aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorLang Hames <lhames@gmail.com>2010-10-04 12:13:07 +0000
committerLang Hames <lhames@gmail.com>2010-10-04 12:13:07 +0000
commitab62b7e8618bda8063b49afab181bc7ed5546104 (patch)
treebf83214bd2e382e0e53d41d3879c6ca2947425ec
parent3af96330a554f9bd63089cb142469c5e96ba08e9 (diff)
downloadexternal_llvm-ab62b7e8618bda8063b49afab181bc7ed5546104.zip
external_llvm-ab62b7e8618bda8063b49afab181bc7ed5546104.tar.gz
external_llvm-ab62b7e8618bda8063b49afab181bc7ed5546104.tar.bz2
Removed the older style (in-allocator) problem construction system from the PBQP allocator. Problem construction is now done exclusively with the new builders.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115502 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/CodeGen/RegAllocPBQP.cpp637
1 files changed, 9 insertions, 628 deletions
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
index a45ead8..6907321 100644
--- a/lib/CodeGen/RegAllocPBQP.cpp
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -68,12 +68,6 @@ pbqpCoalescing("pbqp-coalescing",
cl::init(false), cl::Hidden);
static cl::opt<bool>
-pbqpBuilder("pbqp-builder",
- cl::desc("Use new builder system."),
- cl::init(true), cl::Hidden);
-
-
-static cl::opt<bool>
pbqpPreSplitting("pbqp-pre-splitting",
cl::desc("Pre-split before PBQP register allocation."),
cl::init(false), cl::Hidden);
@@ -129,76 +123,17 @@ private:
LiveStacks *lss;
VirtRegMap *vrm;
- LI2NodeMap li2Node;
- Node2LIMap node2LI;
- AllowedSetMap allowedSets;
RegSet vregsToAlloc, emptyIntervalVRegs;
- NodeVector problemNodes;
-
-
- /// Builds a PBQP cost vector.
- template <typename RegContainer>
- PBQP::Vector buildCostVector(unsigned vReg,
- const RegContainer &allowed,
- const CoalesceMap &cealesces,
- PBQP::PBQPNum spillCost) const;
-
- /// \brief Builds a PBQP interference matrix.
- ///
- /// @return Either a pointer to a non-zero PBQP matrix representing the
- /// allocation option costs, or a null pointer for a zero matrix.
- ///
- /// Expects allowed sets for two interfering LiveIntervals. These allowed
- /// sets should contain only allocable registers from the LiveInterval's
- /// register class, with any interfering pre-colored registers removed.
- template <typename RegContainer>
- PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
- const RegContainer &allowed2) const;
-
- ///
- /// Expects allowed sets for two potentially coalescable LiveIntervals,
- /// and an estimated benefit due to coalescing. The allowed sets should
- /// contain only allocable registers from the LiveInterval's register
- /// classes, with any interfering pre-colored registers removed.
- template <typename RegContainer>
- PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
- const RegContainer &allowed2,
- PBQP::PBQPNum cBenefit) const;
-
- /// \brief Finds coalescing opportunities and returns them as a map.
- ///
- /// Any entries in the map are guaranteed coalescable, even if their
- /// corresponding live intervals overlap.
- CoalesceMap findCoalesces();
/// \brief Finds the initial set of vreg intervals to allocate.
void findVRegIntervalsToAlloc();
- /// \brief Constructs a PBQP problem representation of the register
- /// allocation problem for this function.
- ///
- /// Old Construction Process - this functionality has been subsumed
- /// by PBQPBuilder. This function will only be hanging around for a little
- /// while until the new system has been fully tested.
- ///
- /// @return a PBQP solver object for the register allocation problem.
- PBQP::Graph constructPBQPProblemOld();
-
/// \brief Adds a stack interval if the given live interval has been
/// spilled. Used to support stack slot coloring.
void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
/// \brief Given a solved PBQP problem maps this solution back to a register
/// assignment.
- ///
- /// Old Construction Process - this functionality has been subsumed
- /// by PBQPBuilder. This function will only be hanging around for a little
- /// while until the new system has been fully tested.
- ///
- bool mapPBQPToRegAllocOld(const PBQP::Solution &solution);
-
- /// \brief Given a solved PBQP problem maps this solution back to a register
- /// assignment.
bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Solution &solution);
@@ -510,306 +445,6 @@ void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
MachineFunctionPass::getAnalysisUsage(au);
}
-template <typename RegContainer>
-PBQP::Vector RegAllocPBQP::buildCostVector(unsigned vReg,
- const RegContainer &allowed,
- const CoalesceMap &coalesces,
- PBQP::PBQPNum spillCost) const {
-
- typedef typename RegContainer::const_iterator AllowedItr;
-
- // Allocate vector. Additional element (0th) used for spill option
- PBQP::Vector v(allowed.size() + 1, 0);
-
- v[0] = spillCost;
-
- // Iterate over the allowed registers inserting coalesce benefits if there
- // are any.
- unsigned ai = 0;
- for (AllowedItr itr = allowed.begin(), end = allowed.end();
- itr != end; ++itr, ++ai) {
-
- unsigned pReg = *itr;
-
- CoalesceMap::const_iterator cmItr =
- coalesces.find(RegPair(vReg, pReg));
-
- // No coalesce - on to the next preg.
- if (cmItr == coalesces.end())
- continue;
-
- // We have a coalesce - insert the benefit.
- v[ai + 1] = -cmItr->second;
- }
-
- return v;
-}
-
-template <typename RegContainer>
-PBQP::Matrix* RegAllocPBQP::buildInterferenceMatrix(
- const RegContainer &allowed1, const RegContainer &allowed2) const {
-
- typedef typename RegContainer::const_iterator RegContainerIterator;
-
- // Construct a PBQP matrix representing the cost of allocation options. The
- // rows and columns correspond to the allocation options for the two live
- // intervals. Elements will be infinite where corresponding registers alias,
- // since we cannot allocate aliasing registers to interfering live intervals.
- // All other elements (non-aliasing combinations) will have zero cost. Note
- // that the spill option (element 0,0) has zero cost, since we can allocate
- // both intervals to memory safely (the cost for each individual allocation
- // to memory is accounted for by the cost vectors for each live interval).
- PBQP::Matrix *m =
- new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
-
- // Assume this is a zero matrix until proven otherwise. Zero matrices occur
- // between interfering live ranges with non-overlapping register sets (e.g.
- // non-overlapping reg classes, or disjoint sets of allowed regs within the
- // same class). The term "overlapping" is used advisedly: sets which do not
- // intersect, but contain registers which alias, will have non-zero matrices.
- // We optimize zero matrices away to improve solver speed.
- bool isZeroMatrix = true;
-
-
- // Row index. Starts at 1, since the 0th row is for the spill option, which
- // is always zero.
- unsigned ri = 1;
-
- // Iterate over allowed sets, insert infinities where required.
- for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
- a1Itr != a1End; ++a1Itr) {
-
- // Column index, starts at 1 as for row index.
- unsigned ci = 1;
- unsigned reg1 = *a1Itr;
-
- for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
- a2Itr != a2End; ++a2Itr) {
-
- unsigned reg2 = *a2Itr;
-
- // If the row/column regs are identical or alias insert an infinity.
- if (tri->regsOverlap(reg1, reg2)) {
- (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
- isZeroMatrix = false;
- }
-
- ++ci;
- }
-
- ++ri;
- }
-
- // If this turns out to be a zero matrix...
- if (isZeroMatrix) {
- // free it and return null.
- delete m;
- return 0;
- }
-
- // ...otherwise return the cost matrix.
- return m;
-}
-
-template <typename RegContainer>
-PBQP::Matrix* RegAllocPBQP::buildCoalescingMatrix(
- const RegContainer &allowed1, const RegContainer &allowed2,
- PBQP::PBQPNum cBenefit) const {
-
- typedef typename RegContainer::const_iterator RegContainerIterator;
-
- // Construct a PBQP Matrix representing the benefits of coalescing. As with
- // interference matrices the rows and columns represent allowed registers
- // for the LiveIntervals which are (potentially) to be coalesced. The amount
- // -cBenefit will be placed in any element representing the same register
- // for both intervals.
- PBQP::Matrix *m =
- new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
-
- // Reset costs to zero.
- m->reset(0);
-
- // Assume the matrix is zero till proven otherwise. Zero matrices will be
- // optimized away as in the interference case.
- bool isZeroMatrix = true;
-
- // Row index. Starts at 1, since the 0th row is for the spill option, which
- // is always zero.
- unsigned ri = 1;
-
- // Iterate over the allowed sets, insert coalescing benefits where
- // appropriate.
- for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
- a1Itr != a1End; ++a1Itr) {
-
- // Column index, starts at 1 as for row index.
- unsigned ci = 1;
- unsigned reg1 = *a1Itr;
-
- for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
- a2Itr != a2End; ++a2Itr) {
-
- // If the row and column represent the same register insert a beneficial
- // cost to preference this allocation - it would allow us to eliminate a
- // move instruction.
- if (reg1 == *a2Itr) {
- (*m)[ri][ci] = -cBenefit;
- isZeroMatrix = false;
- }
-
- ++ci;
- }
-
- ++ri;
- }
-
- // If this turns out to be a zero matrix...
- if (isZeroMatrix) {
- // ...free it and return null.
- delete m;
- return 0;
- }
-
- return m;
-}
-
-RegAllocPBQP::CoalesceMap RegAllocPBQP::findCoalesces() {
-
- typedef MachineFunction::const_iterator MFIterator;
- typedef MachineBasicBlock::const_iterator MBBIterator;
- typedef LiveInterval::const_vni_iterator VNIIterator;
-
- CoalesceMap coalescesFound;
-
- // To find coalesces we need to iterate over the function looking for
- // copy instructions.
- for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
- bbItr != bbEnd; ++bbItr) {
-
- const MachineBasicBlock *mbb = &*bbItr;
-
- for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
- iItr != iEnd; ++iItr) {
-
- const MachineInstr *instr = &*iItr;
-
- // If this isn't a copy then continue to the next instruction.
- if (!instr->isCopy())
- continue;
-
- unsigned srcReg = instr->getOperand(1).getReg();
- unsigned dstReg = instr->getOperand(0).getReg();
-
- // If the registers are already the same our job is nice and easy.
- if (dstReg == srcReg)
- continue;
-
- bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
- dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
-
- // If both registers are physical then we can't coalesce.
- if (srcRegIsPhysical && dstRegIsPhysical)
- continue;
-
- // If it's a copy that includes two virtual register but the source and
- // destination classes differ then we can't coalesce.
- if (!srcRegIsPhysical && !dstRegIsPhysical &&
- mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
- continue;
-
- // If one is physical and one is virtual, check that the physical is
- // allocatable in the class of the virtual.
- if (srcRegIsPhysical && !dstRegIsPhysical) {
- const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
- if (std::find(dstRegClass->allocation_order_begin(*mf),
- dstRegClass->allocation_order_end(*mf), srcReg) ==
- dstRegClass->allocation_order_end(*mf))
- continue;
- }
- if (!srcRegIsPhysical && dstRegIsPhysical) {
- const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
- if (std::find(srcRegClass->allocation_order_begin(*mf),
- srcRegClass->allocation_order_end(*mf), dstReg) ==
- srcRegClass->allocation_order_end(*mf))
- continue;
- }
-
- // If we've made it here we have a copy with compatible register classes.
- // We can probably coalesce, but we need to consider overlap.
- const LiveInterval *srcLI = &lis->getInterval(srcReg),
- *dstLI = &lis->getInterval(dstReg);
-
- if (srcLI->overlaps(*dstLI)) {
- // Even in the case of an overlap we might still be able to coalesce,
- // but we need to make sure that no definition of either range occurs
- // while the other range is live.
-
- // Otherwise start by assuming we're ok.
- bool badDef = false;
-
- // Test all defs of the source range.
- for (VNIIterator
- vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
- vniItr != vniEnd; ++vniItr) {
-
- // If we find a poorly defined def we err on the side of caution.
- if (!(*vniItr)->def.isValid()) {
- badDef = true;
- break;
- }
-
- // If we find a def that kills the coalescing opportunity then
- // record it and break from the loop.
- if (dstLI->liveAt((*vniItr)->def)) {
- badDef = true;
- break;
- }
- }
-
- // If we have a bad def give up, continue to the next instruction.
- if (badDef)
- continue;
-
- // Otherwise test definitions of the destination range.
- for (VNIIterator
- vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
- vniItr != vniEnd; ++vniItr) {
-
- // We want to make sure we skip the copy instruction itself.
- if ((*vniItr)->getCopy() == instr)
- continue;
-
- if (!(*vniItr)->def.isValid()) {
- badDef = true;
- break;
- }
-
- if (srcLI->liveAt((*vniItr)->def)) {
- badDef = true;
- break;
- }
- }
-
- // As before a bad def we give up and continue to the next instr.
- if (badDef)
- continue;
- }
-
- // If we make it to here then either the ranges didn't overlap, or they
- // did, but none of their definitions would prevent us from coalescing.
- // We're good to go with the coalesce.
-
- float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
-
- coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
- coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
- }
-
- }
-
- return coalescesFound;
-}
-
void RegAllocPBQP::findVRegIntervalsToAlloc() {
// Iterate over all live ranges.
@@ -834,171 +469,6 @@ void RegAllocPBQP::findVRegIntervalsToAlloc() {
}
}
-PBQP::Graph RegAllocPBQP::constructPBQPProblemOld() {
-
- typedef std::vector<const LiveInterval*> LIVector;
- typedef std::vector<unsigned> RegVector;
-
- // This will store the physical intervals for easy reference.
- LIVector physIntervals;
-
- // Start by clearing the old node <-> live interval mappings & allowed sets
- li2Node.clear();
- node2LI.clear();
- allowedSets.clear();
-
- // Populate physIntervals, update preg use:
- for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
- itr != end; ++itr) {
-
- if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
- physIntervals.push_back(itr->second);
- mri->setPhysRegUsed(itr->second->reg);
- }
- }
-
- // Iterate over vreg intervals, construct live interval <-> node number
- // mappings.
- for (RegSet::const_iterator itr = vregsToAlloc.begin(),
- end = vregsToAlloc.end();
- itr != end; ++itr) {
- const LiveInterval *li = &lis->getInterval(*itr);
-
- li2Node[li] = node2LI.size();
- node2LI.push_back(li);
- }
-
- // Get the set of potential coalesces.
- CoalesceMap coalesces;
-
- if (pbqpCoalescing) {
- coalesces = findCoalesces();
- }
-
- // Construct a PBQP solver for this problem
- PBQP::Graph problem;
- problemNodes.resize(vregsToAlloc.size());
-
- // Resize allowedSets container appropriately.
- allowedSets.resize(vregsToAlloc.size());
-
- BitVector ReservedRegs = tri->getReservedRegs(*mf);
-
- // Iterate over virtual register intervals to compute allowed sets...
- for (unsigned node = 0; node < node2LI.size(); ++node) {
-
- // Grab pointers to the interval and its register class.
- const LiveInterval *li = node2LI[node];
- const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
-
- // Start by assuming all allocable registers in the class are allowed...
- RegVector liAllowed;
- TargetRegisterClass::iterator aob = liRC->allocation_order_begin(*mf);
- TargetRegisterClass::iterator aoe = liRC->allocation_order_end(*mf);
- for (TargetRegisterClass::iterator it = aob; it != aoe; ++it)
- if (!ReservedRegs.test(*it))
- liAllowed.push_back(*it);
-
- // Eliminate the physical registers which overlap with this range, along
- // with all their aliases.
- for (LIVector::iterator pItr = physIntervals.begin(),
- pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
-
- if (!li->overlaps(**pItr))
- continue;
-
- unsigned pReg = (*pItr)->reg;
-
- // If we get here then the live intervals overlap, but we're still ok
- // if they're coalescable.
- if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end()) {
- DEBUG(dbgs() << "CoalescingOverride: (" << li->reg << ", " << pReg << ")\n");
- continue;
- }
-
- // If we get here then we have a genuine exclusion.
-
- // Remove the overlapping reg...
- RegVector::iterator eraseItr =
- std::find(liAllowed.begin(), liAllowed.end(), pReg);
-
- if (eraseItr != liAllowed.end())
- liAllowed.erase(eraseItr);
-
- const unsigned *aliasItr = tri->getAliasSet(pReg);
-
- if (aliasItr != 0) {
- // ...and its aliases.
- for (; *aliasItr != 0; ++aliasItr) {
- RegVector::iterator eraseItr =
- std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
-
- if (eraseItr != liAllowed.end()) {
- liAllowed.erase(eraseItr);
- }
- }
- }
- }
-
- // Copy the allowed set into a member vector for use when constructing cost
- // vectors & matrices, and mapping PBQP solutions back to assignments.
- allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
-
- // Set the spill cost to the interval weight, or epsilon if the
- // interval weight is zero
- PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
- li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
-
- // Build a cost vector for this interval.
- problemNodes[node] =
- problem.addNode(
- buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
-
- }
-
-
- // Now add the cost matrices...
- for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
- const LiveInterval *li = node2LI[node1];
-
- // Test for live range overlaps and insert interference matrices.
- for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
- const LiveInterval *li2 = node2LI[node2];
-
- CoalesceMap::const_iterator cmItr =
- coalesces.find(RegPair(li->reg, li2->reg));
-
- PBQP::Matrix *m = 0;
-
- if (cmItr != coalesces.end()) {
- m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
- cmItr->second);
- }
- else if (li->overlaps(*li2)) {
- m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
- }
-
- if (m != 0) {
- problem.addEdge(problemNodes[node1],
- problemNodes[node2],
- *m);
-
- delete m;
- }
- }
- }
-
- assert(problem.getNumNodes() == allowedSets.size());
-/*
- std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
- << problem.getNumEdges() << " edges.\n";
-
- problem.printDot(std::cerr);
-*/
- // We're done, PBQP problem constructed - return it.
- return problem;
-}
-
void RegAllocPBQP::addStackInterval(const LiveInterval *spilled,
MachineRegisterInfo* mri) {
int stackSlot = vrm->getStackSlot(spilled->reg);
@@ -1020,77 +490,6 @@ void RegAllocPBQP::addStackInterval(const LiveInterval *spilled,
stackInterval.MergeRangesInAsValue(rhsInterval, vni);
}
-bool RegAllocPBQP::mapPBQPToRegAllocOld(const PBQP::Solution &solution) {
-
- // Set to true if we have any spills
- bool anotherRoundNeeded = false;
-
- // Clear the existing allocation.
- vrm->clearAllVirt();
-
- // Iterate over the nodes mapping the PBQP solution to a register assignment.
- for (unsigned node = 0; node < node2LI.size(); ++node) {
- unsigned virtReg = node2LI[node]->reg,
- allocSelection = solution.getSelection(problemNodes[node]);
-
-
- // If the PBQP solution is non-zero it's a physical register...
- if (allocSelection != 0) {
- // Get the physical reg, subtracting 1 to account for the spill option.
- unsigned physReg = allowedSets[node][allocSelection - 1];
-
- DEBUG(dbgs() << "VREG " << virtReg << " -> "
- << tri->getName(physReg) << " (Option: " << allocSelection << ")\n");
-
- assert(physReg != 0);
-
- // Add to the virt reg map and update the used phys regs.
- vrm->assignVirt2Phys(virtReg, physReg);
- }
- // ...Otherwise it's a spill.
- else {
-
- // Make sure we ignore this virtual reg on the next round
- // of allocation
- vregsToAlloc.erase(virtReg);
-
- // Insert spill ranges for this live range
- const LiveInterval *spillInterval = node2LI[node];
- double oldSpillWeight = spillInterval->weight;
- SmallVector<LiveInterval*, 8> spillIs;
- rmf->rememberUseDefs(spillInterval);
- std::vector<LiveInterval*> newSpills =
- lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
- addStackInterval(spillInterval, mri);
- rmf->rememberSpills(spillInterval, newSpills);
-
- (void) oldSpillWeight;
- DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Option: 0, Cost: "
- << oldSpillWeight << ", New vregs: ");
-
- // Copy any newly inserted live intervals into the list of regs to
- // allocate.
- for (std::vector<LiveInterval*>::const_iterator
- itr = newSpills.begin(), end = newSpills.end();
- itr != end; ++itr) {
-
- assert(!(*itr)->empty() && "Empty spill range.");
-
- DEBUG(dbgs() << (*itr)->reg << " ");
-
- vregsToAlloc.insert((*itr)->reg);
- }
-
- DEBUG(dbgs() << ")\n");
-
- // We need another round if spill intervals were added.
- anotherRoundNeeded |= !newSpills.empty();
- }
- }
-
- return !anotherRoundNeeded;
-}
-
bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Solution &solution) {
// Set to true if we have any spills
@@ -1255,32 +654,18 @@ bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
bool pbqpAllocComplete = false;
unsigned round = 0;
- if (!pbqpBuilder) {
- while (!pbqpAllocComplete) {
- DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
+ while (!pbqpAllocComplete) {
+ DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
- PBQP::Graph problem = constructPBQPProblemOld();
- PBQP::Solution solution =
- PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
+ std::auto_ptr<PBQPRAProblem> problem =
+ builder->build(mf, lis, loopInfo, vregsToAlloc);
+ PBQP::Solution solution =
+ PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
+ problem->getGraph());
- pbqpAllocComplete = mapPBQPToRegAllocOld(solution);
+ pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
- ++round;
- }
- } else {
- while (!pbqpAllocComplete) {
- DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
-
- std::auto_ptr<PBQPRAProblem> problem =
- builder->build(mf, lis, loopInfo, vregsToAlloc);
- PBQP::Solution solution =
- PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
- problem->getGraph());
-
- pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
-
- ++round;
- }
+ ++round;
}
}
@@ -1291,10 +676,6 @@ bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
vregsToAlloc.clear();
emptyIntervalVRegs.clear();
- li2Node.clear();
- node2LI.clear();
- allowedSets.clear();
- problemNodes.clear();
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");