know the constant is
+ // not a NAN (it would have been previously simplified).
+ assert(!RHS.isNaN() && "NaN comparison not already folded!");
+
+ ICmpInst::Predicate Pred;
+ switch (I.getPredicate()) {
+ default: assert(0 && "Unexpected predicate!");
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_OEQ: Pred = ICmpInst::ICMP_EQ; break;
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_OGT: Pred = ICmpInst::ICMP_SGT; break;
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGE: Pred = ICmpInst::ICMP_SGE; break;
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_OLT: Pred = ICmpInst::ICMP_SLT; break;
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLE: Pred = ICmpInst::ICMP_SLE; break;
+ case FCmpInst::FCMP_UNE:
+ case FCmpInst::FCMP_ONE: Pred = ICmpInst::ICMP_NE; break;
+ case FCmpInst::FCMP_ORD:
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
+ case FCmpInst::FCMP_UNO:
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
+ }
+
+ const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
+
+ // Now we know that the APFloat is a normal number, zero or inf.
+
+ // See if the FP constant is top large for the integer. For example,
+ // comparing an i8 to 300.0.
+ unsigned IntWidth = IntTy->getPrimitiveSizeInBits();
+
+ // If the RHS value is > SignedMax, fold the comparison. This handles +INF
+ // and large values.
+ APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
+ SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
+ if (ICmpInst::ICMP_NE || ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
+ }
+
+ // See if the RHS value is < SignedMin.
+ APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
+ SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
+ if (ICmpInst::ICMP_NE || ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
+ }
+
+ // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] but
+ // it may still be fractional. See if it is fractional by casting the FP
+ // value to the integer value and back, checking for equality. Don't do this
+ // for zero, because -0.0 is not fractional.
+ Constant *RHSInt = ConstantExpr::getFPToSI(RHSC, IntTy);
+ if (!RHS.isZero() &&
+ ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) != RHSC) {
+ // If we had a comparison against a fractional value, we have to adjust
+ // the compare predicate and sometimes the value. RHSC is rounded towards
+ // zero at this point.
+ switch (Pred) {
+ default: assert(0 && "Unexpected integer comparison!");
+ case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
+ case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
+ case ICmpInst::ICMP_SLE:
+ // (float)int <= 4.4 --> int <= 4
+ // (float)int <= -4.4 --> int < -4
+ if (RHS.isNegative())
+ Pred = ICmpInst::ICMP_SLT;
+ break;
+ case ICmpInst::ICMP_SLT:
+ // (float)int < -4.4 --> int < -4
+ // (float)int < 4.4 --> int <= 4
+ if (!RHS.isNegative())
+ Pred = ICmpInst::ICMP_SLE;
+ break;
+ case ICmpInst::ICMP_SGT:
+ // (float)int > 4.4 --> int > 4
+ // (float)int > -4.4 --> int >= -4
+ if (RHS.isNegative())
+ Pred = ICmpInst::ICMP_SGE;
+ break;
+ case ICmpInst::ICMP_SGE:
+ // (float)int >= -4.4 --> int >= -4
+ // (float)int >= 4.4 --> int > 4
+ if (!RHS.isNegative())
+ Pred = ICmpInst::ICMP_SGT;
+ break;
+ }
+ }
+
+ // Lower this FP comparison into an appropriate integer version of the
+ // comparison.
+ return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
+}
+
Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
bool Changed = SimplifyCompare(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
@@ -5276,12 +5419,29 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
// Handle fcmp with constant RHS
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
+ // If the constant is a nan, see if we can fold the comparison based on it.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
+ if (CFP->getValueAPF().isNaN()) {
+ if (FCmpInst::isOrdered(I.getPredicate())) // True if ordered and...
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
+ if (FCmpInst::isUnordered(I.getPredicate())) // True if unordered or...
+ return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
+ if (FCmpInst::isUnordered(I.getPredicate())) // Undef on unordered.
+ return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
+ }
+ }
+
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
switch (LHSI->getOpcode()) {
case Instruction::PHI:
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
break;
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
+ return NV;
+ break;
case Instruction::Select:
// If either operand of the select is a constant, we can fold the
// comparison into the select arms, which will cause one to be
diff --git a/test/Transforms/InstCombine/sitofp.ll b/test/Transforms/InstCombine/sitofp.ll
new file mode 100644
index 0000000..fd06dea
--- /dev/null
+++ b/test/Transforms/InstCombine/sitofp.ll
@@ -0,0 +1,25 @@
+; RUN: llvm-as < %s | opt -instcombine | llvm-dis | not grep sitofp
+
+define i1 @test1(i8 %A) {
+ %B = sitofp i8 %A to double
+ %C = fcmp ult double %B, 128.0
+ ret i1 %C ; True!
+}
+define i1 @test2(i8 %A) {
+ %B = sitofp i8 %A to double
+ %C = fcmp ugt double %B, -128.1
+ ret i1 %C ; True!
+}
+
+define i1 @test3(i8 %A) {
+ %B = sitofp i8 %A to double
+ %C = fcmp ule double %B, 127.0
+ ret i1 %C ; true!
+}
+
+define i1 @test4(i8 %A) {
+ %B = sitofp i8 %A to double
+ %C = fcmp ult double %B, 127.0
+ ret i1 %C ; A != 127
+}
+