aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2001-11-10 07:26:31 +0000
committerChris Lattner <sabre@nondot.org>2001-11-10 07:26:31 +0000
commitbff7c3a898f103bfaa224b2a14428029e24db8ab (patch)
tree2c57a8e7276817b2a6026f31ed33bfb98e37e3be
parentd68ac24bf6eba16d15003dcce66956a3b2e773a5 (diff)
downloadexternal_llvm-bff7c3a898f103bfaa224b2a14428029e24db8ab.zip
external_llvm-bff7c3a898f103bfaa224b2a14428029e24db8ab.tar.gz
external_llvm-bff7c3a898f103bfaa224b2a14428029e24db8ab.tar.bz2
Initial checkin of structure mutator
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1246 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Transforms/IPO/MutateStructTypes.cpp501
1 files changed, 501 insertions, 0 deletions
diff --git a/lib/Transforms/IPO/MutateStructTypes.cpp b/lib/Transforms/IPO/MutateStructTypes.cpp
new file mode 100644
index 0000000..1904842
--- /dev/null
+++ b/lib/Transforms/IPO/MutateStructTypes.cpp
@@ -0,0 +1,501 @@
+//===- MutateStructTypes.cpp - Change struct defns --------------------------=//
+//
+// This pass is used to change structure accesses and type definitions in some
+// way. It can be used to arbitrarily permute structure fields, safely, without
+// breaking code. A transformation may only be done on a type if that type has
+// been found to be "safe" by the 'FindUnsafePointerTypes' pass. This pass will
+// assert and die if you try to do an illegal transformation.
+//
+// This is an interprocedural pass that requires the entire program to do a
+// transformation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/MutateStructTypes.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Method.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/iOther.h"
+#include "llvm/iMemory.h"
+#include "llvm/iTerminators.h"
+#include <algorithm>
+
+// To enable debugging, uncomment this...
+//#define DEBUG_MST(x) x
+
+#ifdef DEBUG_MST
+#include "llvm/Assembly/Writer.h"
+#else
+#define DEBUG_MST(x) // Disable debug code
+#endif
+
+// ValuePlaceHolder - A stupid little marker value. It appears as an
+// instruction of type Instruction::UserOp1.
+//
+struct ValuePlaceHolder : public Instruction {
+ ValuePlaceHolder(const Type *Ty) : Instruction(Ty, UserOp1, "") {}
+
+ virtual Instruction *clone() const { abort(); }
+ virtual const char *getOpcodeName() const { return "placeholder"; }
+};
+
+
+// ConvertType - Convert from the old type system to the new one...
+const Type *MutateStructTypes::ConvertType(const Type *Ty) {
+ if (Ty->isPrimitiveType() ||
+ isa<OpaqueType>(Ty)) return Ty; // Don't convert primitives
+
+ map<const Type *, PATypeHolder<Type> >::iterator I = TypeMap.find(Ty);
+ if (I != TypeMap.end()) return I->second;
+
+ const Type *DestTy = 0;
+
+ PATypeHolder<Type> PlaceHolder = OpaqueType::get();
+ TypeMap.insert(make_pair(Ty, PlaceHolder.get()));
+
+ switch (Ty->getPrimitiveID()) {
+ case Type::MethodTyID: {
+ const MethodType *MT = cast<MethodType>(Ty);
+ const Type *RetTy = ConvertType(MT->getReturnType());
+ vector<const Type*> ArgTypes;
+
+ for (MethodType::ParamTypes::const_iterator I = MT->getParamTypes().begin(),
+ E = MT->getParamTypes().end(); I != E; ++I)
+ ArgTypes.push_back(ConvertType(*I));
+
+ DestTy = MethodType::get(RetTy, ArgTypes, MT->isVarArg());
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType *ST = cast<StructType>(Ty);
+ const StructType::ElementTypes &El = ST->getElementTypes();
+ vector<const Type *> Types;
+
+ for (StructType::ElementTypes::const_iterator I = El.begin(), E = El.end();
+ I != E; ++I)
+ Types.push_back(ConvertType(*I));
+ DestTy = StructType::get(Types);
+ break;
+ }
+ case Type::ArrayTyID:
+ DestTy = ArrayType::get(ConvertType(cast<ArrayType>(Ty)->getElementType()),
+ cast<ArrayType>(Ty)->getNumElements());
+ break;
+
+ case Type::PointerTyID:
+ DestTy = PointerType::get(
+ ConvertType(cast<PointerType>(Ty)->getValueType()));
+ break;
+ default:
+ assert(0 && "Unknown type!");
+ return 0;
+ }
+
+ assert(DestTy && "Type didn't get created!?!?");
+
+ // Refine our little placeholder value into a real type...
+ cast<DerivedType>(PlaceHolder.get())->refineAbstractTypeTo(DestTy);
+ TypeMap.insert(make_pair(Ty, PlaceHolder.get()));
+
+ return PlaceHolder.get();
+}
+
+
+// AdjustIndices - Convert the indexes specifed by Idx to the new changed form
+// using the specified OldTy as the base type being indexed into.
+//
+void MutateStructTypes::AdjustIndices(const StructType *OldTy,
+ vector<ConstPoolVal*> &Idx,
+ unsigned i = 0) {
+ assert(i < Idx.size() && "i out of range!");
+ const StructType *NewST = cast<StructType>(ConvertType(OldTy));
+ if (NewST == OldTy) return; // No adjustment unless type changes
+
+ // Figure out what the current index is...
+ unsigned ElNum = cast<ConstPoolUInt>(Idx[i])->getValue();
+ assert(ElNum < OldTy->getElementTypes().size());
+
+ map<const StructType*, TransformType>::iterator I = Transforms.find(OldTy);
+ if (I != Transforms.end()) {
+ assert(ElNum < I->second.second.size());
+ // Apply the XForm specified by Transforms map...
+ unsigned NewElNum = I->second.second[ElNum];
+ Idx[i] = ConstPoolUInt::get(Type::UByteTy, NewElNum);
+ }
+
+ // Recursively process subtypes...
+ if (i+1 < Idx.size())
+ AdjustIndices(cast<StructType>(OldTy->getElementTypes()[ElNum].get()),
+ Idx, i+1);
+}
+
+
+// ConvertValue - Convert from the old value in the old type system to the new
+// type system.
+//
+Value *MutateStructTypes::ConvertValue(const Value *V) {
+ // Ignore null values and simple constants..
+ if (V == 0) return 0;
+
+ if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(V)) {
+ if (V->getType()->isPrimitiveType())
+ return CPV;
+
+ if (isa<ConstPoolPointerNull>(CPV))
+ return ConstPoolPointerNull::get(
+ cast<PointerType>(ConvertType(V->getType())));
+ assert(0 && "Unable to convert constpool val of this type!");
+ }
+
+ // Check to see if this is an out of method reference first...
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Check to see if the value is in the map...
+ map<const GlobalValue*, GlobalValue*>::iterator I = GlobalMap.find(GV);
+ if (I == GlobalMap.end())
+ return GV; // Not mapped, just return value itself
+ return I->second;
+ }
+
+ map<const Value*, Value*>::iterator I = LocalValueMap.find(V);
+ if (I != LocalValueMap.end()) return I->second;
+
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
+ // Create placeholder block to represent the basic block we haven't seen yet
+ // This will be used when the block gets created.
+ //
+ return LocalValueMap[V] = new BasicBlock(BB->getName());
+ }
+
+ DEBUG_MST(cerr << "NPH: " << V << endl);
+
+ // Otherwise make a constant to represent it
+ return LocalValueMap[V] = new ValuePlaceHolder(ConvertType(V->getType()));
+}
+
+
+// Ctor - Take a map that specifies what transformation to do for each field
+// of the specified structure types. There is one element of the vector for
+// each field of the structure. The value specified indicates which slot of
+// the destination structure the field should end up in. A negative value
+// indicates that the field should be deleted entirely.
+//
+MutateStructTypes::MutateStructTypes(const map<const StructType*,
+ vector<int> > &XForm) {
+
+ // Loop over the types and insert dummy entries into the type map so that
+ // recursive types are resolved properly...
+ for (map<const StructType*, vector<int> >::const_iterator I = XForm.begin(),
+ E = XForm.end(); I != E; ++I) {
+ const StructType *OldTy = I->first;
+ TypeMap.insert(make_pair(OldTy, OpaqueType::get()));
+ }
+
+ // Loop over the type specified and figure out what types they should become
+ for (map<const StructType*, vector<int> >::const_iterator I = XForm.begin(),
+ E = XForm.end(); I != E; ++I) {
+ const StructType *OldTy = I->first;
+ const vector<int> &InVec = I->second;
+
+ assert(OldTy->getElementTypes().size() == InVec.size() &&
+ "Action not specified for every element of structure type!");
+
+ vector<const Type *> NewType;
+
+ // Convert the elements of the type over, including the new position mapping
+ int Idx = 0;
+ vector<int>::const_iterator TI = find(InVec.begin(), InVec.end(), Idx);
+ while (TI != InVec.end()) {
+ unsigned Offset = TI-InVec.begin();
+ const Type *NewEl = ConvertType(OldTy->getContainedType(Offset));
+ assert(NewEl && "Element not found!");
+ NewType.push_back(NewEl);
+
+ TI = find(InVec.begin(), InVec.end(), ++Idx);
+ }
+
+ // Create a new type that corresponds to the destination type
+ PATypeHolder<StructType> NSTy = StructType::get(NewType);
+
+ // Refine the old opaque type to the new type to properly handle recursive
+ // types...
+ //
+ const Type *OldTypeStub = TypeMap.find(OldTy)->second.get();
+ cast<DerivedType>(OldTypeStub)->refineAbstractTypeTo(NSTy);
+
+ // Add the transformation to the Transforms map.
+ Transforms.insert(make_pair(OldTy, make_pair(NSTy, InVec)));
+
+ DEBUG_MST(cerr << "Mutate " << OldTy << "\nTo " << NSTy << endl);
+ }
+}
+
+
+// doPassInitialization - This loops over global constants defined in the
+// module, converting them to their new type.
+//
+bool MutateStructTypes::doPassInitialization(Module *M) {
+ // Loop through the methods in the module and create a new version of the
+ // method to contained the transformed code. Don't use an iterator, because
+ // we will be adding values to the end of the vector, and it could be
+ // reallocated. Also, we don't want to process the values that we add.
+ //
+ unsigned NumMethods = M->size();
+ for (unsigned i = 0; i < NumMethods; ++i) {
+ Method *Meth = M->begin()[i];
+
+ if (!Meth->isExternal()) {
+ const MethodType *NewMTy =
+ cast<MethodType>(ConvertType(Meth->getMethodType()));
+
+ // Create a new method to put stuff into...
+ Method *NewMeth = new Method(NewMTy, Meth->getName());
+ if (Meth->hasName())
+ Meth->setName("OLD."+Meth->getName());
+
+ // Insert the new method into the method list... to be filled in later...
+ M->getMethodList().push_back(NewMeth);
+
+ // Keep track of the association...
+ GlobalMap[Meth] = NewMeth;
+ }
+ }
+
+ // TODO: HANDLE GLOBAL VARIABLES
+
+ // Remap the symbol table to refer to the types in a nice way
+ //
+ if (M->hasSymbolTable()) {
+ SymbolTable *ST = M->getSymbolTable();
+ SymbolTable::iterator I = ST->find(Type::TypeTy);
+ if (I != ST->end()) { // Get the type plane for Type's
+ SymbolTable::VarMap &Plane = I->second;
+ for (SymbolTable::type_iterator TI = Plane.begin(), TE = Plane.end();
+ TI != TE; ++TI) {
+ // This is gross, I'm reaching right into a symbol table and mucking
+ // around with it's internals... but oh well.
+ //
+ TI->second = cast<Type>(ConvertType(cast<Type>(TI->second)));
+ }
+ }
+ }
+
+ return true;
+}
+
+
+// doPassFinalization - For this pass, all this does is remove the old versions
+// of the methods and global variables that we no longer need.
+bool MutateStructTypes::doPassFinalization(Module *M) {
+ // The first half of the methods in the module have to go.
+ unsigned NumMethods = M->size();
+ unsigned NumGVars = M->gsize();
+ assert((NumMethods & 1) == 0 && "Number of methods is odd!");
+
+ // Prepare for deletion of globals by dropping their interdependencies...
+ for(Module::iterator I = M->begin(); I != M->end(); ++I) {
+ if (GlobalMap.find(*I) != GlobalMap.end())
+ (*I)->Method::dropAllReferences();
+ }
+
+ // Run through and delete the methods and global variables...
+#if 0 // TODO: HANDLE GLOBAL VARIABLES
+ M->getGlobalList().delete_span(M->gbegin(), M->gbegin()+NumGVars/2);
+#endif
+ for(Module::iterator I = M->begin(); I != M->end();) {
+ if (GlobalMap.find(*I) != GlobalMap.end())
+ delete M->getMethodList().remove(I);
+ else
+ ++I;
+ }
+
+ return true;
+}
+
+
+
+// doPerMethodWork - This transforms the instructions of the method to use the
+// new types.
+//
+bool MutateStructTypes::doPerMethodWork(Method *m) {
+ const Method *M = m;
+ map<const GlobalValue*, GlobalValue*>::iterator GMI = GlobalMap.find(M);
+ if (GMI == GlobalMap.end())
+ return false; // Do not affect one of our new methods that we are creating
+
+ Method *NewMeth = cast<Method>(GMI->second);
+
+ // Okay, first order of business, create the arguments...
+ for (unsigned i = 0; i < M->getArgumentList().size(); ++i) {
+ const MethodArgument *OMA = M->getArgumentList()[i];
+ MethodArgument *NMA = new MethodArgument(ConvertType(OMA->getType()),
+ OMA->getName());
+ NewMeth->getArgumentList().push_back(NMA);
+ LocalValueMap[OMA] = NMA; // Keep track of value mapping
+ }
+
+
+ // Loop over all of the basic blocks copying instructions over...
+ for (Method::const_iterator BBI = M->begin(), BBE = M->end(); BBI != BBE;
+ ++BBI) {
+
+ // Create a new basic block and establish a mapping between the old and new
+ const BasicBlock *BB = *BBI;
+ BasicBlock *NewBB = cast<BasicBlock>(ConvertValue(BB));
+ NewMeth->getBasicBlocks().push_back(NewBB); // Add block to method
+
+ // Copy over all of the instructions in the basic block...
+ for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
+ II != IE; ++II) {
+
+ const Instruction *I = *II; // Get the current instruction...
+ Instruction *NewI = 0;
+
+ switch (I->getOpcode()) {
+ // Terminator Instructions
+ case Instruction::Ret:
+ NewI = new ReturnInst(
+ ConvertValue(cast<ReturnInst>(I)->getReturnValue()));
+ break;
+ case Instruction::Br: {
+ const BranchInst *BI = cast<BranchInst>(I);
+ NewI = new BranchInst(
+ cast<BasicBlock>(ConvertValue(BI->getSuccessor(0))),
+ cast_or_null<BasicBlock>(ConvertValue(BI->getSuccessor(1))),
+ ConvertValue(BI->getCondition()));
+ break;
+ }
+ case Instruction::Switch:
+ case Instruction::Invoke:
+ assert(0 && "Insn not implemented!");
+
+ // Unary Instructions
+ case Instruction::Not:
+ NewI = UnaryOperator::create((Instruction::UnaryOps)I->getOpcode(),
+ ConvertValue(I->getOperand(0)));
+ break;
+
+ // Binary Instructions
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::Div:
+ case Instruction::Rem:
+ // Logical Operations
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+
+ // Binary Comparison Instructions
+ case Instruction::SetEQ:
+ case Instruction::SetNE:
+ case Instruction::SetLE:
+ case Instruction::SetGE:
+ case Instruction::SetLT:
+ case Instruction::SetGT:
+ NewI = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
+ ConvertValue(I->getOperand(0)),
+ ConvertValue(I->getOperand(1)));
+ break;
+
+ case Instruction::Shr:
+ case Instruction::Shl:
+ NewI = new ShiftInst(cast<ShiftInst>(I)->getOpcode(),
+ ConvertValue(I->getOperand(0)),
+ ConvertValue(I->getOperand(1)));
+ break;
+
+
+ // Memory Instructions
+ case Instruction::Alloca:
+ NewI =
+ new AllocaInst(ConvertType(I->getType()),
+ I->getNumOperands()?ConvertValue(I->getOperand(0)):0);
+ break;
+ case Instruction::Malloc:
+ NewI =
+ new MallocInst(ConvertType(I->getType()),
+ I->getNumOperands()?ConvertValue(I->getOperand(0)):0);
+ break;
+
+ case Instruction::Free:
+ NewI = new FreeInst(ConvertValue(I->getOperand(0)));
+ break;
+
+ case Instruction::Load:
+ case Instruction::Store:
+ case Instruction::GetElementPtr: {
+ const MemAccessInst *MAI = cast<MemAccessInst>(I);
+ vector<ConstPoolVal*> Indices = MAI->getIndices();
+ const Value *Ptr = MAI->getPointerOperand();
+ Value *NewPtr = ConvertValue(Ptr);
+ if (!Indices.empty()) {
+ const Type *PTy = cast<PointerType>(Ptr->getType())->getValueType();
+ AdjustIndices(cast<StructType>(PTy), Indices);
+ }
+
+ if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ NewI = new LoadInst(NewPtr, Indices);
+ } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ NewI = new StoreInst(ConvertValue(I->getOperand(0)), NewPtr, Indices);
+ } else if (const GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(I)) {
+ NewI = new GetElementPtrInst(NewPtr, Indices);
+ } else {
+ assert(0 && "Unknown memory access inst!!!");
+ }
+ break;
+ }
+
+ // Miscellaneous Instructions
+ case Instruction::PHINode: {
+ const PHINode *OldPN = cast<PHINode>(I);
+ PHINode *PN = new PHINode(ConvertType(I->getType()));
+ for (unsigned i = 0; i < OldPN->getNumIncomingValues(); ++i)
+ PN->addIncoming(ConvertValue(OldPN->getIncomingValue(i)),
+ cast<BasicBlock>(ConvertValue(OldPN->getIncomingBlock(i))));
+ NewI = PN;
+ break;
+ }
+ case Instruction::Cast:
+ NewI = new CastInst(ConvertValue(I->getOperand(0)),
+ ConvertType(I->getType()));
+ break;
+ case Instruction::Call: {
+ Value *Meth = ConvertValue(I->getOperand(0));
+ vector<Value*> Operands;
+ for (unsigned i = 1; i < I->getNumOperands(); ++i)
+ Operands.push_back(ConvertValue(I->getOperand(i)));
+ NewI = new CallInst(Meth, Operands);
+ break;
+ }
+
+ default:
+ assert(0 && "UNKNOWN INSTRUCTION ENCOUNTERED!\n");
+ break;
+ }
+
+ NewI->setName(I->getName());
+ NewBB->getInstList().push_back(NewI);
+
+ // Check to see if we had to make a placeholder for this value...
+ map<const Value*,Value*>::iterator LVMI = LocalValueMap.find(I);
+ if (LVMI != LocalValueMap.end()) {
+ // Yup, make sure it's a placeholder...
+ Instruction *I = cast<Instruction>(LVMI->second);
+ assert(I->getOpcode() == Instruction::UserOp1 && "Not a placeholder!");
+
+ // Replace all uses of the place holder with the real deal...
+ I->replaceAllUsesWith(NewI);
+ delete I; // And free the placeholder memory
+ }
+
+ // Keep track of the fact the the local implementation of this instruction
+ // is NewI.
+ LocalValueMap[I] = NewI;
+ }
+ }
+
+ LocalValueMap.clear();
+ return true;
+}