diff options
author | Chris Lattner <sabre@nondot.org> | 2007-11-05 00:23:57 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2007-11-05 00:23:57 +0000 |
commit | ddda7f28dd0d3f6c68e3afed507efb78bed754df (patch) | |
tree | 0e37279a7ec5251979bd271f1f63aebd93960fe9 | |
parent | 8157ef423408bd50e6712814e7792a308b5db7d7 (diff) | |
download | external_llvm-ddda7f28dd0d3f6c68e3afed507efb78bed754df.zip external_llvm-ddda7f28dd0d3f6c68e3afed507efb78bed754df.tar.gz external_llvm-ddda7f28dd0d3f6c68e3afed507efb78bed754df.tar.bz2 |
finish the chapter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43689 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r-- | docs/tutorial/LangImpl7.html | 1795 |
1 files changed, 1793 insertions, 2 deletions
diff --git a/docs/tutorial/LangImpl7.html b/docs/tutorial/LangImpl7.html index ccd15dc..6664c7c 100644 --- a/docs/tutorial/LangImpl7.html +++ b/docs/tutorial/LangImpl7.html @@ -296,8 +296,664 @@ with this style of debug info.</li> running, and is very simple to implement. Lets extend Kaleidoscope with mutable variables now! </p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="kalvars">Mutable Variables in +Kaleidoscope</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>Now that we know the sort of problem we want to tackle, lets see what this +looks like in the context of our little Kaleidoscope language. We're going to +add two features:</p> + +<ol> +<li>The ability to mutate variables with the '=' operator.</li> +<li>The ability to define new variables.</li> +</ol> + +<p>While the first item is really what this is about, we only have variables +for incoming arguments and for induction variables, and redefining them only +goes so far :). Also, the ability to define new variables is a +useful thing regardless of whether you will be mutating them. Here's a +motivating example that shows how we could use these:</p> + +<div class="doc_code"> +<pre> +# Define ':' for sequencing: as a low-precedence operator that ignores operands +# and just returns the RHS. +def binary : 1 (x y) y; + +# Recursive fib, we could do this before. +def fib(x) + if (x < 3) then + 1 + else + fib(x-1)+fib(x-2); + +# Iterative fib. +def fibi(x) + <b>var a = 1, b = 1, c in</b> + (for i = 3, i &;t; x in + <b>c = a + b</b> : + <b>a = b</b> : + <b>b = c</b>) : + b; + +# Call it. +fibi(10); +</pre> +</div> + +<p> +In order to mutate variables, we have to change our existing variables to use +the "alloca trick". Once we have that, we'll add our new operator, then extend +Kaleidoscope to support new variable definitions. +</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="adjustments">Adjusting Existing Variables for +Mutation</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p> +The symbol table in Kaleidoscope is managed at code generation time by the +'<tt>NamedValues</tt>' map. This map currently keeps track of the LLVM "Value*" +that holds the double value for the named variable. In order to support +mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds +the <em>memory location</em> of the variable in question. Note that this +change is a refactoring: it changes the structure of the code, but does not +(by itself) change the behavior of the compiler. All of these changes are +isolated in the Kaleidoscope code generator.</p> + +<p> +At this point in Kaleidoscope's development, it only supports variables for two +things: incoming arguments to functions and the induction variable of 'for' +loops. For consistency, we'll allow mutation of these variables in addition to +other user-defined variables. This means that these will both need memory +locations. +</p> + +<p>To start our transformation of Kaleidoscope, we'll change the NamedValues +map to map to AllocaInst* instead of Value*. Once we do this, the C++ compiler +will tell use what parts of the code we need to update:</p> + +<div class="doc_code"> +<pre> +static std::map<std::string, AllocaInst*> NamedValues; +</pre> +</div> + +<p>Also, since we will need to create these alloca's, we'll use a helper +function that ensures that the allocas are created in the entry block of the +function:</p> + +<div class="doc_code"> +<pre> +/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of +/// the function. This is used for mutable variables etc. +static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, + const std::string &VarName) { + LLVMBuilder TmpB(&TheFunction->getEntryBlock(), + TheFunction->getEntryBlock().begin()); + return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str()); +} +</pre> +</div> + +<p>This funny looking code creates an LLVMBuilder object that is pointing at +the first instruction (.begin()) of the entry block. It then creates an alloca +with the expected name and returns it. Because all values in Kaleidoscope are +doubles, there is no need to pass in a type to use.</p> + +<p>With this in place, the first functionality change we want to make is to +variable references. In our new scheme, variables live on the stack, so code +generating a reference to them actually needs to produce a load from the stack +slot:</p> + +<div class="doc_code"> +<pre> +Value *VariableExprAST::Codegen() { + // Look this variable up in the function. + Value *V = NamedValues[Name]; + if (V == 0) return ErrorV("Unknown variable name"); + + // Load the value. + return Builder.CreateLoad(V, Name.c_str()); +} +</pre> +</div> + +<p>As you can see, this is pretty straight-forward. Next we need to update the +things that define the variables to set up the alloca. We'll start with +<tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for +the unabridged code):</p> + +<div class="doc_code"> +<pre> + Function *TheFunction = Builder.GetInsertBlock()->getParent(); + + <b>// Create an alloca for the variable in the entry block. + AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b> + + // Emit the start code first, without 'variable' in scope. + Value *StartVal = Start->Codegen(); + if (StartVal == 0) return 0; + + <b>// Store the value into the alloca. + Builder.CreateStore(StartVal, Alloca);</b> + ... + + // Compute the end condition. + Value *EndCond = End->Codegen(); + if (EndCond == 0) return EndCond; + + <b>// Reload, increment, and restore the alloca. This handles the case where + // the body of the loop mutates the variable. + Value *CurVar = Builder.CreateLoad(Alloca); + Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar"); + Builder.CreateStore(NextVar, Alloca);</b> + ... +</pre> +</div> + +<p>This code is virtually identical to the code <a +href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>. The +big difference is that we no longer have to construct a PHI node, and we use +load/store to access the variable as needed.</p> + +<p>To support mutable argument variables, we need to also make allocas for them. +The code for this is also pretty simple:</p> + +<div class="doc_code"> +<pre> +/// CreateArgumentAllocas - Create an alloca for each argument and register the +/// argument in the symbol table so that references to it will succeed. +void PrototypeAST::CreateArgumentAllocas(Function *F) { + Function::arg_iterator AI = F->arg_begin(); + for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { + // Create an alloca for this variable. + AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); + + // Store the initial value into the alloca. + Builder.CreateStore(AI, Alloca); + + // Add arguments to variable symbol table. + NamedValues[Args[Idx]] = Alloca; + } +} +</pre> +</div> + +<p>For each argument, we make an alloca, store the input value to the function +into the alloca, and register the alloca as the memory location for the +argument. This method gets invoked by <tt>FunctionAST::Codegen</tt> right after +it sets up the entry block for the function.</p> + +<p>The final missing piece is adding the 'mem2reg' pass, which allows us to get +good codegen once again:</p> + +<div class="doc_code"> +<pre> + // Set up the optimizer pipeline. Start with registering info about how the + // target lays out data structures. + OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); + <b>// Promote allocas to registers. + OurFPM.add(createPromoteMemoryToRegisterPass());</b> + // Do simple "peephole" optimizations and bit-twiddling optzns. + OurFPM.add(createInstructionCombiningPass()); + // Reassociate expressions. + OurFPM.add(createReassociatePass()); +</pre> +</div> + +<p>It is interesting to see what the code looks like before and after the +mem2reg optimization runs. For example, this is the before/after code for our +recursive fib. Before the optimization:</p> + +<div class="doc_code"> +<pre> +define double @fib(double %x) { +entry: + <b>%x1 = alloca double + store double %x, double* %x1 + %x2 = load double* %x1</b> + %multmp = fcmp ult double %x2, 3.000000e+00 + %booltmp = uitofp i1 %multmp to double + %ifcond = fcmp one double %booltmp, 0.000000e+00 + br i1 %ifcond, label %then, label %else + +then: ; preds = %entry + br label %ifcont + +else: ; preds = %entry + <b>%x3 = load double* %x1</b> + %subtmp = sub double %x3, 1.000000e+00 + %calltmp = call double @fib( double %subtmp ) + <b>%x4 = load double* %x1</b> + %subtmp5 = sub double %x4, 2.000000e+00 + %calltmp6 = call double @fib( double %subtmp5 ) + %addtmp = add double %calltmp, %calltmp6 + br label %ifcont + +ifcont: ; preds = %else, %then + %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] + ret double %iftmp +} +</pre> +</div> + +<p>Here there is only one variable (x, the input argument) but you can still +see the extremely simple-minded code generation strategy we are using. In the +entry block, an alloca is created, and the initial input value is stored into +it. Each reference to the variable does a reload from the stack. Also, note +that we didn't modify the if/then/else expression, so it still inserts a PHI +node. While we could make an alloca for it, it is actually easier to create a +PHI node for it, so we still just make the PHI.</p> + +<p>Here is the code after the mem2reg pass runs:</p> + +<div class="doc_code"> +<pre> +define double @fib(double %x) { +entry: + %multmp = fcmp ult double <b>%x</b>, 3.000000e+00 + %booltmp = uitofp i1 %multmp to double + %ifcond = fcmp one double %booltmp, 0.000000e+00 + br i1 %ifcond, label %then, label %else + +then: + br label %ifcont + +else: + %subtmp = sub double <b>%x</b>, 1.000000e+00 + %calltmp = call double @fib( double %subtmp ) + %subtmp5 = sub double <b>%x</b>, 2.000000e+00 + %calltmp6 = call double @fib( double %subtmp5 ) + %addtmp = add double %calltmp, %calltmp6 + br label %ifcont + +ifcont: ; preds = %else, %then + %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] + ret double %iftmp +} +</pre> </div> +<p>This is a trivial case for mem2reg, since there are no redefinitions of the +variable. The point of showing this is to calm your tension about inserting +such blatent inefficiencies :).</p> + +<p>After the rest of the optimizers run, we get:</p> + +<div class="doc_code"> +<pre> +define double @fib(double %x) { +entry: + %multmp = fcmp ult double %x, 3.000000e+00 + %booltmp = uitofp i1 %multmp to double + %ifcond = fcmp ueq double %booltmp, 0.000000e+00 + br i1 %ifcond, label %else, label %ifcont + +else: + %subtmp = sub double %x, 1.000000e+00 + %calltmp = call double @fib( double %subtmp ) + %subtmp5 = sub double %x, 2.000000e+00 + %calltmp6 = call double @fib( double %subtmp5 ) + %addtmp = add double %calltmp, %calltmp6 + ret double %addtmp + +ifcont: + ret double 1.000000e+00 +} +</pre> +</div> + +<p>Here we see that the simplifycfg pass decided to clone the return instruction +into the end of the 'else' block. This allowed it to eliminate some branches +and the PHI node.</p> + +<p>Now that all symbol table references are updated to use stack variables, +we'll add the assignment operator.</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="assignment">New Assignment Operator</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>With our current framework, adding a new assignment operator is really +simple. We will parse it just like any other binary operator, but handle it +internally (instead of allowing the user to define it). The first step is to +set a precedence:</p> + +<div class="doc_code"> +<pre> + int main() { + // Install standard binary operators. + // 1 is lowest precedence. + <b>BinopPrecedence['='] = 2;</b> + BinopPrecedence['<'] = 10; + BinopPrecedence['+'] = 20; + BinopPrecedence['-'] = 20; +</pre> +</div> + +<p>Now that the parser knows the precedence of the binary operator, it takes +care of all the parsing and AST generation. We just need to implement codegen +for the assignment operator. This looks like:</p> + +<div class="doc_code"> +<pre> +Value *BinaryExprAST::Codegen() { + // Special case '=' because we don't want to emit the LHS as an expression. + if (Op == '=') { + // Assignment requires the LHS to be an identifier. + VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); + if (!LHSE) + return ErrorV("destination of '=' must be a variable"); +</pre> +</div> + +<p>Unlike the rest of the binary operators, our assignment operator doesn't +follow the "emit LHS, emit RHS, do computation" model. As such, it is handled +as a special case before the other binary operators are handled. The other +strange thing about it is that it requires the LHS to be a variable directly. +</p> + +<div class="doc_code"> +<pre> + // Codegen the RHS. + Value *Val = RHS->Codegen(); + if (Val == 0) return 0; + + // Look up the name. + Value *Variable = NamedValues[LHSE->getName()]; + if (Variable == 0) return ErrorV("Unknown variable name"); + + Builder.CreateStore(Val, Variable); + return Val; + } + ... +</pre> +</div> + +<p>Once it has the variable, codegen'ing the assignment is straight-forward: +we emit the RHS of the assignment, create a store, and return the computed +value. Returning a value allows for chained assignments like "X = (Y = Z)".</p> + +<p>Now that we have an assignment operator, we can mutate loop variables and +arguments. For example, we can now run code like this:</p> + +<div class="doc_code"> +<pre> +# Function to print a double. +extern printd(x); + +# Define ':' for sequencing: as a low-precedence operator that ignores operands +# and just returns the RHS. +def binary : 1 (x y) y; + +def test(x) + printd(x) : + x = 4 : + printd(x); + +test(123); +</pre> +</div> + +<p>When run, this example prints "123" and then "4", showing that we did +actually mutate the value! Okay, we have now officially implemented our goal: +getting this to work requires SSA construction in the general case. However, +to be really useful, we want the ability to define our own local variables, lets +add this next! +</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="localvars">User-defined Local +Variables</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>Adding var/in is just like any other other extensions we made to +Kaleidoscope: we extend the lexer, the parser, the AST and the code generator. +The first step for adding our new 'var/in' construct is to extend the lexer. +As before, this is pretty trivial, the code looks like this:</p> + +<div class="doc_code"> +<pre> +enum Token { + ... + <b>// var definition + tok_var = -13</b> +... +} +... +static int gettok() { +... + if (IdentifierStr == "in") return tok_in; + if (IdentifierStr == "binary") return tok_binary; + if (IdentifierStr == "unary") return tok_unary; + <b>if (IdentifierStr == "var") return tok_var;</b> + return tok_identifier; +... +</pre> +</div> + +<p>The next step is to define the AST node that we will construct. For var/in, +it will look like this:</p> + +<div class="doc_code"> +<pre> +/// VarExprAST - Expression class for var/in +class VarExprAST : public ExprAST { + std::vector<std::pair<std::string, ExprAST*> > VarNames; + ExprAST *Body; +public: + VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, + ExprAST *body) + : VarNames(varnames), Body(body) {} + + virtual Value *Codegen(); +}; +</pre> +</div> + +<p>var/in allows a list of names to be defined all at once, and each name can +optionally have an initializer value. As such, we capture this information in +the VarNames vector. Also, var/in has a body, this body is allowed to access +the variables defined by the let/in.</p> + +<p>With this ready, we can define the parser pieces. First thing we do is add +it as a primary expression:</p> + +<div class="doc_code"> +<pre> +/// primary +/// ::= identifierexpr +/// ::= numberexpr +/// ::= parenexpr +/// ::= ifexpr +/// ::= forexpr +<b>/// ::= varexpr</b> +static ExprAST *ParsePrimary() { + switch (CurTok) { + default: return Error("unknown token when expecting an expression"); + case tok_identifier: return ParseIdentifierExpr(); + case tok_number: return ParseNumberExpr(); + case '(': return ParseParenExpr(); + case tok_if: return ParseIfExpr(); + case tok_for: return ParseForExpr(); + <b>case tok_var: return ParseVarExpr();</b> + } +} +</pre> +</div> + +<p>Next we define ParseVarExpr:</p> + +<div class="doc_code"> +<pre> +/// varexpr ::= 'var' identifer ('=' expression)? +// (',' identifer ('=' expression)?)* 'in' expression +static ExprAST *ParseVarExpr() { + getNextToken(); // eat the var. + + std::vector<std::pair<std::string, ExprAST*> > VarNames; + + // At least one variable name is required. + if (CurTok != tok_identifier) + return Error("expected identifier after var"); +</pre> +</div> + +<p>The first part of this code parses the list of identifier/expr pairs into the +local <tt>VarNames</tt> vector. + +<div class="doc_code"> +<pre> + while (1) { + std::string Name = IdentifierStr; + getNextToken(); // eat identifer. + + // Read the optional initializer. + ExprAST *Init = 0; + if (CurTok == '=') { + getNextToken(); // eat the '='. + + Init = ParseExpression(); + if (Init == 0) return 0; + } + + VarNames.push_back(std::make_pair(Name, Init)); + + // End of var list, exit loop. + if (CurTok != ',') break; + getNextToken(); // eat the ','. + + if (CurTok != tok_identifier) + return Error("expected identifier list after var"); + } +</pre> +</div> + +<p>Once all the variables are parsed, we then parse the body and create the +AST node:</p> + +<div class="doc_code"> +<pre> + // At this point, we have to have 'in'. + if (CurTok != tok_in) + return Error("expected 'in' keyword after 'var'"); + getNextToken(); // eat 'in'. + + ExprAST *Body = ParseExpression(); + if (Body == 0) return 0; + + return new VarExprAST(VarNames, Body); +} +</pre> +</div> + +<p>Now that we can parse and represent the code, we need to support emission of +LLVM IR for it. This code starts out with:</p> + +<div class="doc_code"> +<pre> +Value *VarExprAST::Codegen() { + std::vector<AllocaInst *> OldBindings; + + Function *TheFunction = Builder.GetInsertBlock()->getParent(); + + // Register all variables and emit their initializer. + for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { + const std::string &VarName = VarNames[i].first; + ExprAST *Init = VarNames[i].second; +</pre> +</div> + +<p>Basically it loops over all the variables, installing them one at a time. +For each variable we put into the symbol table, we remember the previous value +that we replace in OldBindings.</p> + +<div class="doc_code"> +<pre> + // Emit the initializer before adding the variable to scope, this prevents + // the initializer from referencing the variable itself, and permits stuff + // like this: + // var a = 1 in + // var a = a in ... # refers to outer 'a'. + Value *InitVal; + if (Init) { + InitVal = Init->Codegen(); + if (InitVal == 0) return 0; + } else { // If not specified, use 0.0. + InitVal = ConstantFP::get(Type::DoubleTy, APFloat(0.0)); + } + + AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); + Builder.CreateStore(InitVal, Alloca); + + // Remember the old variable binding so that we can restore the binding when + // we unrecurse. + OldBindings.push_back(NamedValues[VarName]); + + // Remember this binding. + NamedValues[VarName] = Alloca; + } +</pre> +</div> + +<p>There are more comments here than code. The basic idea is that we emit the +initializer, create the alloca, then update the symbol table to point to it. +Once all the variables are installed in the symbol table, we evaluate the body +of the var/in expression:</p> + +<div class="doc_code"> +<pre> + // Codegen the body, now that all vars are in scope. + Value *BodyVal = Body->Codegen(); + if (BodyVal == 0) return 0; +</pre> +</div> + +<p>Finally, before returning, we restore the previous variable bindings:</p> + +<div class="doc_code"> +<pre> + // Pop all our variables from scope. + for (unsigned i = 0, e = VarNames.size(); i != e; ++i) + NamedValues[VarNames[i].first] = OldBindings[i]; + + // Return the body computation. + return BodyVal; +} +</pre> +</div> + +<p>The end result of all of this is that we get properly scoped variable +definitions, and we even (trivially) allow mutation of them :).</p> + +<p>With this, we completed what we set out to do. Our nice iterative fib +example from the intro compiles and runs just fine. The mem2reg pass optimizes +all of our stack variables into SSA registers, inserting PHI nodes where needed, +and our front-end remains simple: no iterated dominator frontier computation +anywhere in sight.</p> + +</div> <!-- *********************************************************************** --> <div class="doc_section"><a name="code">Full Code Listing</a></div> @@ -306,8 +962,8 @@ variables now! <div class="doc_text"> <p> -Here is the complete code listing for our running example, enhanced with the -if/then/else and for expressions.. To build this example, use: +Here is the complete code listing for our running example, enhanced with mutable +variables and var/in support. To build this example, use: </p> <div class="doc_code"> @@ -323,6 +979,1141 @@ if/then/else and for expressions.. To build this example, use: <div class="doc_code"> <pre> +#include "llvm/DerivedTypes.h" +#include "llvm/ExecutionEngine/ExecutionEngine.h" +#include "llvm/Module.h" +#include "llvm/ModuleProvider.h" +#include "llvm/PassManager.h" +#include "llvm/Analysis/Verifier.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Support/LLVMBuilder.h" +#include <cstdio> +#include <string> +#include <map> +#include <vector> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Lexer +//===----------------------------------------------------------------------===// + +// The lexer returns tokens [0-255] if it is an unknown character, otherwise one +// of these for known things. +enum Token { + tok_eof = -1, + + // commands + tok_def = -2, tok_extern = -3, + + // primary + tok_identifier = -4, tok_number = -5, + + // control + tok_if = -6, tok_then = -7, tok_else = -8, + tok_for = -9, tok_in = -10, + + // operators + tok_binary = -11, tok_unary = -12, + + // var definition + tok_var = -13 +}; + +static std::string IdentifierStr; // Filled in if tok_identifier +static double NumVal; // Filled in if tok_number + +/// gettok - Return the next token from standard input. +static int gettok() { + static int LastChar = ' '; + + // Skip any whitespace. + while (isspace(LastChar)) + LastChar = getchar(); + + if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* + IdentifierStr = LastChar; + while (isalnum((LastChar = getchar()))) + IdentifierStr += LastChar; + + if (IdentifierStr == "def") return tok_def; + if (IdentifierStr == "extern") return tok_extern; + if (IdentifierStr == "if") return tok_if; + if (IdentifierStr == "then") return tok_then; + if (IdentifierStr == "else") return tok_else; + if (IdentifierStr == "for") return tok_for; + if (IdentifierStr == "in") return tok_in; + if (IdentifierStr == "binary") return tok_binary; + if (IdentifierStr == "unary") return tok_unary; + if (IdentifierStr == "var") return tok_var; + return tok_identifier; + } + + if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ + std::string NumStr; + do { + NumStr += LastChar; + LastChar = getchar(); + } while (isdigit(LastChar) || LastChar == '.'); + + NumVal = strtod(NumStr.c_str(), 0); + return tok_number; + } + + if (LastChar == '#') { + // Comment until end of line. + do LastChar = getchar(); + while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); + + if (LastChar != EOF) + return gettok(); + } + + // Check for end of file. Don't eat the EOF. + if (LastChar == EOF) + return tok_eof; + + // Otherwise, just return the character as its ascii value. + int ThisChar = LastChar; + LastChar = getchar(); + return ThisChar; +} + +//===----------------------------------------------------------------------===// +// Abstract Syntax Tree (aka Parse Tree) +//===----------------------------------------------------------------------===// + +/// ExprAST - Base class for all expression nodes. +class ExprAST { +public: + virtual ~ExprAST() {} + virtual Value *Codegen() = 0; +}; + +/// NumberExprAST - Expression class for numeric literals like "1.0". +class NumberExprAST : public ExprAST { + double Val; +public: + NumberExprAST(double val) : Val(val) {} + virtual Value *Codegen(); +}; + +/// VariableExprAST - Expression class for referencing a variable, like "a". +class VariableExprAST : public ExprAST { + std::string Name; +public: + VariableExprAST(const std::string &name) : Name(name) {} + const std::string &getName() const { return Name; } + virtual Value *Codegen(); +}; + +/// UnaryExprAST - Expression class for a unary operator. +class UnaryExprAST : public ExprAST { + char Opcode; + ExprAST *Operand; +public: + UnaryExprAST(char opcode, ExprAST *operand) + : Opcode(opcode), Operand(operand) {} + virtual Value *Codegen(); +}; + +/// BinaryExprAST - Expression class for a binary operator. +class BinaryExprAST : public ExprAST { + char Op; + ExprAST *LHS, *RHS; +public: + BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) + : Op(op), LHS(lhs), RHS(rhs) {} + virtual Value *Codegen(); +}; + +/// CallExprAST - Expression class for function calls. +class CallExprAST : public ExprAST { + std::string Callee; + std::vector<ExprAST*> Args; +public: + CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) + : Callee(callee), Args(args) {} + virtual Value *Codegen(); +}; + +/// IfExprAST - Expression class for if/then/else. +class IfExprAST : public ExprAST { + ExprAST *Cond, *Then, *Else; +public: + IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) + : Cond(cond), Then(then), Else(_else) {} + virtual Value *Codegen(); +}; + +/// ForExprAST - Expression class for for/in. +class ForExprAST : public ExprAST { + std::string VarName; + ExprAST *Start, *End, *Step, *Body; +public: + ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, + ExprAST *step, ExprAST *body) + : VarName(varname), Start(start), End(end), Step(step), Body(body) {} + virtual Value *Codegen(); +}; + +/// VarExprAST - Expression class for var/in +class VarExprAST : public ExprAST { + std::vector<std::pair<std::string, ExprAST*> > VarNames; + ExprAST *Body; +public: + VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, + ExprAST *body) + : VarNames(varnames), Body(body) {} + + virtual Value *Codegen(); +}; + +/// PrototypeAST - This class represents the "prototype" for a function, +/// which captures its argument names as well as if it is an operator. +class PrototypeAST { + std::string Name; + std::vector<std::string> Args; + bool isOperator; + unsigned Precedence; // Precedence if a binary op. +public: + PrototypeAST(const std::string &name, const std::vector<std::string> &args, + bool isoperator = false, unsigned prec = 0) + : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} + + bool isUnaryOp() const { return isOperator && Args.size() == 1; } + bool isBinaryOp() const { return isOperator && Args.size() == 2; } + + char getOperatorName() const { + assert(isUnaryOp() || isBinaryOp()); + return Name[Name.size()-1]; + } + + unsigned getBinaryPrecedence() const { return Precedence; } + + Function *Codegen(); + + void CreateArgumentAllocas(Function *F); +}; + +/// FunctionAST - This class represents a function definition itself. +class FunctionAST { + PrototypeAST *Proto; + ExprAST *Body; +public: + FunctionAST(PrototypeAST *proto, ExprAST *body) + : Proto(proto), Body(body) {} + + Function *Codegen(); +}; + +//===----------------------------------------------------------------------===// +// Parser +//===----------------------------------------------------------------------===// + +/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current +/// token the parser it looking at. getNextToken reads another token from the +/// lexer and updates CurTok with its results. +static int CurTok; +static int getNextToken() { + return CurTok = gettok(); +} + +/// BinopPrecedence - This holds the precedence for each binary operator that is +/// defined. +static std::map<char, int> BinopPrecedence; + +/// GetTokPrecedence - Get the precedence of the pending binary operator token. +static int GetTokPrecedence() { + if (!isascii(CurTok)) + return -1; + + // Make sure it's a declared binop. + int TokPrec = BinopPrecedence[CurTok]; + if (TokPrec <= 0) return -1; + return TokPrec; +} + +/// Error* - These are little helper functions for error handling. +ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} +PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } +FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } + +static ExprAST *ParseExpression(); + +/// identifierexpr +/// ::= identifer +/// ::= identifer '(' expression* ')' +static ExprAST *ParseIdentifierExpr() { + std::string IdName = IdentifierStr; + + getNextToken(); // eat identifer. + + if (CurTok != '(') // Simple variable ref. + return new VariableExprAST(IdName); + + // Call. + getNextToken(); // eat ( + std::vector<ExprAST*> Args; + if (CurTok != ')') { + while (1) { + ExprAST *Arg = ParseExpression(); + if (!Arg) return 0; + Args.push_back(Arg); + + if (CurTok == ')') break; + + if (CurTok != ',') + return Error("Expected ')'"); + getNextToken(); + } + } + + // Eat the ')'. + getNextToken(); + + return new CallExprAST(IdName, Args); +} + +/// numberexpr ::= number +static ExprAST *ParseNumberExpr() { + ExprAST *Result = new NumberExprAST(NumVal); + getNextToken(); // consume the number + return Result; +} + +/// parenexpr ::= '(' expression ')' +static ExprAST *ParseParenExpr() { + getNextToken(); // eat (. + ExprAST *V = ParseExpression(); + if (!V) return 0; + + if (CurTok != ')') + return Error("expected ')'"); + getNextToken(); // eat ). + return V; +} + +/// ifexpr ::= 'if' expression 'then' expression 'else' expression +static ExprAST *ParseIfExpr() { + getNextToken(); // eat the if. + + // condition. + ExprAST *Cond = ParseExpression(); + if (!Cond) return 0; + + if (CurTok != tok_then) + return Error("expected then"); + getNextToken(); // eat the then + + ExprAST *Then = ParseExpression(); + if (Then == 0) return 0; + + if (CurTok != tok_else) + return Error("expected else"); + + getNextToken(); + + ExprAST *Else = ParseExpression(); + if (!Else) return 0; + + return new IfExprAST(Cond, Then, Else); +} + +/// forexpr ::= 'for' identifer '=' expr ',' expr (',' expr)? 'in' expression +static ExprAST *ParseForExpr() { + getNextToken(); // eat the for. + + if (CurTok != tok_identifier) + return Error("expected identifier after for"); + + std::string IdName = IdentifierStr; + getNextToken(); // eat identifer. + + if (CurTok != '=') + return Error("expected '=' after for"); + getNextToken(); // eat '='. + + + ExprAST *Start = ParseExpression(); + if (Start == 0) return 0; + if (CurTok != ',') + return Error("expected ',' after for start value"); + getNextToken(); + + ExprAST *End = ParseExpression(); + if (End == 0) return 0; + + // The step value is optional. + ExprAST *Step = 0; + if (CurTok == ',') { + getNextToken(); + Step = ParseExpression(); + if (Step == 0) return 0; + } + + if (CurTok != tok_in) + return Error("expected 'in' after for"); + getNextToken(); // eat 'in'. + + ExprAST *Body = ParseExpression(); + if (Body == 0) return 0; + + return new ForExprAST(IdName, Start, End, Step, Body); +} + +/// varexpr ::= 'var' identifer ('=' expression)? +// (',' identifer ('=' expression)?)* 'in' expression +static ExprAST *ParseVarExpr() { + getNextToken(); // eat the var. + + std::vector<std::pair<std::string, ExprAST*> > VarNames; + + // At least one variable name is required. + if (CurTok != tok_identifier) + return Error("expected identifier after var"); + + while (1) { + std::string Name = IdentifierStr; + getNextToken(); // eat identifer. + + // Read the optional initializer. + ExprAST *Init = 0; + if (CurTok == '=') { + getNextToken(); // eat the '='. + + Init = ParseExpression(); + if (Init == 0) return 0; + } + + VarNames.push_back(std::make_pair(Name, Init)); + + // End of var list, exit loop. + if (CurTok != ',') break; + getNextToken(); // eat the ','. + + if (CurTok != tok_identifier) + return Error("expected identifier list after var"); + } + + // At this point, we have to have 'in'. + if (CurTok != tok_in) + return Error("expected 'in' keyword after 'var'"); + getNextToken(); // eat 'in'. + + ExprAST *Body = ParseExpression(); + if (Body == 0) return 0; + + return new VarExprAST(VarNames, Body); +} + + +/// primary +/// ::= identifierexpr +/// ::= numberexpr +/// ::= parenexpr +/// ::= ifexpr +/// ::= forexpr +/// ::= varexpr +static ExprAST *ParsePrimary() { + switch (CurTok) { + default: return Error("unknown token when expecting an expression"); + case tok_identifier: return ParseIdentifierExpr(); + case tok_number: return ParseNumberExpr(); + case '(': return ParseParenExpr(); + case tok_if: return ParseIfExpr(); + case tok_for: return ParseForExpr(); + case tok_var: return ParseVarExpr(); + } +} + +/// unary +/// ::= primary +/// ::= '!' unary +static ExprAST *ParseUnary() { + // If the current token is not an operator, it must be a primary expr. + if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') + return ParsePrimary(); + + // If this is a unary operator, read it. + int Opc = CurTok; + getNextToken(); + if (ExprAST *Operand = ParseUnary()) + return new UnaryExprAST(Opc, Operand); + return 0; +} + +/// binoprhs +/// ::= ('+' unary)* +static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { + // If this is a binop, find its precedence. + while (1) { + int TokPrec = GetTokPrecedence(); + + // If this is a binop that binds at least as tightly as the current binop, + // consume it, otherwise we are done. + if (TokPrec < ExprPrec) + return LHS; + + // Okay, we know this is a binop. + int BinOp = CurTok; + getNextToken(); // eat binop + + // Parse the unary expression after the binary operator. + ExprAST *RHS = ParseUnary(); + if (!RHS) return 0; + + // If BinOp binds less tightly with RHS than the operator after RHS, let + // the pending operator take RHS as its LHS. + int NextPrec = GetTokPrecedence(); + if (TokPrec < NextPrec) { + RHS = ParseBinOpRHS(TokPrec+1, RHS); + if (RHS == 0) return 0; + } + + // Merge LHS/RHS. + LHS = new BinaryExprAST(BinOp, LHS, RHS); + } +} + +/// expression +/// ::= unary binoprhs +/// +static ExprAST *ParseExpression() { + ExprAST *LHS = ParseUnary(); + if (!LHS) return 0; + + return ParseBinOpRHS(0, LHS); +} + +/// prototype +/// ::= id '(' id* ')' +/// ::= binary LETTER number? (id, id) +/// ::= unary LETTER (id) +static PrototypeAST *ParsePrototype() { + std::string FnName; + + int Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. + unsigned BinaryPrecedence = 30; + + switch (CurTok) { + default: + return ErrorP("Expected function name in prototype"); + case tok_identifier: + FnName = IdentifierStr; + Kind = 0; + getNextToken(); + break; + case tok_unary: + getNextToken(); + if (!isascii(CurTok)) + return ErrorP("Expected unary operator"); + FnName = "unary"; + FnName += (char)CurTok; + Kind = 1; + getNextToken(); + break; + case tok_binary: + getNextToken(); + if (!isascii(CurTok)) + return ErrorP("Expected binary operator"); + FnName = "binary"; + FnName += (char)CurTok; + Kind = 2; + getNextToken(); + + // Read the precedence if present. + if (CurTok == tok_number) { + if (NumVal < 1 || NumVal > 100) + return ErrorP("Invalid precedecnce: must be 1..100"); + BinaryPrecedence = (unsigned)NumVal; + getNextToken(); + } + break; + } + + if (CurTok != '(') + return ErrorP("Expected '(' in prototype"); + + std::vector<std::string> ArgNames; + while (getNextToken() == tok_identifier) + ArgNames.push_back(IdentifierStr); + if (CurTok != ')') + return ErrorP("Expected ')' in prototype"); + + // success. + getNextToken(); // eat ')'. + + // Verify right number of names for operator. + if (Kind && ArgNames.size() != Kind) + return ErrorP("Invalid number of operands for operator"); + + return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); +} + +/// definition ::= 'def' prototype expression +static FunctionAST *ParseDefinition() { + getNextToken(); // eat def. + PrototypeAST *Proto = ParsePrototype(); + if (Proto == 0) return 0; + + if (ExprAST *E = ParseExpression()) + return new FunctionAST(Proto, E); + return 0; +} + +/// toplevelexpr ::= expression +static FunctionAST *ParseTopLevelExpr() { + if (ExprAST *E = ParseExpression()) { + // Make an anonymous proto. + PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); + return new FunctionAST(Proto, E); + } + return 0; +} + +/// external ::= 'extern' prototype +static PrototypeAST *ParseExtern() { + getNextToken(); // eat extern. + return ParsePrototype(); +} + +//===----------------------------------------------------------------------===// +// Code Generation +//===----------------------------------------------------------------------===// + +static Module *TheModule; +static LLVMFoldingBuilder Builder; +static std::map<std::string, AllocaInst*> NamedValues; +static FunctionPassManager *TheFPM; + +Value *ErrorV(const char *Str) { Error(Str); return 0; } + +/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of +/// the function. This is used for mutable variables etc. +static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, + const std::string &VarName) { + LLVMBuilder TmpB(&TheFunction->getEntryBlock(), + TheFunction->getEntryBlock().begin()); + return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str()); +} + + +Value *NumberExprAST::Codegen() { + return ConstantFP::get(Type::DoubleTy, APFloat(Val)); +} + +Value *VariableExprAST::Codegen() { + // Look this variable up in the function. + Value *V = NamedValues[Name]; + if (V == 0) return ErrorV("Unknown variable name"); + + // Load the value. + return Builder.CreateLoad(V, Name.c_str()); +} + +Value *UnaryExprAST::Codegen() { + Value *OperandV = Operand->Codegen(); + if (OperandV == 0) return 0; + + Function *F = TheModule->getFunction(std::string("unary")+Opcode); + if (F == 0) + return ErrorV("Unknown unary operator"); + + return Builder.CreateCall(F, OperandV, "unop"); +} + + +Value *BinaryExprAST::Codegen() { + // Special case '=' because we don't want to emit the LHS as an expression. + if (Op == '=') { + // Assignment requires the LHS to be an identifier. + VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); + if (!LHSE) + return ErrorV("destination of '=' must be a variable"); + // Codegen the RHS. + Value *Val = RHS->Codegen(); + if (Val == 0) return 0; + + // Look up the name. + Value *Variable = NamedValues[LHSE->getName()]; + if (Variable == 0) return ErrorV("Unknown variable name"); + + Builder.CreateStore(Val, Variable); + return Val; + } + + + Value *L = LHS->Codegen(); + Value *R = RHS->Codegen(); + if (L == 0 || R == 0) return 0; + + switch (Op) { + case '+': return Builder.CreateAdd(L, R, "addtmp"); + case '-': return Builder.CreateSub(L, R, "subtmp"); + case '*': return Builder.CreateMul(L, R, "multmp"); + case '<': + L = Builder.CreateFCmpULT(L, R, "multmp"); + // Convert bool 0/1 to double 0.0 or 1.0 + return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); + default: break; + } + + // If it wasn't a builtin binary operator, it must be a user defined one. Emit + // a call to it. + Function *F = TheModule->getFunction(std::string("binary")+Op); + assert(F && "binary operator not found!"); + + Value *Ops[] = { L, R }; + return Builder.CreateCall(F, Ops, Ops+2, "binop"); +} + +Value *CallExprAST::Codegen() { + // Look up the name in the global module table. + Function *CalleeF = TheModule->getFunction(Callee); + if (CalleeF == 0) + return ErrorV("Unknown function referenced"); + + // If argument mismatch error. + if (CalleeF->arg_size() != Args.size()) + return ErrorV("Incorrect # arguments passed"); + + std::vector<Value*> ArgsV; + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + ArgsV.push_back(Args[i]->Codegen()); + if (ArgsV.back() == 0) return 0; + } + + return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); +} + +Value *IfExprAST::Codegen() { + Value *CondV = Cond->Codegen(); + if (CondV == 0) return 0; + + // Convert condition to a bool by comparing equal to 0.0. + CondV = Builder.CreateFCmpONE(CondV, + ConstantFP::get(Type::DoubleTy, APFloat(0.0)), + "ifcond"); + + Function *TheFunction = Builder.GetInsertBlock()->getParent(); + + // Create blocks for the then and else cases. Insert the 'then' block at the + // end of the function. + BasicBlock *ThenBB = new BasicBlock("then", TheFunction); + BasicBlock *ElseBB = new BasicBlock("else"); + BasicBlock *MergeBB = new BasicBlock("ifcont"); + + Builder.CreateCondBr(CondV, ThenBB, ElseBB); + + // Emit then value. + Builder.SetInsertPoint(ThenBB); + + Value *ThenV = Then->Codegen(); + if (ThenV == 0) return 0; + + Builder.CreateBr(MergeBB); + // Codegen of 'Then' can change the current block, update ThenBB for the PHI. + ThenBB = Builder.GetInsertBlock(); + + // Emit else block. + TheFunction->getBasicBlockList().push_back(ElseBB); + Builder.SetInsertPoint(ElseBB); + + Value *ElseV = Else->Codegen(); + if (ElseV == 0) return 0; + + Builder.CreateBr(MergeBB); + // Codegen of 'Else' can change the current block, update ElseBB for the PHI. + ElseBB = Builder.GetInsertBlock(); + + // Emit merge block. + TheFunction->getBasicBlockList().push_back(MergeBB); + Builder.SetInsertPoint(MergeBB); + PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp"); + + PN->addIncoming(ThenV, ThenBB); + PN->addIncoming(ElseV, ElseBB); + return PN; +} + +Value *ForExprAST::Codegen() { + // Output this as: + // var = alloca double + // ... + // start = startexpr + // store start -> var + // goto loop + // loop: + // ... + // bodyexpr + // ... + // loopend: + // step = stepexpr + // endcond = endexpr + // + // curvar = load var + // nextvar = curvar + step + // store nextvar -> var + // br endcond, loop, endloop + // outloop: + + Function *TheFunction = Builder.GetInsertBlock()->getParent(); + + // Create an alloca for the variable in the entry block. + AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); + + // Emit the start code first, without 'variable' in scope. + Value *StartVal = Start->Codegen(); + if (StartVal == 0) return 0; + + // Store the value into the alloca. + Builder.CreateStore(StartVal, Alloca); + + // Make the new basic block for the loop header, inserting after current + // block. + BasicBlock *PreheaderBB = Builder.GetInsertBlock(); + BasicBlock *LoopBB = new BasicBlock("loop", TheFunction); + + // Insert an explicit fall through from the current block to the LoopBB. + Builder.CreateBr(LoopBB); + + // Start insertion in LoopBB. + Builder.SetInsertPoint(LoopBB); + + // Within the loop, the variable is defined equal to the PHI node. If it + // shadows an existing variable, we have to restore it, so save it now. + AllocaInst *OldVal = NamedValues[VarName]; + NamedValues[VarName] = Alloca; + + // Emit the body of the loop. This, like any other expr, can change the + // current BB. Note that we ignore the value computed by the body, but don't + // allow an error. + if (Body->Codegen() == 0) + return 0; + + // Emit the step value. + Value *StepVal; + if (Step) { + StepVal = Step->Codegen(); + if (StepVal == 0) return 0; + } else { + // If not specified, use 1.0. + StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0)); + } + + // Compute the end condition. + Value *EndCond = End->Codegen(); + if (EndCond == 0) return EndCond; + + // Reload, increment, and restore the alloca. This handles the case where + // the body of the loop mutates the variable. + Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); + Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar"); + Builder.CreateStore(NextVar, Alloca); + + // Convert condition to a bool by comparing equal to 0.0. + EndCond = Builder.CreateFCmpONE(EndCond, + ConstantFP::get(Type::DoubleTy, APFloat(0.0)), + "loopcond"); + + // Create the "after loop" block and insert it. + BasicBlock *LoopEndBB = Builder.GetInsertBlock(); + BasicBlock *AfterBB = new BasicBlock("afterloop", TheFunction); + + // Insert the conditional branch into the end of LoopEndBB. + Builder.CreateCondBr(EndCond, LoopBB, AfterBB); + + // Any new code will be inserted in AfterBB. + Builder.SetInsertPoint(AfterBB); + + // Restore the unshadowed variable. + if (OldVal) + NamedValues[VarName] = OldVal; + else + NamedValues.erase(VarName); + + + // for expr always returns 0.0. + return Constant::getNullValue(Type::DoubleTy); +} + +Value *VarExprAST::Codegen() { + std::vector<AllocaInst *> OldBindings; + + Function *TheFunction = Builder.GetInsertBlock()->getParent(); + + // Register all variables and emit their initializer. + for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { + const std::string &VarName = VarNames[i].first; + ExprAST *Init = VarNames[i].second; + + // Emit the initializer before adding the variable to scope, this prevents + // the initializer from referencing the variable itself, and permits stuff + // like this: + // var a = 1 in + // var a = a in ... # refers to outer 'a'. + Value *InitVal; + if (Init) { + InitVal = Init->Codegen(); + if (InitVal == 0) return 0; + } else { // If not specified, use 0.0. + InitVal = ConstantFP::get(Type::DoubleTy, APFloat(0.0)); + } + + AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); + Builder.CreateStore(InitVal, Alloca); + + // Remember the old variable binding so that we can restore the binding when + // we unrecurse. + OldBindings.push_back(NamedValues[VarName]); + + // Remember this binding. + NamedValues[VarName] = Alloca; + } + + // Codegen the body, now that all vars are in scope. + Value *BodyVal = Body->Codegen(); + if (BodyVal == 0) return 0; + + // Pop all our variables from scope. + for (unsigned i = 0, e = VarNames.size(); i != e; ++i) + NamedValues[VarNames[i].first] = OldBindings[i]; + + // Return the body computation. + return BodyVal; +} + + +Function *PrototypeAST::Codegen() { + // Make the function type: double(double,double) etc. + std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); + FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); + + Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); + + // If F conflicted, there was already something named 'Name'. If it has a + // body, don't allow redefinition or reextern. + if (F->getName() != Name) { + // Delete the one we just made and get the existing one. + F->eraseFromParent(); + F = TheModule->getFunction(Name); + + // If F already has a body, reject this. + if (!F->empty()) { + ErrorF("redefinition of function"); + return 0; + } + + // If F took a different number of args, reject. + if (F->arg_size() != Args.size()) { + ErrorF("redefinition of function with different # args"); + return 0; + } + } + + // Set names for all arguments. + unsigned Idx = 0; + for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); + ++AI, ++Idx) + AI->setName(Args[Idx]); + + return F; +} + +/// CreateArgumentAllocas - Create an alloca for each argument and register the +/// argument in the symbol table so that references to it will succeed. +void PrototypeAST::CreateArgumentAllocas(Function *F) { + Function::arg_iterator AI = F->arg_begin(); + for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { + // Create an alloca for this variable. + AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); + + // Store the initial value into the alloca. + Builder.CreateStore(AI, Alloca); + + // Add arguments to variable symbol table. + NamedValues[Args[Idx]] = Alloca; + } +} + + +Function *FunctionAST::Codegen() { + NamedValues.clear(); + + Function *TheFunction = Proto->Codegen(); + if (TheFunction == 0) + return 0; + + // If this is an operator, install it. + if (Proto->isBinaryOp()) + BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); + + // Create a new basic block to start insertion into. + BasicBlock *BB = new BasicBlock("entry", TheFunction); + Builder.SetInsertPoint(BB); + + // Add all arguments to the symbol table and create their allocas. + Proto->CreateArgumentAllocas(TheFunction); + + if (Value *RetVal = Body->Codegen()) { + // Finish off the function. + Builder.CreateRet(RetVal); + + // Validate the generated code, checking for consistency. + verifyFunction(*TheFunction); + + // Optimize the function. + TheFPM->run(*TheFunction); + + return TheFunction; + } + + // Error reading body, remove function. + TheFunction->eraseFromParent(); + + if (Proto->isBinaryOp()) + BinopPrecedence.erase(Proto->getOperatorName()); + return 0; +} + +//===----------------------------------------------------------------------===// +// Top-Level parsing and JIT Driver +//===----------------------------------------------------------------------===// + +static ExecutionEngine *TheExecutionEngine; + +static void HandleDefinition() { + if (FunctionAST *F = ParseDefinition()) { + if (Function *LF = F->Codegen()) { + fprintf(stderr, "Read function definition:"); + LF->dump(); + } + } else { + // Skip token for error recovery. + getNextToken(); + } +} + +static void HandleExtern() { + if (PrototypeAST *P = ParseExtern()) { + if (Function *F = P->Codegen()) { + fprintf(stderr, "Read extern: "); + F->dump(); + } + } else { + // Skip token for error recovery. + getNextToken(); + } +} + +static void HandleTopLevelExpression() { + // Evaluate a top level expression into an anonymous function. + if (FunctionAST *F = ParseTopLevelExpr()) { + if (Function *LF = F->Codegen()) { + // JIT the function, returning a function pointer. + void *FPtr = TheExecutionEngine->getPointerToFunction(LF); + + // Cast it to the right type (takes no arguments, returns a double) so we + // can call it as a native function. + double (*FP)() = (double (*)())FPtr; + fprintf(stderr, "Evaluated to %f\n", FP()); + } + } else { + // Skip token for error recovery. + getNextToken(); + } +} + +/// top ::= definition | external | expression | ';' +static void MainLoop() { + while (1) { + fprintf(stderr, "ready> "); + switch (CurTok) { + case tok_eof: return; + case ';': getNextToken(); break; // ignore top level semicolons. + case tok_def: HandleDefinition(); break; + case tok_extern: HandleExtern(); break; + default: HandleTopLevelExpression(); break; + } + } +} + + + +//===----------------------------------------------------------------------===// +// "Library" functions that can be "extern'd" from user code. +//===----------------------------------------------------------------------===// + +/// putchard - putchar that takes a double and returns 0. +extern "C" +double putchard(double X) { + putchar((char)X); + return 0; +} + +/// printd - printf that takes a double prints it as "%f\n", returning 0. +extern "C" +double printd(double X) { + printf("%f\n", X); + return 0; +} + +//===----------------------------------------------------------------------===// +// Main driver code. +//===----------------------------------------------------------------------===// + +int main() { + // Install standard binary operators. + // 1 is lowest precedence. + BinopPrecedence['='] = 2; + BinopPrecedence['<'] = 10; + BinopPrecedence['+'] = 20; + BinopPrecedence['-'] = 20; + BinopPrecedence['*'] = 40; // highest. + + // Prime the first token. + fprintf(stderr, "ready> "); + getNextToken(); + + // Make the module, which holds all the code. + TheModule = new Module("my cool jit"); + + // Create the JIT. + TheExecutionEngine = ExecutionEngine::create(TheModule); + + { + ExistingModuleProvider OurModuleProvider(TheModule); + FunctionPassManager OurFPM(&OurModuleProvider); + + // Set up the optimizer pipeline. Start with registering info about how the + // target lays out data structures. + OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); + // Promote allocas to registers. + OurFPM.add(createPromoteMemoryToRegisterPass()); + // Do simple "peephole" optimizations and bit-twiddling optzns. + OurFPM.add(createInstructionCombiningPass()); + // Reassociate expressions. + OurFPM.add(createReassociatePass()); + // Eliminate Common SubExpressions. + OurFPM.add(createGVNPass()); + // Simplify the control flow graph (deleting unreachable blocks, etc). + OurFPM.add(createCFGSimplificationPass()); + + // Set the global so the code gen can use this. + TheFPM = &OurFPM; + + // Run the main "interpreter loop" now. + MainLoop(); + + TheFPM = 0; + } // Free module provider and pass manager. + + + // Print out all of the generated code. + TheModule->dump(); + return 0; +} </pre> </div> |