aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMichael Gottesman <mgottesman@apple.com>2013-05-23 02:00:03 +0000
committerMichael Gottesman <mgottesman@apple.com>2013-05-23 02:00:03 +0000
commitcbc8777c588173b1d7d98b29f5a0b43ad35dc6e1 (patch)
treeee30bc08b098e43fd2a357d176143e67b7b1cac7
parentb737702efd96d2902c7063152747e8f193aa1fbc (diff)
downloadexternal_llvm-cbc8777c588173b1d7d98b29f5a0b43ad35dc6e1.zip
external_llvm-cbc8777c588173b1d7d98b29f5a0b43ad35dc6e1.tar.gz
external_llvm-cbc8777c588173b1d7d98b29f5a0b43ad35dc6e1.tar.bz2
Updated the comments of APInt.h to match the llvm style guide and be consistent. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182555 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--include/llvm/ADT/APInt.h969
1 files changed, 590 insertions, 379 deletions
diff --git a/include/llvm/ADT/APInt.h b/include/llvm/ADT/APInt.h
index 3d8b72d..2c481f9 100644
--- a/include/llvm/ADT/APInt.h
+++ b/include/llvm/ADT/APInt.h
@@ -6,10 +6,11 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
-//
-// This file implements a class to represent arbitrary precision integral
-// constant values and operations on them.
-//
+///
+/// \file
+/// \brief This file implements a class to represent arbitrary precision
+/// integral constant values and operations on them.
+///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_APINT_H
@@ -46,8 +47,9 @@ namespace llvm {
// APInt Class
//===----------------------------------------------------------------------===//
-/// APInt - This class represents arbitrary precision constant integral values.
-/// It is a functional replacement for common case unsigned integer type like
+/// \brief Class for arbitrary precision integers.
+///
+/// APInt is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
@@ -71,7 +73,6 @@ namespace llvm {
/// * In general, the class tries to follow the style of computation that LLVM
/// uses in its IR. This simplifies its use for LLVM.
///
-/// @brief Class for arbitrary precision integers.
class APInt {
unsigned BitWidth; ///< The number of bits in this APInt.
@@ -91,44 +92,50 @@ class APInt {
APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
};
+ /// \brief Fast internal constructor
+ ///
/// This constructor is used only internally for speed of construction of
/// temporaries. It is unsafe for general use so it is not public.
- /// @brief Fast internal constructor
APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
- /// @returns true if the number of bits <= 64, false otherwise.
- /// @brief Determine if this APInt just has one word to store value.
+ /// \brief Determine if this APInt just has one word to store value.
+ ///
+ /// \returns true if the number of bits <= 64, false otherwise.
bool isSingleWord() const {
return BitWidth <= APINT_BITS_PER_WORD;
}
- /// @returns the word position for the specified bit position.
- /// @brief Determine which word a bit is in.
+ /// \brief Determine which word a bit is in.
+ ///
+ /// \returns the word position for the specified bit position.
static unsigned whichWord(unsigned bitPosition) {
return bitPosition / APINT_BITS_PER_WORD;
}
- /// @returns the bit position in a word for the specified bit position
+ /// \brief Determine which bit in a word a bit is in.
+ ///
+ /// \returns the bit position in a word for the specified bit position
/// in the APInt.
- /// @brief Determine which bit in a word a bit is in.
static unsigned whichBit(unsigned bitPosition) {
return bitPosition % APINT_BITS_PER_WORD;
}
+ /// \brief Get a single bit mask.
+ ///
+ /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
/// This method generates and returns a uint64_t (word) mask for a single
/// bit at a specific bit position. This is used to mask the bit in the
/// corresponding word.
- /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
- /// @brief Get a single bit mask.
static uint64_t maskBit(unsigned bitPosition) {
return 1ULL << whichBit(bitPosition);
}
+ /// \brief Clear unused high order bits
+ ///
/// This method is used internally to clear the to "N" bits in the high order
/// word that are not used by the APInt. This is needed after the most
/// significant word is assigned a value to ensure that those bits are
/// zero'd out.
- /// @brief Clear unused high order bits
APInt& clearUnusedBits() {
// Compute how many bits are used in the final word
unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
@@ -147,12 +154,15 @@ class APInt {
return *this;
}
- /// @returns the corresponding word for the specified bit position.
- /// @brief Get the word corresponding to a bit position
+ /// \brief Get the word corresponding to a bit position
+ /// \returns the corresponding word for the specified bit position.
uint64_t getWord(unsigned bitPosition) const {
return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
}
+ /// \brief Convert a char array into an APInt
+ ///
+ /// \param radix 2, 8, 10, 16, or 36
/// Converts a string into a number. The string must be non-empty
/// and well-formed as a number of the given base. The bit-width
/// must be sufficient to hold the result.
@@ -162,16 +172,14 @@ class APInt {
/// StringRef::getAsInteger is superficially similar but (1) does
/// not assume that the string is well-formed and (2) grows the
/// result to hold the input.
- ///
- /// @param radix 2, 8, 10, 16, or 36
- /// @brief Convert a char array into an APInt
void fromString(unsigned numBits, StringRef str, uint8_t radix);
+ /// \brief An internal division function for dividing APInts.
+ ///
/// This is used by the toString method to divide by the radix. It simply
/// provides a more convenient form of divide for internal use since KnuthDiv
/// has specific constraints on its inputs. If those constraints are not met
/// then it provides a simpler form of divide.
- /// @brief An internal division function for dividing APInts.
static void divide(const APInt LHS, unsigned lhsWords,
const APInt &RHS, unsigned rhsWords,
APInt *Quotient, APInt *Remainder);
@@ -216,16 +224,19 @@ class APInt {
unsigned countPopulationSlowCase() const;
public:
- /// @name Constructors
+ /// \name Constructors
/// @{
+
+ /// \brief Create a new APInt of numBits width, initialized as val.
+ ///
/// If isSigned is true then val is treated as if it were a signed value
/// (i.e. as an int64_t) and the appropriate sign extension to the bit width
/// will be done. Otherwise, no sign extension occurs (high order bits beyond
/// the range of val are zero filled).
- /// @param numBits the bit width of the constructed APInt
- /// @param val the initial value of the APInt
- /// @param isSigned how to treat signedness of val
- /// @brief Create a new APInt of numBits width, initialized as val.
+ ///
+ /// \param numBits the bit width of the constructed APInt
+ /// \param val the initial value of the APInt
+ /// \param isSigned how to treat signedness of val
APInt(unsigned numBits, uint64_t val, bool isSigned = false)
: BitWidth(numBits), VAL(0) {
assert(BitWidth && "bitwidth too small");
@@ -236,12 +247,15 @@ public:
clearUnusedBits();
}
+ /// \brief Construct an APInt of numBits width, initialized as bigVal[].
+ ///
/// Note that bigVal.size() can be smaller or larger than the corresponding
/// bit width but any extraneous bits will be dropped.
- /// @param numBits the bit width of the constructed APInt
- /// @param bigVal a sequence of words to form the initial value of the APInt
- /// @brief Construct an APInt of numBits width, initialized as bigVal[].
+ ///
+ /// \param numBits the bit width of the constructed APInt
+ /// \param bigVal a sequence of words to form the initial value of the APInt
APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
+
/// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
/// deprecated because this constructor is prone to ambiguity with the
/// APInt(unsigned, uint64_t, bool) constructor.
@@ -251,16 +265,17 @@ public:
/// constructor.
APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
+ /// \brief Construct an APInt from a string representation.
+ ///
/// This constructor interprets the string \p str in the given radix. The
/// interpretation stops when the first character that is not suitable for the
/// radix is encountered, or the end of the string. Acceptable radix values
/// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
/// string to require more bits than numBits.
///
- /// @param numBits the bit width of the constructed APInt
- /// @param str the string to be interpreted
- /// @param radix the radix to use for the conversion
- /// @brief Construct an APInt from a string representation.
+ /// \param numBits the bit width of the constructed APInt
+ /// \param str the string to be interpreted
+ /// \param radix the radix to use for the conversion
APInt(unsigned numBits, StringRef str, uint8_t radix);
/// Simply makes *this a copy of that.
@@ -275,194 +290,224 @@ public:
}
#if LLVM_HAS_RVALUE_REFERENCES
- /// @brief Move Constructor.
+ /// \brief Move Constructor.
APInt(APInt&& that) : BitWidth(that.BitWidth), VAL(that.VAL) {
that.BitWidth = 0;
}
#endif
- /// @brief Destructor.
+ /// \brief Destructor.
~APInt() {
if (!isSingleWord())
delete [] pVal;
}
- /// Default constructor that creates an uninitialized APInt. This is useful
- /// for object deserialization (pair this with the static method Read).
+ /// \brief Default constructor that creates an uninitialized APInt.
+ ///
+ /// This is useful for object deserialization (pair this with the static
+ /// method Read).
explicit APInt() : BitWidth(1) {}
- /// Profile - Used to insert APInt objects, or objects that contain APInt
- /// objects, into FoldingSets.
+ /// Used to insert APInt objects, or objects that contain APInt objects, into
+ /// FoldingSets.
void Profile(FoldingSetNodeID& id) const;
/// @}
- /// @name Value Tests
+ /// \name Value Tests
/// @{
+
+ /// \brief Determine sign of this APInt.
+ ///
/// This tests the high bit of this APInt to determine if it is set.
- /// @returns true if this APInt is negative, false otherwise
- /// @brief Determine sign of this APInt.
+ ///
+ /// \returns true if this APInt is negative, false otherwise
bool isNegative() const {
return (*this)[BitWidth - 1];
}
+ /// \brief Determine if this APInt Value is non-negative (>= 0)
+ ///
/// This tests the high bit of the APInt to determine if it is unset.
- /// @brief Determine if this APInt Value is non-negative (>= 0)
bool isNonNegative() const {
return !isNegative();
}
+ /// \brief Determine if this APInt Value is positive.
+ ///
/// This tests if the value of this APInt is positive (> 0). Note
/// that 0 is not a positive value.
- /// @returns true if this APInt is positive.
- /// @brief Determine if this APInt Value is positive.
+ ///
+ /// \returns true if this APInt is positive.
bool isStrictlyPositive() const {
return isNonNegative() && !!*this;
}
+ /// \brief Determine if all bits are set
+ ///
/// This checks to see if the value has all bits of the APInt are set or not.
- /// @brief Determine if all bits are set
bool isAllOnesValue() const {
return countPopulation() == BitWidth;
}
+ /// \brief Determine if this is the largest unsigned value.
+ ///
/// This checks to see if the value of this APInt is the maximum unsigned
/// value for the APInt's bit width.
- /// @brief Determine if this is the largest unsigned value.
bool isMaxValue() const {
return countPopulation() == BitWidth;
}
+ /// \brief Determine if this is the largest signed value.
+ ///
/// This checks to see if the value of this APInt is the maximum signed
/// value for the APInt's bit width.
- /// @brief Determine if this is the largest signed value.
bool isMaxSignedValue() const {
return BitWidth == 1 ? VAL == 0 :
!isNegative() && countPopulation() == BitWidth - 1;
}
+ /// \brief Determine if this is the smallest unsigned value.
+ ///
/// This checks to see if the value of this APInt is the minimum unsigned
/// value for the APInt's bit width.
- /// @brief Determine if this is the smallest unsigned value.
bool isMinValue() const {
return !*this;
}
+ /// \brief Determine if this is the smallest signed value.
+ ///
/// This checks to see if the value of this APInt is the minimum signed
/// value for the APInt's bit width.
- /// @brief Determine if this is the smallest signed value.
bool isMinSignedValue() const {
return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
}
- /// @brief Check if this APInt has an N-bits unsigned integer value.
+ /// \brief Check if this APInt has an N-bits unsigned integer value.
bool isIntN(unsigned N) const {
assert(N && "N == 0 ???");
return getActiveBits() <= N;
}
- /// @brief Check if this APInt has an N-bits signed integer value.
+ /// \brief Check if this APInt has an N-bits signed integer value.
bool isSignedIntN(unsigned N) const {
assert(N && "N == 0 ???");
return getMinSignedBits() <= N;
}
- /// @returns true if the argument APInt value is a power of two > 0.
+ /// \brief Check if this APInt's value is a power of two greater than zero.
+ ///
+ /// \returns true if the argument APInt value is a power of two > 0.
bool isPowerOf2() const {
if (isSingleWord())
return isPowerOf2_64(VAL);
return countPopulationSlowCase() == 1;
}
- /// isSignBit - Return true if this is the value returned by getSignBit.
+ /// \brief Check if the APInt's value is returned by getSignBit.
+ ///
+ /// \returns true if this is the value returned by getSignBit.
bool isSignBit() const { return isMinSignedValue(); }
+ /// \brief Convert APInt to a boolean value.
+ ///
/// This converts the APInt to a boolean value as a test against zero.
- /// @brief Boolean conversion function.
bool getBoolValue() const {
return !!*this;
}
- /// getLimitedValue - If this value is smaller than the specified limit,
- /// return it, otherwise return the limit value. This causes the value
- /// to saturate to the limit.
+ /// If this value is smaller than the specified limit, return it, otherwise
+ /// return the limit value. This causes the value to saturate to the limit.
uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
return (getActiveBits() > 64 || getZExtValue() > Limit) ?
Limit : getZExtValue();
}
/// @}
- /// @name Value Generators
+ /// \name Value Generators
/// @{
- /// @brief Gets maximum unsigned value of APInt for specific bit width.
+
+ /// \brief Gets maximum unsigned value of APInt for specific bit width.
static APInt getMaxValue(unsigned numBits) {
return getAllOnesValue(numBits);
}
- /// @brief Gets maximum signed value of APInt for a specific bit width.
+ /// \brief Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMaxValue(unsigned numBits) {
APInt API = getAllOnesValue(numBits);
API.clearBit(numBits - 1);
return API;
}
- /// @brief Gets minimum unsigned value of APInt for a specific bit width.
+ /// \brief Gets minimum unsigned value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits) {
return APInt(numBits, 0);
}
- /// @brief Gets minimum signed value of APInt for a specific bit width.
+ /// \brief Gets minimum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits) {
APInt API(numBits, 0);
API.setBit(numBits - 1);
return API;
}
- /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
- /// it helps code readability when we want to get a SignBit.
- /// @brief Get the SignBit for a specific bit width.
+ /// \brief Get the SignBit for a specific bit width.
+ ///
+ /// This is just a wrapper function of getSignedMinValue(), and it helps code
+ /// readability when we want to get a SignBit.
static APInt getSignBit(unsigned BitWidth) {
return getSignedMinValue(BitWidth);
}
- /// @returns the all-ones value for an APInt of the specified bit-width.
- /// @brief Get the all-ones value.
+ /// \brief Get the all-ones value.
+ ///
+ /// \returns the all-ones value for an APInt of the specified bit-width.
static APInt getAllOnesValue(unsigned numBits) {
return APInt(numBits, UINT64_MAX, true);
}
- /// @returns the '0' value for an APInt of the specified bit-width.
- /// @brief Get the '0' value.
+ /// \brief Get the '0' value.
+ ///
+ /// \returns the '0' value for an APInt of the specified bit-width.
static APInt getNullValue(unsigned numBits) {
return APInt(numBits, 0);
}
+ /// \brief Compute an APInt containing numBits highbits from this APInt.
+ ///
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the low bits and right shift to the least significant bit.
- /// @returns the high "numBits" bits of this APInt.
+ ///
+ /// \returns the high "numBits" bits of this APInt.
APInt getHiBits(unsigned numBits) const;
+ /// \brief Compute an APInt containing numBits lowbits from this APInt.
+ ///
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the high bits.
- /// @returns the low "numBits" bits of this APInt.
+ ///
+ /// \returns the low "numBits" bits of this APInt.
APInt getLoBits(unsigned numBits) const;
- /// getOneBitSet - Return an APInt with exactly one bit set in the result.
+ /// \brief Return an APInt with exactly one bit set in the result.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
APInt Res(numBits, 0);
Res.setBit(BitNo);
return Res;
}
+ /// \brief Get a value with a block of bits set.
+ ///
/// Constructs an APInt value that has a contiguous range of bits set. The
/// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
/// bits will be zero. For example, with parameters(32, 0, 16) you would get
/// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
/// example, with parameters (32, 28, 4), you would get 0xF000000F.
- /// @param numBits the intended bit width of the result
- /// @param loBit the index of the lowest bit set.
- /// @param hiBit the index of the highest bit set.
- /// @returns An APInt value with the requested bits set.
- /// @brief Get a value with a block of bits set.
+ ///
+ /// \param numBits the intended bit width of the result
+ /// \param loBit the index of the lowest bit set.
+ /// \param hiBit the index of the highest bit set.
+ ///
+ /// \returns An APInt value with the requested bits set.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
assert(hiBit <= numBits && "hiBit out of range");
assert(loBit < numBits && "loBit out of range");
@@ -472,10 +517,12 @@ public:
return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
}
+ /// \brief Get a value with high bits set
+ ///
/// Constructs an APInt value that has the top hiBitsSet bits set.
- /// @param numBits the bitwidth of the result
- /// @param hiBitsSet the number of high-order bits set in the result.
- /// @brief Get a value with high bits set
+ ///
+ /// \param numBits the bitwidth of the result
+ /// \param hiBitsSet the number of high-order bits set in the result.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
assert(hiBitsSet <= numBits && "Too many bits to set!");
// Handle a degenerate case, to avoid shifting by word size
@@ -488,10 +535,12 @@ public:
return getAllOnesValue(numBits).shl(shiftAmt);
}
+ /// \brief Get a value with low bits set
+ ///
/// Constructs an APInt value that has the bottom loBitsSet bits set.
- /// @param numBits the bitwidth of the result
- /// @param loBitsSet the number of low-order bits set in the result.
- /// @brief Get a value with low bits set
+ ///
+ /// \param numBits the bitwidth of the result
+ /// \param loBitsSet the number of low-order bits set in the result.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
assert(loBitsSet <= numBits && "Too many bits to set!");
// Handle a degenerate case, to avoid shifting by word size
@@ -541,51 +590,62 @@ public:
}
/// @}
- /// @name Unary Operators
+ /// \name Unary Operators
/// @{
- /// @returns a new APInt value representing *this incremented by one
- /// @brief Postfix increment operator.
+
+ /// \brief Postfix increment operator.
+ ///
+ /// \returns a new APInt value representing *this incremented by one
const APInt operator++(int) {
APInt API(*this);
++(*this);
return API;
}
- /// @returns *this incremented by one
- /// @brief Prefix increment operator.
+ /// \brief Prefix increment operator.
+ ///
+ /// \returns *this incremented by one
APInt& operator++();
- /// @returns a new APInt representing *this decremented by one.
- /// @brief Postfix decrement operator.
+ /// \brief Postfix decrement operator.
+ ///
+ /// \returns a new APInt representing *this decremented by one.
const APInt operator--(int) {
APInt API(*this);
--(*this);
return API;
}
- /// @returns *this decremented by one.
- /// @brief Prefix decrement operator.
+ /// \brief Prefix decrement operator.
+ ///
+ /// \returns *this decremented by one.
APInt& operator--();
+ /// \brief Unary bitwise complement operator.
+ ///
/// Performs a bitwise complement operation on this APInt.
- /// @returns an APInt that is the bitwise complement of *this
- /// @brief Unary bitwise complement operator.
+ ///
+ /// \returns an APInt that is the bitwise complement of *this
APInt operator~() const {
APInt Result(*this);
Result.flipAllBits();
return Result;
}
+ /// \brief Unary negation operator
+ ///
/// Negates *this using two's complement logic.
- /// @returns An APInt value representing the negation of *this.
- /// @brief Unary negation operator
+ ///
+ /// \returns An APInt value representing the negation of *this.
APInt operator-() const {
return APInt(BitWidth, 0) - (*this);
}
+ /// \brief Logical negation operator.
+ ///
/// Performs logical negation operation on this APInt.
- /// @returns true if *this is zero, false otherwise.
- /// @brief Logical negation operator.
+ ///
+ /// \returns true if *this is zero, false otherwise.
bool operator!() const {
if (isSingleWord())
return !VAL;
@@ -597,10 +657,12 @@ public:
}
/// @}
- /// @name Assignment Operators
+ /// \name Assignment Operators
/// @{
- /// @returns *this after assignment of RHS.
- /// @brief Copy assignment operator.
+
+ /// \brief Copy assignment operator.
+ ///
+ /// \returns *this after assignment of RHS.
APInt& operator=(const APInt& RHS) {
// If the bitwidths are the same, we can avoid mucking with memory
if (isSingleWord() && RHS.isSingleWord()) {
@@ -627,30 +689,36 @@ public:
}
#endif
+ /// \brief Assignment operator.
+ ///
/// The RHS value is assigned to *this. If the significant bits in RHS exceed
/// the bit width, the excess bits are truncated. If the bit width is larger
/// than 64, the value is zero filled in the unspecified high order bits.
- /// @returns *this after assignment of RHS value.
- /// @brief Assignment operator.
+ ///
+ /// \returns *this after assignment of RHS value.
APInt& operator=(uint64_t RHS);
+ /// \brief Bitwise AND assignment operator.
+ ///
/// Performs a bitwise AND operation on this APInt and RHS. The result is
/// assigned to *this.
- /// @returns *this after ANDing with RHS.
- /// @brief Bitwise AND assignment operator.
+ ///
+ /// \returns *this after ANDing with RHS.
APInt& operator&=(const APInt& RHS);
+ /// \brief Bitwise OR assignment operator.
+ ///
/// Performs a bitwise OR operation on this APInt and RHS. The result is
/// assigned *this;
- /// @returns *this after ORing with RHS.
- /// @brief Bitwise OR assignment operator.
+ ///
+ /// \returns *this after ORing with RHS.
APInt& operator|=(const APInt& RHS);
+ /// \brief Bitwise OR assignment operator.
+ ///
/// Performs a bitwise OR operation on this APInt and RHS. RHS is
/// logically zero-extended or truncated to match the bit-width of
/// the LHS.
- ///
- /// @brief Bitwise OR assignment operator.
APInt& operator|=(uint64_t RHS) {
if (isSingleWord()) {
VAL |= RHS;
@@ -661,41 +729,54 @@ public:
return *this;
}
+ /// \brief Bitwise XOR assignment operator.
+ ///
/// Performs a bitwise XOR operation on this APInt and RHS. The result is
/// assigned to *this.
- /// @returns *this after XORing with RHS.
- /// @brief Bitwise XOR assignment operator.
+ ///
+ /// \returns *this after XORing with RHS.
APInt& operator^=(const APInt& RHS);
+ /// \brief Multiplication assignment operator.
+ ///
/// Multiplies this APInt by RHS and assigns the result to *this.
- /// @returns *this
- /// @brief Multiplication assignment operator.
+ ///
+ /// \returns *this
APInt& operator*=(const APInt& RHS);
+ /// \brief Addition assignment operator.
+ ///
/// Adds RHS to *this and assigns the result to *this.
- /// @returns *this
- /// @brief Addition assignment operator.
+ ///
+ /// \returns *this
APInt& operator+=(const APInt& RHS);
+ /// \brief Subtraction assignment operator.
+ ///
/// Subtracts RHS from *this and assigns the result to *this.
- /// @returns *this
- /// @brief Subtraction assignment operator.
+ ///
+ /// \returns *this
APInt& operator-=(const APInt& RHS);
+ /// \brief Left-shift assignment function.
+ ///
/// Shifts *this left by shiftAmt and assigns the result to *this.
- /// @returns *this after shifting left by shiftAmt
- /// @brief Left-shift assignment function.
+ ///
+ /// \returns *this after shifting left by shiftAmt
APInt& operator<<=(unsigned shiftAmt) {
*this = shl(shiftAmt);
return *this;
}
/// @}
- /// @name Binary Operators
+ /// \name Binary Operators
/// @{
+
+ /// \brief Bitwise AND operator.
+ ///
/// Performs a bitwise AND operation on *this and RHS.
- /// @returns An APInt value representing the bitwise AND of *this and RHS.
- /// @brief Bitwise AND operator.
+ ///
+ /// \returns An APInt value representing the bitwise AND of *this and RHS.
APInt operator&(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
@@ -706,68 +787,98 @@ public:
return this->operator&(RHS);
}
+ /// \brief Bitwise OR operator.
+ ///
/// Performs a bitwise OR operation on *this and RHS.
- /// @returns An APInt value representing the bitwise OR of *this and RHS.
- /// @brief Bitwise OR operator.
+ ///
+ /// \returns An APInt value representing the bitwise OR of *this and RHS.
APInt operator|(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(getBitWidth(), VAL | RHS.VAL);
return OrSlowCase(RHS);
}
+
+ /// \brief Bitwise OR function.
+ ///
+ /// Performs a bitwise or on *this and RHS. This is implemented bny simply
+ /// calling operator|.
+ ///
+ /// \returns An APInt value representing the bitwise OR of *this and RHS.
APInt Or(const APInt& RHS) const {
return this->operator|(RHS);
}
+ /// \brief Bitwise XOR operator.
+ ///
/// Performs a bitwise XOR operation on *this and RHS.
- /// @returns An APInt value representing the bitwise XOR of *this and RHS.
- /// @brief Bitwise XOR operator.
+ ///
+ /// \returns An APInt value representing the bitwise XOR of *this and RHS.
APInt operator^(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
return APInt(BitWidth, VAL ^ RHS.VAL);
return XorSlowCase(RHS);
}
+
+ /// \brief Bitwise XOR function.
+ ///
+ /// Performs a bitwise XOR operation on *this and RHS. This is implemented
+ /// through the usage of operator^.
+ ///
+ /// \returns An APInt value representing the bitwise XOR of *this and RHS.
APInt Xor(const APInt& RHS) const {
return this->operator^(RHS);
}
+ /// \brief Multiplication operator.
+ ///
/// Multiplies this APInt by RHS and returns the result.
- /// @brief Multiplication operator.
APInt operator*(const APInt& RHS) const;
+ /// \brief Addition operator.
+ ///
/// Adds RHS to this APInt and returns the result.
- /// @brief Addition operator.
APInt operator+(const APInt& RHS) const;
APInt operator+(uint64_t RHS) const {
return (*this) + APInt(BitWidth, RHS);
}
+ /// \brief Subtraction operator.
+ ///
/// Subtracts RHS from this APInt and returns the result.
- /// @brief Subtraction operator.
APInt operator-(const APInt& RHS) const;
APInt operator-(uint64_t RHS) const {
return (*this) - APInt(BitWidth, RHS);
}
+ /// \brief Left logical shift operator.
+ ///
+ /// Shifts this APInt left by \p Bits and returns the result.
APInt operator<<(unsigned Bits) const {
return shl(Bits);
}
+ /// \brief Left logical shift operator.
+ ///
+ /// Shifts this APInt left by \p Bits and returns the result.
APInt operator<<(const APInt &Bits) const {
return shl(Bits);
}
+ /// \brief Arithmetic right-shift function.
+ ///
/// Arithmetic right-shift this APInt by shiftAmt.
- /// @brief Arithmetic right-shift function.
APInt ashr(unsigned shiftAmt) const;
+ /// \brief Logical right-shift function.
+ ///
/// Logical right-shift this APInt by shiftAmt.
- /// @brief Logical right-shift function.
APInt lshr(unsigned shiftAmt) const;
+ /// \brief Left-shift function.
+ ///
/// Left-shift this APInt by shiftAmt.
- /// @brief Left-shift function.
APInt shl(unsigned shiftAmt) const {
assert(shiftAmt <= BitWidth && "Invalid shift amount");
if (isSingleWord()) {
@@ -778,59 +889,69 @@ public:
return shlSlowCase(shiftAmt);
}
- /// @brief Rotate left by rotateAmt.
+ /// \brief Rotate left by rotateAmt.
APInt rotl(unsigned rotateAmt) const;
- /// @brief Rotate right by rotateAmt.
+ /// \brief Rotate right by rotateAmt.
APInt rotr(unsigned rotateAmt) const;
+ /// \brief Arithmetic right-shift function.
+ ///
/// Arithmetic right-shift this APInt by shiftAmt.
- /// @brief Arithmetic right-shift function.
APInt ashr(const APInt &shiftAmt) const;
+ /// \brief Logical right-shift function.
+ ///
/// Logical right-shift this APInt by shiftAmt.
- /// @brief Logical right-shift function.
APInt lshr(const APInt &shiftAmt) const;
+ /// \brief Left-shift function.
+ ///
/// Left-shift this APInt by shiftAmt.
- /// @brief Left-shift function.
APInt shl(const APInt &shiftAmt) const;
- /// @brief Rotate left by rotateAmt.
+ /// \brief Rotate left by rotateAmt.
APInt rotl(const APInt &rotateAmt) const;
- /// @brief Rotate right by rotateAmt.
+ /// \brief Rotate right by rotateAmt.
APInt rotr(const APInt &rotateAmt) const;
+ /// \brief Unsigned division operation.
+ ///
/// Perform an unsigned divide operation on this APInt by RHS. Both this and
/// RHS are treated as unsigned quantities for purposes of this division.
- /// @returns a new APInt value containing the division result
- /// @brief Unsigned division operation.
+ ///
+ /// \returns a new APInt value containing the division result
APInt udiv(const APInt &RHS) const;
+ /// \brief Signed division function for APInt.
+ ///
/// Signed divide this APInt by APInt RHS.
- /// @brief Signed division function for APInt.
APInt sdiv(const APInt &RHS) const;
+ /// \brief Unsigned remainder operation.
+ ///
/// Perform an unsigned remainder operation on this APInt with RHS being the
/// divisor. Both this and RHS are treated as unsigned quantities for purposes
- /// of this operation. Note that this is a true remainder operation and not
- /// a modulo operation because the sign follows the sign of the dividend
- /// which is *this.
- /// @returns a new APInt value containing the remainder result
- /// @brief Unsigned remainder operation.
+ /// of this operation. Note that this is a true remainder operation and not a
+ /// modulo operation because the sign follows the sign of the dividend which
+ /// is *this.
+ ///
+ /// \returns a new APInt value containing the remainder result
APInt urem(const APInt &RHS) const;
+ /// \brief Function for signed remainder operation.
+ ///
/// Signed remainder operation on APInt.
- /// @brief Function for signed remainder operation.
APInt srem(const APInt &RHS) const;
+ /// \brief Dual division/remainder interface.
+ ///
/// Sometimes it is convenient to divide two APInt values and obtain both the
/// quotient and remainder. This function does both operations in the same
/// computation making it a little more efficient. The pair of input arguments
/// may overlap with the pair of output arguments. It is safe to call
/// udivrem(X, Y, X, Y), for example.
- /// @brief Dual division/remainder interface.
static void udivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder);
@@ -848,8 +969,9 @@ public:
APInt umul_ov(const APInt &RHS, bool &Overflow) const;
APInt sshl_ov(unsigned Amt, bool &Overflow) const;
- /// @returns the bit value at bitPosition
- /// @brief Array-indexing support.
+ /// \brief Array-indexing support.
+ ///
+ /// \returns the bit value at bitPosition
bool operator[](unsigned bitPosition) const {
assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
return (maskBit(bitPosition) &
@@ -857,11 +979,13 @@ public:
}
/// @}
- /// @name Comparison Operators
+ /// \name Comparison Operators
/// @{
+
+ /// \brief Equality operator.
+ ///
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
- /// @brief Equality operator.
bool operator==(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
if (isSingleWord())
@@ -869,175 +993,214 @@ public:
return EqualSlowCase(RHS);
}
+ /// \brief Equality operator.
+ ///
/// Compares this APInt with a uint64_t for the validity of the equality
/// relationship.
- /// @returns true if *this == Val
- /// @brief Equality operator.
+ ///
+ /// \returns true if *this == Val
bool operator==(uint64_t Val) const {
if (isSingleWord())
return VAL == Val;
return EqualSlowCase(Val);
}
+ /// \brief Equality comparison.
+ ///
/// Compares this APInt with RHS for the validity of the equality
/// relationship.
- /// @returns true if *this == Val
- /// @brief Equality comparison.
+ ///
+ /// \returns true if *this == Val
bool eq(const APInt &RHS) const {
return (*this) == RHS;
}
+ /// \brief Inequality operator.
+ ///
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
- /// @returns true if *this != Val
- /// @brief Inequality operator.
+ ///
+ /// \returns true if *this != Val
bool operator!=(const APInt& RHS) const {
return !((*this) == RHS);
}
+ /// \brief Inequality operator.
+ ///
/// Compares this APInt with a uint64_t for the validity of the inequality
/// relationship.
- /// @returns true if *this != Val
- /// @brief Inequality operator.
+ ///
+ /// \returns true if *this != Val
bool operator!=(uint64_t Val) const {
return !((*this) == Val);
}
+ /// \brief Inequality comparison
+ ///
/// Compares this APInt with RHS for the validity of the inequality
/// relationship.
- /// @returns true if *this != Val
- /// @brief Inequality comparison
+ ///
+ /// \returns true if *this != Val
bool ne(const APInt &RHS) const {
return !((*this) == RHS);
}
+ /// \brief Unsigned less than comparison
+ ///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the less-than relationship.
- /// @returns true if *this < RHS when both are considered unsigned.
- /// @brief Unsigned less than comparison
+ ///
+ /// \returns true if *this < RHS when both are considered unsigned.
bool ult(const APInt &RHS) const;
+ /// \brief Unsigned less than comparison
+ ///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the less-than relationship.
- /// @returns true if *this < RHS when considered unsigned.
- /// @brief Unsigned less than comparison
+ ///
+ /// \returns true if *this < RHS when considered unsigned.
bool ult(uint64_t RHS) const {
return ult(APInt(getBitWidth(), RHS));
}
+ /// \brief Signed less than comparison
+ ///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-than relationship.
- /// @returns true if *this < RHS when both are considered signed.
- /// @brief Signed less than comparison
+ ///
+ /// \returns true if *this < RHS when both are considered signed.
bool slt(const APInt& RHS) const;
+ /// \brief Signed less than comparison
+ ///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the less-than relationship.
- /// @returns true if *this < RHS when considered signed.
- /// @brief Signed less than comparison
+ ///
+ /// \returns true if *this < RHS when considered signed.
bool slt(uint64_t RHS) const {
return slt(APInt(getBitWidth(), RHS));
}
+ /// \brief Unsigned less or equal comparison
+ ///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the less-or-equal relationship.
- /// @returns true if *this <= RHS when both are considered unsigned.
- /// @brief Unsigned less or equal comparison
+ ///
+ /// \returns true if *this <= RHS when both are considered unsigned.
bool ule(const APInt& RHS) const {
return ult(RHS) || eq(RHS);
}
+ /// \brief Unsigned less or equal comparison
+ ///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the less-or-equal relationship.
- /// @returns true if *this <= RHS when considered unsigned.
- /// @brief Unsigned less or equal comparison
+ ///
+ /// \returns true if *this <= RHS when considered unsigned.
bool ule(uint64_t RHS) const {
return ule(APInt(getBitWidth(), RHS));
}
+ /// \brief Signed less or equal comparison
+ ///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the less-or-equal relationship.
- /// @returns true if *this <= RHS when both are considered signed.
- /// @brief Signed less or equal comparison
+ ///
+ /// \returns true if *this <= RHS when both are considered signed.
bool sle(const APInt& RHS) const {
return slt(RHS) || eq(RHS);
}
- /// Regards both *this as a signed quantity and compares it with RHS for
- /// the validity of the less-or-equal relationship.
- /// @returns true if *this <= RHS when considered signed.
- /// @brief Signed less or equal comparison
+ /// \brief Signed less or equal comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for the
+ /// validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when considered signed.
bool sle(uint64_t RHS) const {
return sle(APInt(getBitWidth(), RHS));
}
+ /// \brief Unsigned greather than comparison
+ ///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// the validity of the greater-than relationship.
- /// @returns true if *this > RHS when both are considered unsigned.
- /// @brief Unsigned greather than comparison
+ ///
+ /// \returns true if *this > RHS when both are considered unsigned.
bool ugt(const APInt& RHS) const {
return !ult(RHS) && !eq(RHS);
}
+ /// \brief Unsigned greater than comparison
+ ///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the greater-than relationship.
- /// @returns true if *this > RHS when considered unsigned.
- /// @brief Unsigned greater than comparison
+ ///
+ /// \returns true if *this > RHS when considered unsigned.
bool ugt(uint64_t RHS) const {
return ugt(APInt(getBitWidth(), RHS));
}
- /// Regards both *this and RHS as signed quantities and compares them for
- /// the validity of the greater-than relationship.
- /// @returns true if *this > RHS when both are considered signed.
- /// @brief Signed greather than comparison
+ /// \brief Signed greather than comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for the
+ /// validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when both are considered signed.
bool sgt(const APInt& RHS) const {
return !slt(RHS) && !eq(RHS);
}
+ /// \brief Signed greater than comparison
+ ///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the greater-than relationship.
- /// @returns true if *this > RHS when considered signed.
- /// @brief Signed greater than comparison
+ ///
+ /// \returns true if *this > RHS when considered signed.
bool sgt(uint64_t RHS) const {
return sgt(APInt(getBitWidth(), RHS));
}
+ /// \brief Unsigned greater or equal comparison
+ ///
/// Regards both *this and RHS as unsigned quantities and compares them for
/// validity of the greater-or-equal relationship.
- /// @returns true if *this >= RHS when both are considered unsigned.
- /// @brief Unsigned greater or equal comparison
+ ///
+ /// \returns true if *this >= RHS when both are considered unsigned.
bool uge(const APInt& RHS) const {
return !ult(RHS);
}
+ /// \brief Unsigned greater or equal comparison
+ ///
/// Regards both *this as an unsigned quantity and compares it with RHS for
/// the validity of the greater-or-equal relationship.
- /// @returns true if *this >= RHS when considered unsigned.
- /// @brief Unsigned greater or equal comparison
+ ///
+ /// \returns true if *this >= RHS when considered unsigned.
bool uge(uint64_t RHS) const {
return uge(APInt(getBitWidth(), RHS));
}
+ /// \brief Signed greather or equal comparison
+ ///
/// Regards both *this and RHS as signed quantities and compares them for
/// validity of the greater-or-equal relationship.
- /// @returns true if *this >= RHS when both are considered signed.
- /// @brief Signed greather or equal comparison
+ ///
+ /// \returns true if *this >= RHS when both are considered signed.
bool sge(const APInt& RHS) const {
return !slt(RHS);
}
+ /// \brief Signed greater or equal comparison
+ ///
/// Regards both *this as a signed quantity and compares it with RHS for
/// the validity of the greater-or-equal relationship.
- /// @returns true if *this >= RHS when considered signed.
- /// @brief Signed greater or equal comparison
+ ///
+ /// \returns true if *this >= RHS when considered signed.
bool sge(uint64_t RHS) const {
return sge(APInt(getBitWidth(), RHS));
}
-
-
-
/// This operation tests if there are any pairs of corresponding bits
/// between this APInt and RHS that are both set.
bool intersects(const APInt &RHS) const {
@@ -1045,50 +1208,59 @@ public:
}
/// @}
- /// @name Resizing Operators
+ /// \name Resizing Operators
/// @{
+
+ /// \brief Truncate to new width.
+ ///
/// Truncate the APInt to a specified width. It is an error to specify a width
/// that is greater than or equal to the current width.
- /// @brief Truncate to new width.
APInt trunc(unsigned width) const;
+ /// \brief Sign extend to a new width.
+ ///
/// This operation sign extends the APInt to a new width. If the high order
/// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
/// It is an error to specify a width that is less than or equal to the
/// current width.
- /// @brief Sign extend to a new width.
APInt sext(unsigned width) const;
+ /// \brief Zero extend to a new width.
+ ///
/// This operation zero extends the APInt to a new width. The high order bits
/// are filled with 0 bits. It is an error to specify a width that is less
/// than or equal to the current width.
- /// @brief Zero extend to a new width.
APInt zext(unsigned width) const;
+ /// \brief Sign extend or truncate to width
+ ///
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, truncated, or left alone to make it that width.
- /// @brief Sign extend or truncate to width
APInt sextOrTrunc(unsigned width) const;
+ /// \brief Zero extend or truncate to width
+ ///
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, truncated, or left alone to make it that width.
- /// @brief Zero extend or truncate to width
APInt zextOrTrunc(unsigned width) const;
+ /// \brief Sign extend or truncate to width
+ ///
/// Make this APInt have the bit width given by \p width. The value is sign
/// extended, or left alone to make it that width.
- /// @brief Sign extend or truncate to width
APInt sextOrSelf(unsigned width) const;
+ /// \brief Zero extend or truncate to width
+ ///
/// Make this APInt have the bit width given by \p width. The value is zero
/// extended, or left alone to make it that width.
- /// @brief Zero extend or truncate to width
APInt zextOrSelf(unsigned width) const;
/// @}
- /// @name Bit Manipulation Operators
+ /// \name Bit Manipulation Operators
/// @{
- /// @brief Set every bit to 1.
+
+ /// \brief Set every bit to 1.
void setAllBits() {
if (isSingleWord())
VAL = UINT64_MAX;
@@ -1101,11 +1273,12 @@ public:
clearUnusedBits();
}
+ /// \brief Set a given bit to 1.
+ ///
/// Set the given bit to 1 whose position is given as "bitPosition".
- /// @brief Set a given bit to 1.
void setBit(unsigned bitPosition);
- /// @brief Set every bit to 0.
+ /// \brief Set every bit to 0.
void clearAllBits() {
if (isSingleWord())
VAL = 0;
@@ -1113,11 +1286,12 @@ public:
memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
}
+ /// \brief Set a given bit to 0.
+ ///
/// Set the given bit to 0 whose position is given as "bitPosition".
- /// @brief Set a given bit to 0.
void clearBit(unsigned bitPosition);
- /// @brief Toggle every bit to its opposite value.
+ /// \brief Toggle every bit to its opposite value.
void flipAllBits() {
if (isSingleWord())
VAL ^= UINT64_MAX;
@@ -1128,68 +1302,77 @@ public:
clearUnusedBits();
}
+ /// \brief Toggles a given bit to its opposite value.
+ ///
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
- /// @brief Toggles a given bit to its opposite value.
void flipBit(unsigned bitPosition);
/// @}
- /// @name Value Characterization Functions
+ /// \name Value Characterization Functions
/// @{
- /// @returns the total number of bits.
+ /// \brief Return the number of bits in the APInt.
unsigned getBitWidth() const {
return BitWidth;
}
+ /// \brief Get the number of words.
+ ///
/// Here one word's bitwidth equals to that of uint64_t.
- /// @returns the number of words to hold the integer value of this APInt.
- /// @brief Get the number of words.
+ ///
+ /// \returns the number of words to hold the integer value of this APInt.
unsigned getNumWords() const {
return getNumWords(BitWidth);
}
- /// Here one word's bitwidth equals to that of uint64_t.
- /// @returns the number of words to hold the integer value with a
- /// given bit width.
- /// @brief Get the number of words.
+ /// \brief Get the number of words.
+ ///
+ /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
+ ///
+ /// \returns the number of words to hold the integer value with a given bit
+ /// width.
static unsigned getNumWords(unsigned BitWidth) {
return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
}
+ /// \brief Compute the number of active bits in the value
+ ///
/// This function returns the number of active bits which is defined as the
/// bit width minus the number of leading zeros. This is used in several
/// computations to see how "wide" the value is.
- /// @brief Compute the number of active bits in the value
unsigned getActiveBits() const {
return BitWidth - countLeadingZeros();
}
- /// This function returns the number of active words in the value of this
- /// APInt. This is used in conjunction with getActiveData to extract the raw
- /// value of the APInt.
+ /// \brief Compute the number of active words in the value of this APInt.
+ ///
+ /// This is used in conjunction with getActiveData to extract the raw value of
+ /// the APInt.
unsigned getActiveWords() const {
unsigned numActiveBits = getActiveBits();
return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
}
- /// Computes the minimum bit width for this APInt while considering it to be
- /// a signed (and probably negative) value. If the value is not negative,
- /// this function returns the same value as getActiveBits()+1. Otherwise, it
+ /// \brief Get the minimum bit size for this signed APInt
+ ///
+ /// Computes the minimum bit width for this APInt while considering it to be a
+ /// signed (and probably negative) value. If the value is not negative, this
+ /// function returns the same value as getActiveBits()+1. Otherwise, it
/// returns the smallest bit width that will retain the negative value. For
/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
/// for -1, this function will always return 1.
- /// @brief Get the minimum bit size for this signed APInt
unsigned getMinSignedBits() const {
if (isNegative())
return BitWidth - countLeadingOnes() + 1;
return getActiveBits()+1;
}
+ /// \brief Get zero extended value
+ ///
/// This method attempts to return the value of this APInt as a zero extended
/// uint64_t. The bitwidth must be <= 64 or the value must fit within a
/// uint64_t. Otherwise an assertion will result.
- /// @brief Get zero extended value
uint64_t getZExtValue() const {
if (isSingleWord())
return VAL;
@@ -1197,10 +1380,11 @@ public:
return pVal[0];
}
+ /// \brief Get sign extended value
+ ///
/// This method attempts to return the value of this APInt as a sign extended
/// int64_t. The bit width must be <= 64 or the value must fit within an
/// int64_t. Otherwise an assertion will result.
- /// @brief Get sign extended value
int64_t getSExtValue() const {
if (isSingleWord())
return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
@@ -1209,17 +1393,20 @@ public:
return int64_t(pVal[0]);
}
+ /// \brief Get bits required for string value.
+ ///
/// This method determines how many bits are required to hold the APInt
/// equivalent of the string given by \p str.
- /// @brief Get bits required for string value.
static unsigned getBitsNeeded(StringRef str, uint8_t radix);
- /// countLeadingZeros - This function is an APInt version of the
- /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
- /// of zeros from the most significant bit to the first one bit.
- /// @returns BitWidth if the value is zero, otherwise
- /// returns the number of zeros from the most significant bit to the first
- /// one bits.
+ /// \brief Count the number of zeros from the msb to the first one bit.
+ ///
+ /// This function is an APInt version of the countLeadingZeros_{32,64}
+ /// functions in MathExtras.h. It counts the number of zeros from the most
+ /// significant bit to the first one bit.
+ ///
+ /// \returns BitWidth if the value is zero, otherwise returns the number of
+ /// zeros from the most significant bit to the first one bits.
unsigned countLeadingZeros() const {
if (isSingleWord()) {
unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
@@ -1228,12 +1415,14 @@ public:
return countLeadingZerosSlowCase();
}
- /// countLeadingOnes - This function is an APInt version of the
- /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
- /// of ones from the most significant bit to the first zero bit.
- /// @returns 0 if the high order bit is not set, otherwise
- /// returns the number of 1 bits from the most significant to the least
- /// @brief Count the number of leading one bits.
+ /// \brief Count the number of leading one bits.
+ ///
+ /// This function is an APInt version of the countLeadingOnes_{32,64}
+ /// functions in MathExtras.h. It counts the number of ones from the most
+ /// significant bit to the first zero bit.
+ ///
+ /// \returns 0 if the high order bit is not set, otherwise returns the number
+ /// of 1 bits from the most significant to the least
unsigned countLeadingOnes() const;
/// Computes the number of leading bits of this APInt that are equal to its
@@ -1242,34 +1431,36 @@ public:
return isNegative() ? countLeadingOnes() : countLeadingZeros();
}
- /// countTrailingZeros - This function is an APInt version of the
- /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
- /// the number of zeros from the least significant bit to the first set bit.
- /// @returns BitWidth if the value is zero, otherwise
- /// returns the number of zeros from the least significant bit to the first
- /// one bit.
- /// @brief Count the number of trailing zero bits.
+ /// \brief Count the number of trailing zero bits.
+ ///
+ /// This function is an APInt version of the countTrailingZeros_{32,64}
+ /// functions in MathExtras.h. It counts the number of zeros from the least
+ /// significant bit to the first set bit.
+ ///
+ /// \returns BitWidth if the value is zero, otherwise returns the number of
+ /// zeros from the least significant bit to the first one bit.
unsigned countTrailingZeros() const;
- /// countTrailingOnes - This function is an APInt version of the
- /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
- /// the number of ones from the least significant bit to the first zero bit.
- /// @returns BitWidth if the value is all ones, otherwise
- /// returns the number of ones from the least significant bit to the first
- /// zero bit.
- /// @brief Count the number of trailing one bits.
+ /// \brief Count the number of trailing one bits.
+ ///
+ /// This function is an APInt version of the countTrailingOnes_{32,64}
+ /// functions in MathExtras.h. It counts the number of ones from the least
+ /// significant bit to the first zero bit.
+ ///
+ /// \returns BitWidth if the value is all ones, otherwise returns the number
+ /// of ones from the least significant bit to the first zero bit.
unsigned countTrailingOnes() const {
if (isSingleWord())
return CountTrailingOnes_64(VAL);
return countTrailingOnesSlowCase();
}
- /// countPopulation - This function is an APInt version of the
- /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
- /// of 1 bits in the APInt value.
- /// @returns 0 if the value is zero, otherwise returns the number of set
- /// bits.
- /// @brief Count the number of bits set.
+ /// \brief Count the number of bits set.
+ ///
+ /// This function is an APInt version of the countPopulation_{32,64} functions
+ /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
+ ///
+ /// \returns 0 if the value is zero, otherwise returns the number of set bits.
unsigned countPopulation() const {
if (isSingleWord())
return CountPopulation_64(VAL);
@@ -1277,12 +1468,12 @@ public:
}
/// @}
- /// @name Conversion Functions
+ /// \name Conversion Functions
/// @{
void print(raw_ostream &OS, bool isSigned) const;
- /// toString - Converts an APInt to a string and append it to Str. Str is
- /// commonly a SmallString.
+ /// Converts an APInt to a string and append it to Str. Str is commonly a
+ /// SmallString.
void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
bool formatAsCLiteral = false) const;
@@ -1298,32 +1489,34 @@ public:
toString(Str, Radix, true, false);
}
- /// toString - This returns the APInt as a std::string. Note that this is an
- /// inefficient method. It is better to pass in a SmallVector/SmallString
- /// to the methods above to avoid thrashing the heap for the string.
+ /// \brief Return the APInt as a std::string.
+ ///
+ /// Note that this is an inefficient method. It is better to pass in a
+ /// SmallVector/SmallString to the methods above to avoid thrashing the heap
+ /// for the string.
std::string toString(unsigned Radix, bool Signed) const;
-
- /// @returns a byte-swapped representation of this APInt Value.
+ /// \returns a byte-swapped representation of this APInt Value.
APInt byteSwap() const;
- /// @brief Converts this APInt to a double value.
+ /// \brief Converts this APInt to a double value.
double roundToDouble(bool isSigned) const;
- /// @brief Converts this unsigned APInt to a double value.
+ /// \brief Converts this unsigned APInt to a double value.
double roundToDouble() const {
return roundToDouble(false);
}
- /// @brief Converts this signed APInt to a double value.
+ /// \brief Converts this signed APInt to a double value.
double signedRoundToDouble() const {
return roundToDouble(true);
}
+ /// \brief Converts APInt bits to a double
+ ///
/// The conversion does not do a translation from integer to double, it just
/// re-interprets the bits as a double. Note that it is valid to do this on
/// any bit width. Exactly 64 bits will be translated.
- /// @brief Converts APInt bits to a double
double bitsToDouble() const {
union {
uint64_t I;
@@ -1333,10 +1526,11 @@ public:
return T.D;
}
+ /// \brief Converts APInt bits to a double
+ ///
/// The conversion does not do a translation from integer to float, it just
/// re-interprets the bits as a float. Note that it is valid to do this on
/// any bit width. Exactly 32 bits will be translated.
- /// @brief Converts APInt bits to a double
float bitsToFloat() const {
union {
unsigned I;
@@ -1346,9 +1540,10 @@ public:
return T.F;
}
+ /// \brief Converts a double to APInt bits.
+ ///
/// The conversion does not do a translation from double to integer, it just
/// re-interprets the bits of the double.
- /// @brief Converts a double to APInt bits.
static APInt doubleToBits(double V) {
union {
uint64_t I;
@@ -1358,9 +1553,10 @@ public:
return APInt(sizeof T * CHAR_BIT, T.I);
}
+ /// \brief Converts a float to APInt bits.
+ ///
/// The conversion does not do a translation from float to integer, it just
/// re-interprets the bits of the float.
- /// @brief Converts a float to APInt bits.
static APInt floatToBits(float V) {
union {
unsigned I;
@@ -1371,20 +1567,20 @@ public:
}
/// @}
- /// @name Mathematics Operations
+ /// \name Mathematics Operations
/// @{
- /// @returns the floor log base 2 of this APInt.
+ /// \returns the floor log base 2 of this APInt.
unsigned logBase2() const {
return BitWidth - 1 - countLeadingZeros();
}
- /// @returns the ceil log base 2 of this APInt.
+ /// \returns the ceil log base 2 of this APInt.
unsigned ceilLogBase2() const {
return BitWidth - (*this - 1).countLeadingZeros();
}
- /// @returns the log base 2 of this APInt if its an exact power of two, -1
+ /// \returns the log base 2 of this APInt if its an exact power of two, -1
/// otherwise
int32_t exactLogBase2() const {
if (!isPowerOf2())
@@ -1392,22 +1588,23 @@ public:
return logBase2();
}
- /// @brief Compute the square root
+ /// \brief Compute the square root
APInt sqrt() const;
+ /// \brief Get the absolute value;
+ ///
/// If *this is < 0 then return -(*this), otherwise *this;
- /// @brief Get the absolute value;
APInt abs() const {
if (isNegative())
return -(*this);
return *this;
}
- /// @returns the multiplicative inverse for a given modulo.
+ /// \returns the multiplicative inverse for a given modulo.
APInt multiplicativeInverse(const APInt& modulo) const;
/// @}
- /// @name Support for division by constant
+ /// \name Support for division by constant
/// @{
/// Calculate the magic number for signed division by a constant.
@@ -1419,18 +1616,17 @@ public:
mu magicu(unsigned LeadingZeros = 0) const;
/// @}
- /// @name Building-block Operations for APInt and APFloat
+ /// \name Building-block Operations for APInt and APFloat
/// @{
- // These building block operations operate on a representation of
- // arbitrary precision, two's-complement, bignum integer values.
- // They should be sufficient to implement APInt and APFloat bignum
- // requirements. Inputs are generally a pointer to the base of an
- // array of integer parts, representing an unsigned bignum, and a
- // count of how many parts there are.
+ // These building block operations operate on a representation of arbitrary
+ // precision, two's-complement, bignum integer values. They should be
+ // sufficient to implement APInt and APFloat bignum requirements. Inputs are
+ // generally a pointer to the base of an array of integer parts, representing
+ // an unsigned bignum, and a count of how many parts there are.
- /// Sets the least significant part of a bignum to the input value,
- /// and zeroes out higher parts. */
+ /// Sets the least significant part of a bignum to the input value, and zeroes
+ /// out higher parts.
static void tcSet(integerPart *, integerPart, unsigned int);
/// Assign one bignum to another.
@@ -1442,10 +1638,10 @@ public:
/// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
static int tcExtractBit(const integerPart *, unsigned int bit);
- /// Copy the bit vector of width srcBITS from SRC, starting at bit
- /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
- /// becomes the least significant bit of DST. All high bits above
- /// srcBITS in DST are zero-filled.
+ /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
+ /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
+ /// significant bit of DST. All high bits above srcBITS in DST are
+ /// zero-filled.
static void tcExtract(integerPart *, unsigned int dstCount,
const integerPart *,
unsigned int srcBits, unsigned int srcLSB);
@@ -1456,76 +1652,70 @@ public:
/// Clear the given bit of a bignum. Zero-based.
static void tcClearBit(integerPart *, unsigned int bit);
- /// Returns the bit number of the least or most significant set bit
- /// of a number. If the input number has no bits set -1U is
- /// returned.
+ /// Returns the bit number of the least or most significant set bit of a
+ /// number. If the input number has no bits set -1U is returned.
static unsigned int tcLSB(const integerPart *, unsigned int);
static unsigned int tcMSB(const integerPart *parts, unsigned int n);
/// Negate a bignum in-place.
static void tcNegate(integerPart *, unsigned int);
- /// DST += RHS + CARRY where CARRY is zero or one. Returns the
- /// carry flag.
+ /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
static integerPart tcAdd(integerPart *, const integerPart *,
integerPart carry, unsigned);
- /// DST -= RHS + CARRY where CARRY is zero or one. Returns the
- /// carry flag.
+ /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
static integerPart tcSubtract(integerPart *, const integerPart *,
integerPart carry, unsigned);
- /// DST += SRC * MULTIPLIER + PART if add is true
- /// DST = SRC * MULTIPLIER + PART if add is false
+ /// DST += SRC * MULTIPLIER + PART if add is true
+ /// DST = SRC * MULTIPLIER + PART if add is false
///
- /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
- /// they must start at the same point, i.e. DST == SRC.
+ /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
+ /// start at the same point, i.e. DST == SRC.
///
- /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
- /// returned. Otherwise DST is filled with the least significant
- /// DSTPARTS parts of the result, and if all of the omitted higher
- /// parts were zero return zero, otherwise overflow occurred and
- /// return one.
+ /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
+ /// Otherwise DST is filled with the least significant DSTPARTS parts of the
+ /// result, and if all of the omitted higher parts were zero return zero,
+ /// otherwise overflow occurred and return one.
static int tcMultiplyPart(integerPart *dst, const integerPart *src,
integerPart multiplier, integerPart carry,
unsigned int srcParts, unsigned int dstParts,
bool add);
- /// DST = LHS * RHS, where DST has the same width as the operands
- /// and is filled with the least significant parts of the result.
- /// Returns one if overflow occurred, otherwise zero. DST must be
- /// disjoint from both operands.
+ /// DST = LHS * RHS, where DST has the same width as the operands and is
+ /// filled with the least significant parts of the result. Returns one if
+ /// overflow occurred, otherwise zero. DST must be disjoint from both
+ /// operands.
static int tcMultiply(integerPart *, const integerPart *,
const integerPart *, unsigned);
- /// DST = LHS * RHS, where DST has width the sum of the widths of
- /// the operands. No overflow occurs. DST must be disjoint from
- /// both operands. Returns the number of parts required to hold the
- /// result.
+ /// DST = LHS * RHS, where DST has width the sum of the widths of the
+ /// operands. No overflow occurs. DST must be disjoint from both
+ /// operands. Returns the number of parts required to hold the result.
static unsigned int tcFullMultiply(integerPart *, const integerPart *,
const integerPart *, unsigned, unsigned);
/// If RHS is zero LHS and REMAINDER are left unchanged, return one.
- /// Otherwise set LHS to LHS / RHS with the fractional part
- /// discarded, set REMAINDER to the remainder, return zero. i.e.
+ /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
+ /// REMAINDER to the remainder, return zero. i.e.
///
/// OLD_LHS = RHS * LHS + REMAINDER
///
- /// SCRATCH is a bignum of the same size as the operands and result
- /// for use by the routine; its contents need not be initialized
- /// and are destroyed. LHS, REMAINDER and SCRATCH must be
- /// distinct.
+ /// SCRATCH is a bignum of the same size as the operands and result for use by
+ /// the routine; its contents need not be initialized and are destroyed. LHS,
+ /// REMAINDER and SCRATCH must be distinct.
static int tcDivide(integerPart *lhs, const integerPart *rhs,
integerPart *remainder, integerPart *scratch,
unsigned int parts);
- /// Shift a bignum left COUNT bits. Shifted in bits are zero.
- /// There are no restrictions on COUNT.
+ /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no
+ /// restrictions on COUNT.
static void tcShiftLeft(integerPart *, unsigned int parts,
unsigned int count);
- /// Shift a bignum right COUNT bits. Shifted in bits are zero.
- /// There are no restrictions on COUNT.
+ /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no
+ /// restrictions on COUNT.
static void tcShiftRight(integerPart *, unsigned int parts,
unsigned int count);
@@ -1546,7 +1736,7 @@ public:
static void tcSetLeastSignificantBits(integerPart *, unsigned int,
unsigned int bits);
- /// @brief debug method
+ /// \brief debug method
void dump() const;
/// @}
@@ -1580,179 +1770,200 @@ inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
namespace APIntOps {
-/// @brief Determine the smaller of two APInts considered to be signed.
+/// \brief Determine the smaller of two APInts considered to be signed.
inline APInt smin(const APInt &A, const APInt &B) {
return A.slt(B) ? A : B;
}
-/// @brief Determine the larger of two APInts considered to be signed.
+/// \brief Determine the larger of two APInts considered to be signed.
inline APInt smax(const APInt &A, const APInt &B) {
return A.sgt(B) ? A : B;
}
-/// @brief Determine the smaller of two APInts considered to be signed.
+/// \brief Determine the smaller of two APInts considered to be signed.
inline APInt umin(const APInt &A, const APInt &B) {
return A.ult(B) ? A : B;
}
-/// @brief Determine the larger of two APInts considered to be unsigned.
+/// \brief Determine the larger of two APInts considered to be unsigned.
inline APInt umax(const APInt &A, const APInt &B) {
return A.ugt(B) ? A : B;
}
-/// @brief Check if the specified APInt has a N-bits unsigned integer value.
+/// \brief Check if the specified APInt has a N-bits unsigned integer value.
inline bool isIntN(unsigned N, const APInt& APIVal) {
return APIVal.isIntN(N);
}
-/// @brief Check if the specified APInt has a N-bits signed integer value.
+/// \brief Check if the specified APInt has a N-bits signed integer value.
inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
return APIVal.isSignedIntN(N);
}
-/// @returns true if the argument APInt value is a sequence of ones
-/// starting at the least significant bit with the remainder zero.
+/// \returns true if the argument APInt value is a sequence of ones starting at
+/// the least significant bit with the remainder zero.
inline bool isMask(unsigned numBits, const APInt& APIVal) {
return numBits <= APIVal.getBitWidth() &&
APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
}
-/// @returns true if the argument APInt value contains a sequence of ones
+/// \brief Return true if the argument APInt value contains a sequence of ones
/// with the remainder zero.
inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
}
-/// @returns a byte-swapped representation of the specified APInt Value.
+/// \brief Returns a byte-swapped representation of the specified APInt Value.
inline APInt byteSwap(const APInt& APIVal) {
return APIVal.byteSwap();
}
-/// @returns the floor log base 2 of the specified APInt value.
+/// \brief Returns the floor log base 2 of the specified APInt value.
inline unsigned logBase2(const APInt& APIVal) {
return APIVal.logBase2();
}
-/// GreatestCommonDivisor - This function returns the greatest common
-/// divisor of the two APInt values using Euclid's algorithm.
-/// @returns the greatest common divisor of Val1 and Val2
-/// @brief Compute GCD of two APInt values.
+/// \brief Compute GCD of two APInt values.
+///
+/// This function returns the greatest common divisor of the two APInt values
+/// using Euclid's algorithm.
+///
+/// \returns the greatest common divisor of Val1 and Val2
APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
+/// \brief Converts the given APInt to a double value.
+///
/// Treats the APInt as an unsigned value for conversion purposes.
-/// @brief Converts the given APInt to a double value.
inline double RoundAPIntToDouble(const APInt& APIVal) {
return APIVal.roundToDouble();
}
+/// \brief Converts the given APInt to a double value.
+///
/// Treats the APInt as a signed value for conversion purposes.
-/// @brief Converts the given APInt to a double value.
inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
return APIVal.signedRoundToDouble();
}
-/// @brief Converts the given APInt to a float vlalue.
+/// \brief Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt& APIVal) {
return float(RoundAPIntToDouble(APIVal));
}
+/// \brief Converts the given APInt to a float value.
+///
/// Treast the APInt as a signed value for conversion purposes.
-/// @brief Converts the given APInt to a float value.
inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
return float(APIVal.signedRoundToDouble());
}
-/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
-/// @brief Converts the given double value into a APInt.
+/// \brief Converts the given double value into a APInt.
+///
+/// This function convert a double value to an APInt value.
APInt RoundDoubleToAPInt(double Double, unsigned width);
-/// RoundFloatToAPInt - Converts a float value into an APInt value.
-/// @brief Converts a float value into a APInt.
+/// \brief Converts a float value into a APInt.
+///
+/// Converts a float value into an APInt value.
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
return RoundDoubleToAPInt(double(Float), width);
}
+/// \brief Arithmetic right-shift function.
+///
/// Arithmetic right-shift the APInt by shiftAmt.
-/// @brief Arithmetic right-shift function.
inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
return LHS.ashr(shiftAmt);
}
+/// \brief Logical right-shift function.
+///
/// Logical right-shift the APInt by shiftAmt.
-/// @brief Logical right-shift function.
inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
return LHS.lshr(shiftAmt);
}
+/// \brief Left-shift function.
+///
/// Left-shift the APInt by shiftAmt.
-/// @brief Left-shift function.
inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
return LHS.shl(shiftAmt);
}
+/// \brief Signed division function for APInt.
+///
/// Signed divide APInt LHS by APInt RHS.
-/// @brief Signed division function for APInt.
inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
return LHS.sdiv(RHS);
}
+/// \brief Unsigned division function for APInt.
+///
/// Unsigned divide APInt LHS by APInt RHS.
-/// @brief Unsigned division function for APInt.
inline APInt udiv(const APInt& LHS, const APInt& RHS) {
return LHS.udiv(RHS);
}
+/// \brief Function for signed remainder operation.
+///
/// Signed remainder operation on APInt.
-/// @brief Function for signed remainder operation.
inline APInt srem(const APInt& LHS, const APInt& RHS) {
return LHS.srem(RHS);
}
+/// \brief Function for unsigned remainder operation.
+///
/// Unsigned remainder operation on APInt.
-/// @brief Function for unsigned remainder operation.
inline APInt urem(const APInt& LHS, const APInt& RHS) {
return LHS.urem(RHS);
}
+/// \brief Function for multiplication operation.
+///
/// Performs multiplication on APInt values.
-/// @brief Function for multiplication operation.
inline APInt mul(const APInt& LHS, const APInt& RHS) {
return LHS * RHS;
}
+/// \brief Function for addition operation.
+///
/// Performs addition on APInt values.
-/// @brief Function for addition operation.
inline APInt add(const APInt& LHS, const APInt& RHS) {
return LHS + RHS;
}
+/// \brief Function for subtraction operation.
+///
/// Performs subtraction on APInt values.
-/// @brief Function for subtraction operation.
inline APInt sub(const APInt& LHS, const APInt& RHS) {
return LHS - RHS;
}
+/// \brief Bitwise AND function for APInt.
+///
/// Performs bitwise AND operation on APInt LHS and
/// APInt RHS.
-/// @brief Bitwise AND function for APInt.
inline APInt And(const APInt& LHS, const APInt& RHS) {
return LHS & RHS;
}
+/// \brief Bitwise OR function for APInt.
+///
/// Performs bitwise OR operation on APInt LHS and APInt RHS.
-/// @brief Bitwise OR function for APInt.
inline APInt Or(const APInt& LHS, const APInt& RHS) {
return LHS | RHS;
}
+/// \brief Bitwise XOR function for APInt.
+///
/// Performs bitwise XOR operation on APInt.
-/// @brief Bitwise XOR function for APInt.
inline APInt Xor(const APInt& LHS, const APInt& RHS) {
return LHS ^ RHS;
}
+/// \brief Bitwise complement function.
+///
/// Performs a bitwise complement operation on APInt.
-/// @brief Bitwise complement function.
inline APInt Not(const APInt& APIVal) {
return ~APIVal;
}