aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJakub Staszak <kubastaszak@gmail.com>2012-05-01 23:04:38 +0000
committerJakub Staszak <kubastaszak@gmail.com>2012-05-01 23:04:38 +0000
commitbf1486057239895198b3e8fdfa994a6daedd3579 (patch)
treeedbcae3ad9ecca24bc20f8e2567fcb56e4995e88
parent95dd4420419a6daae6304ed490a50537094ed488 (diff)
downloadexternal_llvm-bf1486057239895198b3e8fdfa994a6daedd3579.zip
external_llvm-bf1486057239895198b3e8fdfa994a6daedd3579.tar.gz
external_llvm-bf1486057239895198b3e8fdfa994a6daedd3579.tar.bz2
Remove trailing spaces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155956 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Target/X86/X86CodeEmitter.cpp86
1 files changed, 43 insertions, 43 deletions
diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp
index 09524fe..458198f 100644
--- a/lib/Target/X86/X86CodeEmitter.cpp
+++ b/lib/Target/X86/X86CodeEmitter.cpp
@@ -53,12 +53,12 @@ namespace {
public:
static char ID;
explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
- : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
+ : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
MCE(mce), PICBaseOffset(0), Is64BitMode(false),
IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Emitter(X86TargetMachine &tm, CodeEmitter &mce,
const X86InstrInfo &ii, const TargetData &td, bool is64)
- : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
+ : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
@@ -81,7 +81,7 @@ namespace {
const MachineInstr &MI) const;
void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
-
+
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
@@ -127,17 +127,17 @@ template<class CodeEmitter>
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
MMI = &getAnalysis<MachineModuleInfo>();
MCE.setModuleInfo(MMI);
-
+
II = TM.getInstrInfo();
TD = TM.getTargetData();
Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
-
+
do {
- DEBUG(dbgs() << "JITTing function '"
+ DEBUG(dbgs() << "JITTing function '"
<< MF.getFunction()->getName() << "'\n");
MCE.startFunction(MF);
- for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
MCE.StartMachineBasicBlock(MBB);
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
@@ -161,18 +161,18 @@ bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
static unsigned determineREX(const MachineInstr &MI) {
unsigned REX = 0;
const MCInstrDesc &Desc = MI.getDesc();
-
+
// Pseudo instructions do not need REX prefix byte.
if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
return 0;
if (Desc.TSFlags & X86II::REX_W)
REX |= 1 << 3;
-
+
unsigned NumOps = Desc.getNumOperands();
if (NumOps) {
bool isTwoAddr = NumOps > 1 &&
Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
-
+
// If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
unsigned i = isTwoAddr ? 1 : 0;
for (unsigned e = NumOps; i != e; ++i) {
@@ -183,7 +183,7 @@ static unsigned determineREX(const MachineInstr &MI) {
REX |= 0x40;
}
}
-
+
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::MRMInitReg:
if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
@@ -374,7 +374,7 @@ void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
}
template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
+void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
unsigned Index,
unsigned Base) {
// SIB byte is in the same format as the ModRMByte...
@@ -390,8 +390,8 @@ void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
}
}
-/// isDisp8 - Return true if this signed displacement fits in a 8-bit
-/// sign-extended field.
+/// isDisp8 - Return true if this signed displacement fits in a 8-bit
+/// sign-extended field.
static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
@@ -400,10 +400,10 @@ static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
const TargetMachine &TM) {
// For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
// mechanism as 32-bit mode.
- if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
+ if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
!TM.getSubtarget<X86Subtarget>().isTargetDarwin())
return false;
-
+
// Return true if this is a reference to a stub containing the address of the
// global, not the global itself.
return isGlobalStubReference(GVOp.getTargetFlags());
@@ -429,7 +429,7 @@ void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
if (RelocOp->isGlobal()) {
// In 64-bit static small code model, we could potentially emit absolute.
// But it's probably not beneficial. If the MCE supports using RIP directly
- // do it, otherwise fallback to absolute (this is determined by IsPCRel).
+ // do it, otherwise fallback to absolute (this is determined by IsPCRel).
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
@@ -453,7 +453,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
const MachineOperand &Op3 = MI.getOperand(Op+3);
int DispVal = 0;
const MachineOperand *DispForReloc = 0;
-
+
// Figure out what sort of displacement we have to handle here.
if (Op3.isGlobal()) {
DispForReloc = &Op3;
@@ -481,7 +481,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
const MachineOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
-
+
// Handle %rip relative addressing.
if (BaseReg == X86::RIP ||
(Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
@@ -498,7 +498,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
// Is a SIB byte needed?
- // If no BaseReg, issue a RIP relative instruction only if the MCE can
+ // If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
// 2-7) and absolute references.
unsigned BaseRegNo = -1U;
@@ -506,7 +506,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
BaseRegNo = X86_MC::getX86RegNum(BaseReg);
if (// The SIB byte must be used if there is an index register.
- IndexReg.getReg() == 0 &&
+ IndexReg.getReg() == 0 &&
// The SIB byte must be used if the base is ESP/RSP/R12, all of which
// encode to an R/M value of 4, which indicates that a SIB byte is
// present.
@@ -520,7 +520,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
return;
}
-
+
// If the base is not EBP/ESP and there is no displacement, use simple
// indirect register encoding, this handles addresses like [EAX]. The
// encoding for [EBP] with no displacement means [disp32] so we handle it
@@ -529,20 +529,20 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
return;
}
-
+
// Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
if (!DispForReloc && isDisp8(DispVal)) {
MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
emitConstant(DispVal, 1);
return;
}
-
+
// Otherwise, emit the most general non-SIB encoding: [REG+disp32]
MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
return;
}
-
+
// Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
@@ -575,7 +575,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
unsigned SS = SSTable[Scale.getImm()];
if (BaseReg == 0) {
- // Handle the SIB byte for the case where there is no base, see Intel
+ // Handle the SIB byte for the case where there is no base, see Intel
// Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
@@ -1150,7 +1150,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
// Remember the current PC offset, this is the PIC relocation
// base address.
switch (Opcode) {
- default:
+ default:
llvm_unreachable("pseudo instructions should be removed before code"
" emission");
break;
@@ -1159,7 +1159,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
case X86::Int_MemBarrier:
DEBUG(dbgs() << "#MEMBARRIER\n");
break;
-
+
case TargetOpcode::INLINEASM:
// We allow inline assembler nodes with empty bodies - they can
// implicitly define registers, which is ok for JIT.
@@ -1171,7 +1171,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
case TargetOpcode::EH_LABEL:
MCE.emitLabel(MI.getOperand(0).getMCSymbol());
break;
-
+
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
break;
@@ -1193,7 +1193,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
if (CurOp == NumOps)
break;
-
+
const MachineOperand &MO = MI.getOperand(CurOp++);
DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
@@ -1206,13 +1206,13 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
emitPCRelativeBlockAddress(MO.getMBB());
break;
}
-
+
if (MO.isGlobal()) {
emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
MO.getOffset(), 0);
break;
}
-
+
if (MO.isSymbol()) {
emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
break;
@@ -1223,7 +1223,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
break;
}
-
+
assert(MO.isImm() && "Unknown RawFrm operand!");
if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
// Fix up immediate operand for pc relative calls.
@@ -1234,21 +1234,21 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
break;
}
-
+
case X86II::AddRegFrm: {
MCE.emitByte(BaseOpcode +
X86_MC::getX86RegNum(MI.getOperand(CurOp++).getReg()));
-
+
if (CurOp == NumOps)
break;
-
+
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
if (MO1.isImm()) {
emitConstant(MO1.getImm(), Size);
break;
}
-
+
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (Opcode == X86::MOV64ri64i32)
@@ -1352,14 +1352,14 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
if (CurOp == NumOps)
break;
-
+
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
if (MO1.isImm()) {
emitConstant(MO1.getImm(), Size);
break;
}
-
+
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (Opcode == X86::MOV64ri32)
@@ -1384,7 +1384,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
CurOp++;
intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
- (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
+ (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
MCE.emitByte(BaseOpcode);
@@ -1394,14 +1394,14 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
if (CurOp == NumOps)
break;
-
+
const MachineOperand &MO = MI.getOperand(CurOp++);
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
if (MO.isImm()) {
emitConstant(MO.getImm(), Size);
break;
}
-
+
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (Opcode == X86::MOV64mi32)
@@ -1426,7 +1426,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
++CurOp;
break;
-
+
case X86II::MRM_C1:
MCE.emitByte(BaseOpcode);
MCE.emitByte(0xC1);