aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorArnold Schwaighofer <aschwaighofer@apple.com>2013-09-21 01:06:00 +0000
committerArnold Schwaighofer <aschwaighofer@apple.com>2013-09-21 01:06:00 +0000
commita9baf1ecfd343e2d8d8fa277c8b093a1869726bb (patch)
tree1942923f038bafac2b41f315fafe94400700ab66
parent2ecd8c90b037e58f4914acfc6a4ced5a01774a05 (diff)
downloadexternal_llvm-a9baf1ecfd343e2d8d8fa277c8b093a1869726bb.zip
external_llvm-a9baf1ecfd343e2d8d8fa277c8b093a1869726bb.tar.gz
external_llvm-a9baf1ecfd343e2d8d8fa277c8b093a1869726bb.tar.bz2
Reapply "SLPVectorizer: Handle more horizontal reductions (disabled)""
Reapply r191108 with a fix for a memory corruption error I introduced. Of course, we can't reference the scalars that we replace by vectorizing and then call their eraseFromParent method. I only 'needed' the scalars to get the DebugLoc. Just store the DebugLoc before actually vectorizing instead. As a nice side effect, this also simplifies the interface between BoUpSLP and the HorizontalReduction class to returning a value pointer (the vectorized tree root). radar://14607682 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191123 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/Vectorize/SLPVectorizer.cpp372
-rw-r--r--test/Transforms/SLPVectorizer/X86/horizontal.ll415
2 files changed, 779 insertions, 8 deletions
diff --git a/lib/Transforms/Vectorize/SLPVectorizer.cpp b/lib/Transforms/Vectorize/SLPVectorizer.cpp
index cd3f723..053e08e4 100644
--- a/lib/Transforms/Vectorize/SLPVectorizer.cpp
+++ b/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -49,6 +49,11 @@ static cl::opt<int>
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
cl::desc("Only vectorize if you gain more than this "
"number "));
+
+static cl::opt<bool>
+ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
+ cl::desc("Attempt to vectorize horizontal reductions"));
+
namespace {
static const unsigned MinVecRegSize = 128;
@@ -238,17 +243,20 @@ public:
}
/// \brief Vectorize the tree that starts with the elements in \p VL.
- void vectorizeTree();
+ /// Returns the vectorized root.
+ Value *vectorizeTree();
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
int getTreeCost();
- /// Construct a vectorizable tree that starts at \p Roots.
- void buildTree(ArrayRef<Value *> Roots);
+ /// Construct a vectorizable tree that starts at \p Roots and is possibly
+ /// used by a reduction of \p RdxOps.
+ void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
/// Clear the internal data structures that are created by 'buildTree'.
void deleteTree() {
+ RdxOps = 0;
VectorizableTree.clear();
ScalarToTreeEntry.clear();
MustGather.clear();
@@ -401,6 +409,9 @@ private:
/// Numbers instructions in different blocks.
DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
+ /// Reduction operators.
+ ValueSet *RdxOps;
+
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
@@ -413,8 +424,9 @@ private:
IRBuilder<> Builder;
};
-void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
+void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
deleteTree();
+ RdxOps = Rdx;
if (!getSameType(Roots))
return;
buildTree_rec(Roots, 0);
@@ -445,8 +457,12 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
continue;
}
+ Instruction *UserInst = dyn_cast<Instruction>(*User);
+ if (!UserInst)
+ continue;
- if (!isa<Instruction>(*User))
+ // Ignore uses that are part of the reduction.
+ if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
continue;
DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
@@ -578,6 +594,10 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
continue;
}
+ // This user is part of the reduction.
+ if (RdxOps && RdxOps->count(User))
+ continue;
+
// Make sure that we can schedule this unknown user.
BlockNumbering &BN = BlocksNumbers[BB];
int UserIndex = BN.getIndex(User);
@@ -1372,7 +1392,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
return 0;
}
-void BoUpSLP::vectorizeTree() {
+Value *BoUpSLP::vectorizeTree() {
Builder.SetInsertPoint(F->getEntryBlock().begin());
vectorizeTree(&VectorizableTree[0]);
@@ -1449,7 +1469,10 @@ void BoUpSLP::vectorizeTree() {
DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
assert(!MustGather.count(*User) &&
"Replacing gathered value with undef");
- assert(ScalarToTreeEntry.count(*User) &&
+
+ assert((ScalarToTreeEntry.count(*User) ||
+ // It is legal to replace the reduction users by undef.
+ (RdxOps && RdxOps->count(*User))) &&
"Replacing out-of-tree value with undef");
}
Value *Undef = UndefValue::get(Ty);
@@ -1464,6 +1487,8 @@ void BoUpSLP::vectorizeTree() {
BlocksNumbers[it].forget();
}
Builder.ClearInsertionPoint();
+
+ return VectorizableTree[0].VectorizedValue;
}
void BoUpSLP::optimizeGatherSequence() {
@@ -1887,6 +1912,308 @@ bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
return 0;
}
+/// \brief Generate a shuffle mask to be used in a reduction tree.
+///
+/// \param VecLen The length of the vector to be reduced.
+/// \param NumEltsToRdx The number of elements that should be reduced in the
+/// vector.
+/// \param IsPairwise Whether the reduction is a pairwise or splitting
+/// reduction. A pairwise reduction will generate a mask of
+/// <0,2,...> or <1,3,..> while a splitting reduction will generate
+/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
+/// \param IsLeft True will generate a mask of even elements, odd otherwise.
+static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
+ bool IsPairwise, bool IsLeft,
+ IRBuilder<> &Builder) {
+ assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
+
+ SmallVector<Constant *, 32> ShuffleMask(
+ VecLen, UndefValue::get(Builder.getInt32Ty()));
+
+ if (IsPairwise)
+ // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
+ for (unsigned i = 0; i != NumEltsToRdx; ++i)
+ ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
+ else
+ // Move the upper half of the vector to the lower half.
+ for (unsigned i = 0; i != NumEltsToRdx; ++i)
+ ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
+
+ return ConstantVector::get(ShuffleMask);
+}
+
+
+/// Model horizontal reductions.
+///
+/// A horizontal reduction is a tree of reduction operations (currently add and
+/// fadd) that has operations that can be put into a vector as its leaf.
+/// For example, this tree:
+///
+/// mul mul mul mul
+/// \ / \ /
+/// + +
+/// \ /
+/// +
+/// This tree has "mul" as its reduced values and "+" as its reduction
+/// operations. A reduction might be feeding into a store or a binary operation
+/// feeding a phi.
+/// ...
+/// \ /
+/// +
+/// \
+/// phi +=
+///
+/// Or:
+/// ...
+/// \ /
+/// +
+/// \
+/// *p =
+///
+class HorizontalReduction {
+ SmallPtrSet<Value *, 16> ReductionOps;
+ SmallVector<Value *, 32> ReducedVals;
+
+ BinaryOperator *ReductionRoot;
+ PHINode *ReductionPHI;
+
+ /// The opcode of the reduction.
+ unsigned ReductionOpcode;
+ /// The opcode of the values we perform a reduction on.
+ unsigned ReducedValueOpcode;
+ /// The width of one full horizontal reduction operation.
+ unsigned ReduxWidth;
+ /// Should we model this reduction as a pairwise reduction tree or a tree that
+ /// splits the vector in halves and adds those halves.
+ bool IsPairwiseReduction;
+
+public:
+ HorizontalReduction()
+ : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
+ ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
+
+ /// \brief Try to find a reduction tree.
+ bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
+ DataLayout *DL) {
+ assert((!Phi ||
+ std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
+ "Thi phi needs to use the binary operator");
+
+ // We could have a initial reductions that is not an add.
+ // r *= v1 + v2 + v3 + v4
+ // In such a case start looking for a tree rooted in the first '+'.
+ if (Phi) {
+ if (B->getOperand(0) == Phi) {
+ Phi = 0;
+ B = dyn_cast<BinaryOperator>(B->getOperand(1));
+ } else if (B->getOperand(1) == Phi) {
+ Phi = 0;
+ B = dyn_cast<BinaryOperator>(B->getOperand(0));
+ }
+ }
+
+ if (!B)
+ return false;
+
+ Type *Ty = B->getType();
+ if (Ty->isVectorTy())
+ return false;
+
+ ReductionOpcode = B->getOpcode();
+ ReducedValueOpcode = 0;
+ ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
+ ReductionRoot = B;
+ ReductionPHI = Phi;
+
+ if (ReduxWidth < 4)
+ return false;
+
+ // We currently only support adds.
+ if (ReductionOpcode != Instruction::Add &&
+ ReductionOpcode != Instruction::FAdd)
+ return false;
+
+ // Post order traverse the reduction tree starting at B. We only handle true
+ // trees containing only binary operators.
+ SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
+ Stack.push_back(std::make_pair(B, 0));
+ while (!Stack.empty()) {
+ BinaryOperator *TreeN = Stack.back().first;
+ unsigned EdgeToVist = Stack.back().second++;
+ bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
+
+ // Only handle trees in the current basic block.
+ if (TreeN->getParent() != B->getParent())
+ return false;
+
+ // Each tree node needs to have one user except for the ultimate
+ // reduction.
+ if (!TreeN->hasOneUse() && TreeN != B)
+ return false;
+
+ // Postorder vist.
+ if (EdgeToVist == 2 || IsReducedValue) {
+ if (IsReducedValue) {
+ // Make sure that the opcodes of the operations that we are going to
+ // reduce match.
+ if (!ReducedValueOpcode)
+ ReducedValueOpcode = TreeN->getOpcode();
+ else if (ReducedValueOpcode != TreeN->getOpcode())
+ return false;
+ ReducedVals.push_back(TreeN);
+ } else {
+ // We need to be able to reassociate the adds.
+ if (!TreeN->isAssociative())
+ return false;
+ ReductionOps.insert(TreeN);
+ }
+ // Retract.
+ Stack.pop_back();
+ continue;
+ }
+
+ // Visit left or right.
+ Value *NextV = TreeN->getOperand(EdgeToVist);
+ BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
+ if (Next)
+ Stack.push_back(std::make_pair(Next, 0));
+ else if (NextV != Phi)
+ return false;
+ }
+ return true;
+ }
+
+ /// \brief Attempt to vectorize the tree found by
+ /// matchAssociativeReduction.
+ bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
+ if (ReducedVals.empty())
+ return false;
+
+ unsigned NumReducedVals = ReducedVals.size();
+ if (NumReducedVals < ReduxWidth)
+ return false;
+
+ Value *VectorizedTree = 0;
+ IRBuilder<> Builder(ReductionRoot);
+ FastMathFlags Unsafe;
+ Unsafe.setUnsafeAlgebra();
+ Builder.SetFastMathFlags(Unsafe);
+ unsigned i = 0;
+
+ for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
+ ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
+ V.buildTree(ValsToReduce, &ReductionOps);
+
+ // Estimate cost.
+ int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
+ if (Cost >= -SLPCostThreshold)
+ break;
+
+ DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
+ << ". (HorRdx)\n");
+
+ // Vectorize a tree.
+ DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
+ Value *VectorizedRoot = V.vectorizeTree();
+
+ // Emit a reduction.
+ Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
+ if (VectorizedTree) {
+ Builder.SetCurrentDebugLocation(Loc);
+ VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
+ ReducedSubTree, "bin.rdx");
+ } else
+ VectorizedTree = ReducedSubTree;
+ }
+
+ if (VectorizedTree) {
+ // Finish the reduction.
+ for (; i < NumReducedVals; ++i) {
+ Builder.SetCurrentDebugLocation(
+ cast<Instruction>(ReducedVals[i])->getDebugLoc());
+ VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
+ ReducedVals[i]);
+ }
+ // Update users.
+ if (ReductionPHI) {
+ assert(ReductionRoot != NULL && "Need a reduction operation");
+ ReductionRoot->setOperand(0, VectorizedTree);
+ ReductionRoot->setOperand(1, ReductionPHI);
+ } else
+ ReductionRoot->replaceAllUsesWith(VectorizedTree);
+ }
+ return VectorizedTree != 0;
+ }
+
+private:
+
+ /// \brief Calcuate the cost of a reduction.
+ int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
+ Type *ScalarTy = FirstReducedVal->getType();
+ Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
+
+ int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
+ int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
+
+ IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
+ int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
+
+ int ScalarReduxCost =
+ ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
+
+ DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
+ << " for reduction that starts with " << *FirstReducedVal
+ << " (It is a "
+ << (IsPairwiseReduction ? "pairwise" : "splitting")
+ << " reduction)\n");
+
+ return VecReduxCost - ScalarReduxCost;
+ }
+
+ static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
+ Value *R, const Twine &Name = "") {
+ if (Opcode == Instruction::FAdd)
+ return Builder.CreateFAdd(L, R, Name);
+ return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
+ }
+
+ /// \brief Emit a horizontal reduction of the vectorized value.
+ Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
+ assert(VectorizedValue && "Need to have a vectorized tree node");
+ Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
+ assert(isPowerOf2_32(ReduxWidth) &&
+ "We only handle power-of-two reductions for now");
+
+ SmallVector<Constant *, 32> ShuffleMask(ReduxWidth, 0);
+ Value *TmpVec = ValToReduce;
+ for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
+ if (IsPairwiseReduction) {
+ Value *LeftMask =
+ createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
+ Value *RightMask =
+ createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
+
+ Value *LeftShuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
+ Value *RightShuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
+ "rdx.shuf.r");
+ TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
+ "bin.rdx");
+ } else {
+ Value *UpperHalf =
+ createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
+ Value *Shuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
+ TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
+ }
+ }
+
+ // The result is in the first element of the vector.
+ return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+ }
+};
+
/// \brief Recognize construction of vectors like
/// %ra = insertelement <4 x float> undef, float %s0, i32 0
/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
@@ -1981,7 +2308,18 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
if (!BI)
continue;
- Value *Inst = BI->getOperand(0);
+ // Try to match and vectorize a horizontal reduction.
+ HorizontalReduction HorRdx;
+ if (ShouldVectorizeHor &&
+ HorRdx.matchAssociativeReduction(P, BI, DL) &&
+ HorRdx.tryToReduce(R, TTI)) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+
+ Value *Inst = BI->getOperand(0);
if (Inst == P)
Inst = BI->getOperand(1);
@@ -1991,10 +2329,28 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
Changed = true;
it = BB->begin();
e = BB->end();
+ continue;
}
+
continue;
}
+ // Try to vectorize horizontal reductions feeding into a store.
+ if (StoreInst *SI = dyn_cast<StoreInst>(it))
+ if (BinaryOperator *BinOp =
+ dyn_cast<BinaryOperator>(SI->getValueOperand())) {
+ HorizontalReduction HorRdx;
+ if (ShouldVectorizeHor &&
+ ((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
+ HorRdx.tryToReduce(R, TTI)) ||
+ tryToVectorize(BinOp, R))) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+ }
+
// Try to vectorize trees that start at compare instructions.
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
diff --git a/test/Transforms/SLPVectorizer/X86/horizontal.ll b/test/Transforms/SLPVectorizer/X86/horizontal.ll
new file mode 100644
index 0000000..9517066
--- /dev/null
+++ b/test/Transforms/SLPVectorizer/X86/horizontal.ll
@@ -0,0 +1,415 @@
+; RUN: opt -slp-vectorizer -slp-vectorize-hor -S < %s -mtriple=x86_64-apple-macosx -mcpu=corei7-avx | FileCheck %s
+
+target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
+
+; #include <stdint.h>
+;
+; int foo(float *A, int n) {
+; float sum = 0;
+; for (intptr_t i=0; i < n; ++i) {
+; sum += 7*A[i*4 ] +
+; 7*A[i*4+1] +
+; 7*A[i*4+2] +
+; 7*A[i*4+3];
+; }
+; return sum;
+; }
+
+; CHECK-LABEL: add_red
+; CHECK: fmul <4 x float>
+; CHECK: shufflevector <4 x float>
+
+define i32 @add_red(float* %A, i32 %n) {
+entry:
+ %cmp31 = icmp sgt i32 %n, 0
+ br i1 %cmp31, label %for.body.lr.ph, label %for.end
+
+for.body.lr.ph:
+ %0 = sext i32 %n to i64
+ br label %for.body
+
+for.body:
+ %i.033 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
+ %sum.032 = phi float [ 0.000000e+00, %for.body.lr.ph ], [ %add17, %for.body ]
+ %mul = shl nsw i64 %i.033, 2
+ %arrayidx = getelementptr inbounds float* %A, i64 %mul
+ %1 = load float* %arrayidx, align 4
+ %mul2 = fmul float %1, 7.000000e+00
+ %add28 = or i64 %mul, 1
+ %arrayidx4 = getelementptr inbounds float* %A, i64 %add28
+ %2 = load float* %arrayidx4, align 4
+ %mul5 = fmul float %2, 7.000000e+00
+ %add6 = fadd fast float %mul2, %mul5
+ %add829 = or i64 %mul, 2
+ %arrayidx9 = getelementptr inbounds float* %A, i64 %add829
+ %3 = load float* %arrayidx9, align 4
+ %mul10 = fmul float %3, 7.000000e+00
+ %add11 = fadd fast float %add6, %mul10
+ %add1330 = or i64 %mul, 3
+ %arrayidx14 = getelementptr inbounds float* %A, i64 %add1330
+ %4 = load float* %arrayidx14, align 4
+ %mul15 = fmul float %4, 7.000000e+00
+ %add16 = fadd fast float %add11, %mul15
+ %add17 = fadd fast float %sum.032, %add16
+ %inc = add nsw i64 %i.033, 1
+ %exitcond = icmp eq i64 %inc, %0
+ br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
+
+for.cond.for.end_crit_edge:
+ %phitmp = fptosi float %add17 to i32
+ br label %for.end
+
+for.end:
+ %sum.0.lcssa = phi i32 [ %phitmp, %for.cond.for.end_crit_edge ], [ 0, %entry ]
+ ret i32 %sum.0.lcssa
+}
+
+; int foo(float * restrict A, float * restrict B, int n) {
+; float sum = 0;
+; for (intptr_t i=0; i < n; ++i) {
+; sum *= B[0]*A[i*4 ] +
+; B[1]*A[i*4+1] +
+; B[2]*A[i*4+2] +
+; B[3]*A[i*4+3];
+; }
+; return sum;
+; }
+
+; CHECK-LABEL: mul_red
+; CHECK: fmul <4 x float>
+; CHECK: shufflevector <4 x float>
+
+define i32 @mul_red(float* noalias %A, float* noalias %B, i32 %n) {
+entry:
+ %cmp38 = icmp sgt i32 %n, 0
+ br i1 %cmp38, label %for.body.lr.ph, label %for.end
+
+for.body.lr.ph:
+ %0 = load float* %B, align 4
+ %arrayidx4 = getelementptr inbounds float* %B, i64 1
+ %1 = load float* %arrayidx4, align 4
+ %arrayidx9 = getelementptr inbounds float* %B, i64 2
+ %2 = load float* %arrayidx9, align 4
+ %arrayidx15 = getelementptr inbounds float* %B, i64 3
+ %3 = load float* %arrayidx15, align 4
+ %4 = sext i32 %n to i64
+ br label %for.body
+
+for.body:
+ %i.040 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
+ %sum.039 = phi float [ 0.000000e+00, %for.body.lr.ph ], [ %mul21, %for.body ]
+ %mul = shl nsw i64 %i.040, 2
+ %arrayidx2 = getelementptr inbounds float* %A, i64 %mul
+ %5 = load float* %arrayidx2, align 4
+ %mul3 = fmul float %0, %5
+ %add35 = or i64 %mul, 1
+ %arrayidx6 = getelementptr inbounds float* %A, i64 %add35
+ %6 = load float* %arrayidx6, align 4
+ %mul7 = fmul float %1, %6
+ %add8 = fadd fast float %mul3, %mul7
+ %add1136 = or i64 %mul, 2
+ %arrayidx12 = getelementptr inbounds float* %A, i64 %add1136
+ %7 = load float* %arrayidx12, align 4
+ %mul13 = fmul float %2, %7
+ %add14 = fadd fast float %add8, %mul13
+ %add1737 = or i64 %mul, 3
+ %arrayidx18 = getelementptr inbounds float* %A, i64 %add1737
+ %8 = load float* %arrayidx18, align 4
+ %mul19 = fmul float %3, %8
+ %add20 = fadd fast float %add14, %mul19
+ %mul21 = fmul float %sum.039, %add20
+ %inc = add nsw i64 %i.040, 1
+ %exitcond = icmp eq i64 %inc, %4
+ br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
+
+for.cond.for.end_crit_edge:
+ %phitmp = fptosi float %mul21 to i32
+ br label %for.end
+
+for.end:
+ %sum.0.lcssa = phi i32 [ %phitmp, %for.cond.for.end_crit_edge ], [ 0, %entry ]
+ ret i32 %sum.0.lcssa
+}
+
+; int foo(float * restrict A, float * restrict B, int n) {
+; float sum = 0;
+; for (intptr_t i=0; i < n; ++i) {
+; sum += B[0]*A[i*6 ] +
+; B[1]*A[i*6+1] +
+; B[2]*A[i*6+2] +
+; B[3]*A[i*6+3] +
+; B[4]*A[i*6+4] +
+; B[5]*A[i*6+5] +
+; B[6]*A[i*6+6] +
+; B[7]*A[i*6+7] +
+; B[8]*A[i*6+8];
+; }
+; return sum;
+; }
+
+; CHECK-LABEL: long_red
+; CHECK: fmul <4 x float>
+; CHECK: shufflevector <4 x float>
+
+define i32 @long_red(float* noalias %A, float* noalias %B, i32 %n) {
+entry:
+ %cmp81 = icmp sgt i32 %n, 0
+ br i1 %cmp81, label %for.body.lr.ph, label %for.end
+
+for.body.lr.ph:
+ %0 = load float* %B, align 4
+ %arrayidx4 = getelementptr inbounds float* %B, i64 1
+ %1 = load float* %arrayidx4, align 4
+ %arrayidx9 = getelementptr inbounds float* %B, i64 2
+ %2 = load float* %arrayidx9, align 4
+ %arrayidx15 = getelementptr inbounds float* %B, i64 3
+ %3 = load float* %arrayidx15, align 4
+ %arrayidx21 = getelementptr inbounds float* %B, i64 4
+ %4 = load float* %arrayidx21, align 4
+ %arrayidx27 = getelementptr inbounds float* %B, i64 5
+ %5 = load float* %arrayidx27, align 4
+ %arrayidx33 = getelementptr inbounds float* %B, i64 6
+ %6 = load float* %arrayidx33, align 4
+ %arrayidx39 = getelementptr inbounds float* %B, i64 7
+ %7 = load float* %arrayidx39, align 4
+ %arrayidx45 = getelementptr inbounds float* %B, i64 8
+ %8 = load float* %arrayidx45, align 4
+ %9 = sext i32 %n to i64
+ br label %for.body
+
+for.body:
+ %i.083 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
+ %sum.082 = phi float [ 0.000000e+00, %for.body.lr.ph ], [ %add51, %for.body ]
+ %mul = mul nsw i64 %i.083, 6
+ %arrayidx2 = getelementptr inbounds float* %A, i64 %mul
+ %10 = load float* %arrayidx2, align 4
+ %mul3 = fmul fast float %0, %10
+ %add80 = or i64 %mul, 1
+ %arrayidx6 = getelementptr inbounds float* %A, i64 %add80
+ %11 = load float* %arrayidx6, align 4
+ %mul7 = fmul fast float %1, %11
+ %add8 = fadd fast float %mul3, %mul7
+ %add11 = add nsw i64 %mul, 2
+ %arrayidx12 = getelementptr inbounds float* %A, i64 %add11
+ %12 = load float* %arrayidx12, align 4
+ %mul13 = fmul fast float %2, %12
+ %add14 = fadd fast float %add8, %mul13
+ %add17 = add nsw i64 %mul, 3
+ %arrayidx18 = getelementptr inbounds float* %A, i64 %add17
+ %13 = load float* %arrayidx18, align 4
+ %mul19 = fmul fast float %3, %13
+ %add20 = fadd fast float %add14, %mul19
+ %add23 = add nsw i64 %mul, 4
+ %arrayidx24 = getelementptr inbounds float* %A, i64 %add23
+ %14 = load float* %arrayidx24, align 4
+ %mul25 = fmul fast float %4, %14
+ %add26 = fadd fast float %add20, %mul25
+ %add29 = add nsw i64 %mul, 5
+ %arrayidx30 = getelementptr inbounds float* %A, i64 %add29
+ %15 = load float* %arrayidx30, align 4
+ %mul31 = fmul fast float %5, %15
+ %add32 = fadd fast float %add26, %mul31
+ %add35 = add nsw i64 %mul, 6
+ %arrayidx36 = getelementptr inbounds float* %A, i64 %add35
+ %16 = load float* %arrayidx36, align 4
+ %mul37 = fmul fast float %6, %16
+ %add38 = fadd fast float %add32, %mul37
+ %add41 = add nsw i64 %mul, 7
+ %arrayidx42 = getelementptr inbounds float* %A, i64 %add41
+ %17 = load float* %arrayidx42, align 4
+ %mul43 = fmul fast float %7, %17
+ %add44 = fadd fast float %add38, %mul43
+ %add47 = add nsw i64 %mul, 8
+ %arrayidx48 = getelementptr inbounds float* %A, i64 %add47
+ %18 = load float* %arrayidx48, align 4
+ %mul49 = fmul fast float %8, %18
+ %add50 = fadd fast float %add44, %mul49
+ %add51 = fadd fast float %sum.082, %add50
+ %inc = add nsw i64 %i.083, 1
+ %exitcond = icmp eq i64 %inc, %9
+ br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
+
+for.cond.for.end_crit_edge:
+ %phitmp = fptosi float %add51 to i32
+ br label %for.end
+
+for.end:
+ %sum.0.lcssa = phi i32 [ %phitmp, %for.cond.for.end_crit_edge ], [ 0, %entry ]
+ ret i32 %sum.0.lcssa
+}
+
+; int foo(float * restrict A, float * restrict B, int n) {
+; float sum = 0;
+; for (intptr_t i=0; i < n; ++i) {
+; sum += B[0]*A[i*4 ];
+; sum += B[1]*A[i*4+1];
+; sum += B[2]*A[i*4+2];
+; sum += B[3]*A[i*4+3];
+; }
+; return sum;
+; }
+
+; CHECK-LABEL: chain_red
+; CHECK: fmul <4 x float>
+; CHECK: shufflevector <4 x float>
+
+define i32 @chain_red(float* noalias %A, float* noalias %B, i32 %n) {
+entry:
+ %cmp41 = icmp sgt i32 %n, 0
+ br i1 %cmp41, label %for.body.lr.ph, label %for.end
+
+for.body.lr.ph:
+ %0 = load float* %B, align 4
+ %arrayidx4 = getelementptr inbounds float* %B, i64 1
+ %1 = load float* %arrayidx4, align 4
+ %arrayidx10 = getelementptr inbounds float* %B, i64 2
+ %2 = load float* %arrayidx10, align 4
+ %arrayidx16 = getelementptr inbounds float* %B, i64 3
+ %3 = load float* %arrayidx16, align 4
+ %4 = sext i32 %n to i64
+ br label %for.body
+
+for.body:
+ %i.043 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
+ %sum.042 = phi float [ 0.000000e+00, %for.body.lr.ph ], [ %add21, %for.body ]
+ %mul = shl nsw i64 %i.043, 2
+ %arrayidx2 = getelementptr inbounds float* %A, i64 %mul
+ %5 = load float* %arrayidx2, align 4
+ %mul3 = fmul fast float %0, %5
+ %add = fadd fast float %sum.042, %mul3
+ %add638 = or i64 %mul, 1
+ %arrayidx7 = getelementptr inbounds float* %A, i64 %add638
+ %6 = load float* %arrayidx7, align 4
+ %mul8 = fmul fast float %1, %6
+ %add9 = fadd fast float %add, %mul8
+ %add1239 = or i64 %mul, 2
+ %arrayidx13 = getelementptr inbounds float* %A, i64 %add1239
+ %7 = load float* %arrayidx13, align 4
+ %mul14 = fmul fast float %2, %7
+ %add15 = fadd fast float %add9, %mul14
+ %add1840 = or i64 %mul, 3
+ %arrayidx19 = getelementptr inbounds float* %A, i64 %add1840
+ %8 = load float* %arrayidx19, align 4
+ %mul20 = fmul fast float %3, %8
+ %add21 = fadd fast float %add15, %mul20
+ %inc = add nsw i64 %i.043, 1
+ %exitcond = icmp eq i64 %inc, %4
+ br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
+
+for.cond.for.end_crit_edge:
+ %phitmp = fptosi float %add21 to i32
+ br label %for.end
+
+for.end:
+ %sum.0.lcssa = phi i32 [ %phitmp, %for.cond.for.end_crit_edge ], [ 0, %entry ]
+ ret i32 %sum.0.lcssa
+}
+
+; int foo(float * restrict A, float * restrict B, float * restrict C, int n) {
+; float sum = 0;
+; for (intptr_t i=0; i < n; ++i) {
+; C[i] = B[0] *A[i*4 ] +
+; B[1] *A[i*4+1] +
+; B[2] *A[i*4+2] +
+; B[3] *A[i*4+3];
+; }
+; return sum;
+; }
+
+; CHECK-LABEL: store_red
+; CHECK: fmul <4 x float>
+; CHECK: shufflevector <4 x float>
+
+define i32 @store_red(float* noalias %A, float* noalias %B, float* noalias %C, i32 %n) {
+entry:
+ %cmp37 = icmp sgt i32 %n, 0
+ br i1 %cmp37, label %for.body.lr.ph, label %for.end
+
+for.body.lr.ph:
+ %arrayidx4 = getelementptr inbounds float* %B, i64 1
+ %arrayidx9 = getelementptr inbounds float* %B, i64 2
+ %arrayidx15 = getelementptr inbounds float* %B, i64 3
+ %0 = sext i32 %n to i64
+ br label %for.body
+
+for.body:
+ %i.039 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
+ %C.addr.038 = phi float* [ %C, %for.body.lr.ph ], [ %incdec.ptr, %for.body ]
+ %1 = load float* %B, align 4
+ %mul = shl nsw i64 %i.039, 2
+ %arrayidx2 = getelementptr inbounds float* %A, i64 %mul
+ %2 = load float* %arrayidx2, align 4
+ %mul3 = fmul fast float %1, %2
+ %3 = load float* %arrayidx4, align 4
+ %add34 = or i64 %mul, 1
+ %arrayidx6 = getelementptr inbounds float* %A, i64 %add34
+ %4 = load float* %arrayidx6, align 4
+ %mul7 = fmul fast float %3, %4
+ %add8 = fadd fast float %mul3, %mul7
+ %5 = load float* %arrayidx9, align 4
+ %add1135 = or i64 %mul, 2
+ %arrayidx12 = getelementptr inbounds float* %A, i64 %add1135
+ %6 = load float* %arrayidx12, align 4
+ %mul13 = fmul fast float %5, %6
+ %add14 = fadd fast float %add8, %mul13
+ %7 = load float* %arrayidx15, align 4
+ %add1736 = or i64 %mul, 3
+ %arrayidx18 = getelementptr inbounds float* %A, i64 %add1736
+ %8 = load float* %arrayidx18, align 4
+ %mul19 = fmul fast float %7, %8
+ %add20 = fadd fast float %add14, %mul19
+ store float %add20, float* %C.addr.038, align 4
+ %incdec.ptr = getelementptr inbounds float* %C.addr.038, i64 1
+ %inc = add nsw i64 %i.039, 1
+ %exitcond = icmp eq i64 %inc, %0
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end:
+ ret i32 0
+}
+
+
+; void foo(double * restrict A, double * restrict B, double * restrict C,
+; int n) {
+; for (intptr_t i=0; i < n; ++i) {
+; C[i] = B[0] *A[i*4 ] + B[1] *A[i*4+1];
+; }
+; }
+
+; CHECK-LABEL: store_red_double
+; CHECK: fmul <2 x double>
+; CHECK: extractelement <2 x double>
+; CHECK: extractelement <2 x double>
+
+define void @store_red_double(double* noalias %A, double* noalias %B, double* noalias %C, i32 %n) {
+entry:
+ %cmp17 = icmp sgt i32 %n, 0
+ br i1 %cmp17, label %for.body.lr.ph, label %for.end
+
+for.body.lr.ph:
+ %0 = load double* %B, align 8
+ %arrayidx4 = getelementptr inbounds double* %B, i64 1
+ %1 = load double* %arrayidx4, align 8
+ %2 = sext i32 %n to i64
+ br label %for.body
+
+for.body:
+ %i.018 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
+ %mul = shl nsw i64 %i.018, 2
+ %arrayidx2 = getelementptr inbounds double* %A, i64 %mul
+ %3 = load double* %arrayidx2, align 8
+ %mul3 = fmul fast double %0, %3
+ %add16 = or i64 %mul, 1
+ %arrayidx6 = getelementptr inbounds double* %A, i64 %add16
+ %4 = load double* %arrayidx6, align 8
+ %mul7 = fmul fast double %1, %4
+ %add8 = fadd fast double %mul3, %mul7
+ %arrayidx9 = getelementptr inbounds double* %C, i64 %i.018
+ store double %add8, double* %arrayidx9, align 8
+ %inc = add nsw i64 %i.018, 1
+ %exitcond = icmp eq i64 %inc, %2
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end:
+ ret void
+}