aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2007-11-05 00:23:57 +0000
committerChris Lattner <sabre@nondot.org>2007-11-05 00:23:57 +0000
commitddda7f28dd0d3f6c68e3afed507efb78bed754df (patch)
tree0e37279a7ec5251979bd271f1f63aebd93960fe9
parent8157ef423408bd50e6712814e7792a308b5db7d7 (diff)
downloadexternal_llvm-ddda7f28dd0d3f6c68e3afed507efb78bed754df.zip
external_llvm-ddda7f28dd0d3f6c68e3afed507efb78bed754df.tar.gz
external_llvm-ddda7f28dd0d3f6c68e3afed507efb78bed754df.tar.bz2
finish the chapter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43689 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--docs/tutorial/LangImpl7.html1795
1 files changed, 1793 insertions, 2 deletions
diff --git a/docs/tutorial/LangImpl7.html b/docs/tutorial/LangImpl7.html
index ccd15dc..6664c7c 100644
--- a/docs/tutorial/LangImpl7.html
+++ b/docs/tutorial/LangImpl7.html
@@ -296,8 +296,664 @@ with this style of debug info.</li>
running, and is very simple to implement. Lets extend Kaleidoscope with mutable
variables now!
</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="kalvars">Mutable Variables in
+Kaleidoscope</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Now that we know the sort of problem we want to tackle, lets see what this
+looks like in the context of our little Kaleidoscope language. We're going to
+add two features:</p>
+
+<ol>
+<li>The ability to mutate variables with the '=' operator.</li>
+<li>The ability to define new variables.</li>
+</ol>
+
+<p>While the first item is really what this is about, we only have variables
+for incoming arguments and for induction variables, and redefining them only
+goes so far :). Also, the ability to define new variables is a
+useful thing regardless of whether you will be mutating them. Here's a
+motivating example that shows how we could use these:</p>
+
+<div class="doc_code">
+<pre>
+# Define ':' for sequencing: as a low-precedence operator that ignores operands
+# and just returns the RHS.
+def binary : 1 (x y) y;
+
+# Recursive fib, we could do this before.
+def fib(x)
+ if (x &lt; 3) then
+ 1
+ else
+ fib(x-1)+fib(x-2);
+
+# Iterative fib.
+def fibi(x)
+ <b>var a = 1, b = 1, c in</b>
+ (for i = 3, i &;t; x in
+ <b>c = a + b</b> :
+ <b>a = b</b> :
+ <b>b = c</b>) :
+ b;
+
+# Call it.
+fibi(10);
+</pre>
+</div>
+
+<p>
+In order to mutate variables, we have to change our existing variables to use
+the "alloca trick". Once we have that, we'll add our new operator, then extend
+Kaleidoscope to support new variable definitions.
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
+Mutation</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+The symbol table in Kaleidoscope is managed at code generation time by the
+'<tt>NamedValues</tt>' map. This map currently keeps track of the LLVM "Value*"
+that holds the double value for the named variable. In order to support
+mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds
+the <em>memory location</em> of the variable in question. Note that this
+change is a refactoring: it changes the structure of the code, but does not
+(by itself) change the behavior of the compiler. All of these changes are
+isolated in the Kaleidoscope code generator.</p>
+
+<p>
+At this point in Kaleidoscope's development, it only supports variables for two
+things: incoming arguments to functions and the induction variable of 'for'
+loops. For consistency, we'll allow mutation of these variables in addition to
+other user-defined variables. This means that these will both need memory
+locations.
+</p>
+
+<p>To start our transformation of Kaleidoscope, we'll change the NamedValues
+map to map to AllocaInst* instead of Value*. Once we do this, the C++ compiler
+will tell use what parts of the code we need to update:</p>
+
+<div class="doc_code">
+<pre>
+static std::map&lt;std::string, AllocaInst*&gt; NamedValues;
+</pre>
+</div>
+
+<p>Also, since we will need to create these alloca's, we'll use a helper
+function that ensures that the allocas are created in the entry block of the
+function:</p>
+
+<div class="doc_code">
+<pre>
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &amp;VarName) {
+ LLVMBuilder TmpB(&amp;TheFunction-&gt;getEntryBlock(),
+ TheFunction-&gt;getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str());
+}
+</pre>
+</div>
+
+<p>This funny looking code creates an LLVMBuilder object that is pointing at
+the first instruction (.begin()) of the entry block. It then creates an alloca
+with the expected name and returns it. Because all values in Kaleidoscope are
+doubles, there is no need to pass in a type to use.</p>
+
+<p>With this in place, the first functionality change we want to make is to
+variable references. In our new scheme, variables live on the stack, so code
+generating a reference to them actually needs to produce a load from the stack
+slot:</p>
+
+<div class="doc_code">
+<pre>
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ if (V == 0) return ErrorV("Unknown variable name");
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+</pre>
+</div>
+
+<p>As you can see, this is pretty straight-forward. Next we need to update the
+things that define the variables to set up the alloca. We'll start with
+<tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for
+the unabridged code):</p>
+
+<div class="doc_code">
+<pre>
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ <b>// Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b>
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start-&gt;Codegen();
+ if (StartVal == 0) return 0;
+
+ <b>// Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);</b>
+ ...
+
+ // Compute the end condition.
+ Value *EndCond = End-&gt;Codegen();
+ if (EndCond == 0) return EndCond;
+
+ <b>// Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca);
+ Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);</b>
+ ...
+</pre>
+</div>
+
+<p>This code is virtually identical to the code <a
+href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>. The
+big difference is that we no longer have to construct a PHI node, and we use
+load/store to access the variable as needed.</p>
+
+<p>To support mutable argument variables, we need to also make allocas for them.
+The code for this is also pretty simple:</p>
+
+<div class="doc_code">
+<pre>
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F-&gt;arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+</pre>
+</div>
+
+<p>For each argument, we make an alloca, store the input value to the function
+into the alloca, and register the alloca as the memory location for the
+argument. This method gets invoked by <tt>FunctionAST::Codegen</tt> right after
+it sets up the entry block for the function.</p>
+
+<p>The final missing piece is adding the 'mem2reg' pass, which allows us to get
+good codegen once again:</p>
+
+<div class="doc_code">
+<pre>
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
+ <b>// Promote allocas to registers.
+ OurFPM.add(createPromoteMemoryToRegisterPass());</b>
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ OurFPM.add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ OurFPM.add(createReassociatePass());
+</pre>
+</div>
+
+<p>It is interesting to see what the code looks like before and after the
+mem2reg optimization runs. For example, this is the before/after code for our
+recursive fib. Before the optimization:</p>
+
+<div class="doc_code">
+<pre>
+define double @fib(double %x) {
+entry:
+ <b>%x1 = alloca double
+ store double %x, double* %x1
+ %x2 = load double* %x1</b>
+ %multmp = fcmp ult double %x2, 3.000000e+00
+ %booltmp = uitofp i1 %multmp to double
+ %ifcond = fcmp one double %booltmp, 0.000000e+00
+ br i1 %ifcond, label %then, label %else
+
+then: ; preds = %entry
+ br label %ifcont
+
+else: ; preds = %entry
+ <b>%x3 = load double* %x1</b>
+ %subtmp = sub double %x3, 1.000000e+00
+ %calltmp = call double @fib( double %subtmp )
+ <b>%x4 = load double* %x1</b>
+ %subtmp5 = sub double %x4, 2.000000e+00
+ %calltmp6 = call double @fib( double %subtmp5 )
+ %addtmp = add double %calltmp, %calltmp6
+ br label %ifcont
+
+ifcont: ; preds = %else, %then
+ %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
+ ret double %iftmp
+}
+</pre>
+</div>
+
+<p>Here there is only one variable (x, the input argument) but you can still
+see the extremely simple-minded code generation strategy we are using. In the
+entry block, an alloca is created, and the initial input value is stored into
+it. Each reference to the variable does a reload from the stack. Also, note
+that we didn't modify the if/then/else expression, so it still inserts a PHI
+node. While we could make an alloca for it, it is actually easier to create a
+PHI node for it, so we still just make the PHI.</p>
+
+<p>Here is the code after the mem2reg pass runs:</p>
+
+<div class="doc_code">
+<pre>
+define double @fib(double %x) {
+entry:
+ %multmp = fcmp ult double <b>%x</b>, 3.000000e+00
+ %booltmp = uitofp i1 %multmp to double
+ %ifcond = fcmp one double %booltmp, 0.000000e+00
+ br i1 %ifcond, label %then, label %else
+
+then:
+ br label %ifcont
+
+else:
+ %subtmp = sub double <b>%x</b>, 1.000000e+00
+ %calltmp = call double @fib( double %subtmp )
+ %subtmp5 = sub double <b>%x</b>, 2.000000e+00
+ %calltmp6 = call double @fib( double %subtmp5 )
+ %addtmp = add double %calltmp, %calltmp6
+ br label %ifcont
+
+ifcont: ; preds = %else, %then
+ %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
+ ret double %iftmp
+}
+</pre>
</div>
+<p>This is a trivial case for mem2reg, since there are no redefinitions of the
+variable. The point of showing this is to calm your tension about inserting
+such blatent inefficiencies :).</p>
+
+<p>After the rest of the optimizers run, we get:</p>
+
+<div class="doc_code">
+<pre>
+define double @fib(double %x) {
+entry:
+ %multmp = fcmp ult double %x, 3.000000e+00
+ %booltmp = uitofp i1 %multmp to double
+ %ifcond = fcmp ueq double %booltmp, 0.000000e+00
+ br i1 %ifcond, label %else, label %ifcont
+
+else:
+ %subtmp = sub double %x, 1.000000e+00
+ %calltmp = call double @fib( double %subtmp )
+ %subtmp5 = sub double %x, 2.000000e+00
+ %calltmp6 = call double @fib( double %subtmp5 )
+ %addtmp = add double %calltmp, %calltmp6
+ ret double %addtmp
+
+ifcont:
+ ret double 1.000000e+00
+}
+</pre>
+</div>
+
+<p>Here we see that the simplifycfg pass decided to clone the return instruction
+into the end of the 'else' block. This allowed it to eliminate some branches
+and the PHI node.</p>
+
+<p>Now that all symbol table references are updated to use stack variables,
+we'll add the assignment operator.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>With our current framework, adding a new assignment operator is really
+simple. We will parse it just like any other binary operator, but handle it
+internally (instead of allowing the user to define it). The first step is to
+set a precedence:</p>
+
+<div class="doc_code">
+<pre>
+ int main() {
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ <b>BinopPrecedence['='] = 2;</b>
+ BinopPrecedence['&lt;'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+</pre>
+</div>
+
+<p>Now that the parser knows the precedence of the binary operator, it takes
+care of all the parsing and AST generation. We just need to implement codegen
+for the assignment operator. This looks like:</p>
+
+<div class="doc_code">
+<pre>
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ VariableExprAST *LHSE = dynamic_cast&lt;VariableExprAST*&gt;(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+</pre>
+</div>
+
+<p>Unlike the rest of the binary operators, our assignment operator doesn't
+follow the "emit LHS, emit RHS, do computation" model. As such, it is handled
+as a special case before the other binary operators are handled. The other
+strange thing about it is that it requires the LHS to be a variable directly.
+</p>
+
+<div class="doc_code">
+<pre>
+ // Codegen the RHS.
+ Value *Val = RHS-&gt;Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE-&gt;getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+ ...
+</pre>
+</div>
+
+<p>Once it has the variable, codegen'ing the assignment is straight-forward:
+we emit the RHS of the assignment, create a store, and return the computed
+value. Returning a value allows for chained assignments like "X = (Y = Z)".</p>
+
+<p>Now that we have an assignment operator, we can mutate loop variables and
+arguments. For example, we can now run code like this:</p>
+
+<div class="doc_code">
+<pre>
+# Function to print a double.
+extern printd(x);
+
+# Define ':' for sequencing: as a low-precedence operator that ignores operands
+# and just returns the RHS.
+def binary : 1 (x y) y;
+
+def test(x)
+ printd(x) :
+ x = 4 :
+ printd(x);
+
+test(123);
+</pre>
+</div>
+
+<p>When run, this example prints "123" and then "4", showing that we did
+actually mutate the value! Okay, we have now officially implemented our goal:
+getting this to work requires SSA construction in the general case. However,
+to be really useful, we want the ability to define our own local variables, lets
+add this next!
+</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="localvars">User-defined Local
+Variables</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Adding var/in is just like any other other extensions we made to
+Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
+The first step for adding our new 'var/in' construct is to extend the lexer.
+As before, this is pretty trivial, the code looks like this:</p>
+
+<div class="doc_code">
+<pre>
+enum Token {
+ ...
+ <b>// var definition
+ tok_var = -13</b>
+...
+}
+...
+static int gettok() {
+...
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ <b>if (IdentifierStr == "var") return tok_var;</b>
+ return tok_identifier;
+...
+</pre>
+</div>
+
+<p>The next step is to define the AST node that we will construct. For var/in,
+it will look like this:</p>
+
+<div class="doc_code">
+<pre>
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; &amp;varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+</pre>
+</div>
+
+<p>var/in allows a list of names to be defined all at once, and each name can
+optionally have an initializer value. As such, we capture this information in
+the VarNames vector. Also, var/in has a body, this body is allowed to access
+the variables defined by the let/in.</p>
+
+<p>With this ready, we can define the parser pieces. First thing we do is add
+it as a primary expression:</p>
+
+<div class="doc_code">
+<pre>
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+<b>/// ::= varexpr</b>
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ <b>case tok_var: return ParseVarExpr();</b>
+ }
+}
+</pre>
+</div>
+
+<p>Next we define ParseVarExpr:</p>
+
+<div class="doc_code">
+<pre>
+/// varexpr ::= 'var' identifer ('=' expression)?
+// (',' identifer ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+</pre>
+</div>
+
+<p>The first part of this code parses the list of identifier/expr pairs into the
+local <tt>VarNames</tt> vector.
+
+<div class="doc_code">
+<pre>
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifer.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+</pre>
+</div>
+
+<p>Once all the variables are parsed, we then parse the body and create the
+AST node:</p>
+
+<div class="doc_code">
+<pre>
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+</pre>
+</div>
+
+<p>Now that we can parse and represent the code, we need to support emission of
+LLVM IR for it. This code starts out with:</p>
+
+<div class="doc_code">
+<pre>
+Value *VarExprAST::Codegen() {
+ std::vector&lt;AllocaInst *&gt; OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &amp;VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+</pre>
+</div>
+
+<p>Basically it loops over all the variables, installing them one at a time.
+For each variable we put into the symbol table, we remember the previous value
+that we replace in OldBindings.</p>
+
+<div class="doc_code">
+<pre>
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init-&gt;Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(Type::DoubleTy, APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+</pre>
+</div>
+
+<p>There are more comments here than code. The basic idea is that we emit the
+initializer, create the alloca, then update the symbol table to point to it.
+Once all the variables are installed in the symbol table, we evaluate the body
+of the var/in expression:</p>
+
+<div class="doc_code">
+<pre>
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body-&gt;Codegen();
+ if (BodyVal == 0) return 0;
+</pre>
+</div>
+
+<p>Finally, before returning, we restore the previous variable bindings:</p>
+
+<div class="doc_code">
+<pre>
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+</pre>
+</div>
+
+<p>The end result of all of this is that we get properly scoped variable
+definitions, and we even (trivially) allow mutation of them :).</p>
+
+<p>With this, we completed what we set out to do. Our nice iterative fib
+example from the intro compiles and runs just fine. The mem2reg pass optimizes
+all of our stack variables into SSA registers, inserting PHI nodes where needed,
+and our front-end remains simple: no iterated dominator frontier computation
+anywhere in sight.</p>
+
+</div>
<!-- *********************************************************************** -->
<div class="doc_section"><a name="code">Full Code Listing</a></div>
@@ -306,8 +962,8 @@ variables now!
<div class="doc_text">
<p>
-Here is the complete code listing for our running example, enhanced with the
-if/then/else and for expressions.. To build this example, use:
+Here is the complete code listing for our running example, enhanced with mutable
+variables and var/in support. To build this example, use:
</p>
<div class="doc_code">
@@ -323,6 +979,1141 @@ if/then/else and for expressions.. To build this example, use:
<div class="doc_code">
<pre>
+#include "llvm/DerivedTypes.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/Module.h"
+#include "llvm/ModuleProvider.h"
+#include "llvm/PassManager.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Support/LLVMBuilder.h"
+#include &lt;cstdio&gt;
+#include &lt;string&gt;
+#include &lt;map&gt;
+#include &lt;vector&gt;
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ if (IdentifierStr == "var") return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp; LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &amp;name) : Name(name) {}
+ const std::string &amp;getName() const { return Name; }
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector&lt;ExprAST*&gt; Args;
+public:
+ CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &amp;varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; &amp;varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector&lt;std::string&gt; Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator &amp;&amp; Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator &amp;&amp; Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+
+ void CreateArgumentAllocas(Function *F);
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser it looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map&lt;char, int&gt; BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec &lt;= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifer
+/// ::= identifer '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifer.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector&lt;ExprAST*&gt; Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')'");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifer '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifer.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// varexpr ::= 'var' identifer ('=' expression)?
+// (',' identifer ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector&lt;std::pair&lt;std::string, ExprAST*&gt; &gt; VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifer.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ case tok_var: return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec &lt; ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec &lt; NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ int Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal &lt; 1 || NumVal &gt; 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector&lt;std::string&gt; ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind &amp;&amp; ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static Module *TheModule;
+static LLVMFoldingBuilder Builder;
+static std::map&lt;std::string, AllocaInst*&gt; NamedValues;
+static FunctionPassManager *TheFPM;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &amp;VarName) {
+ LLVMBuilder TmpB(&amp;TheFunction-&gt;getEntryBlock(),
+ TheFunction-&gt;getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str());
+}
+
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(Type::DoubleTy, APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ if (V == 0) return ErrorV("Unknown variable name");
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand-&gt;Codegen();
+ if (OperandV == 0) return 0;
+
+ Function *F = TheModule-&gt;getFunction(std::string("unary")+Opcode);
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ VariableExprAST *LHSE = dynamic_cast&lt;VariableExprAST*&gt;(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS-&gt;Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE-&gt;getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+
+ Value *L = LHS-&gt;Codegen();
+ Value *R = RHS-&gt;Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateAdd(L, R, "addtmp");
+ case '-': return Builder.CreateSub(L, R, "subtmp");
+ case '*': return Builder.CreateMul(L, R, "multmp");
+ case '&lt;':
+ L = Builder.CreateFCmpULT(L, R, "multmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheModule-&gt;getFunction(std::string("binary")+Op);
+ assert(F &amp;&amp; "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, Ops+2, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheModule-&gt;getFunction(Callee);
+ if (CalleeF == 0)
+ return ErrorV("Unknown function referenced");
+
+ // If argument mismatch error.
+ if (CalleeF-&gt;arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector&lt;Value*&gt; ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]-&gt;Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond-&gt;Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = new BasicBlock("then", TheFunction);
+ BasicBlock *ElseBB = new BasicBlock("else");
+ BasicBlock *MergeBB = new BasicBlock("ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then-&gt;Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction-&gt;getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else-&gt;Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction-&gt;getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
+
+ PN-&gt;addIncoming(ThenV, ThenBB);
+ PN-&gt;addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // var = alloca double
+ // ...
+ // start = startexpr
+ // store start -&gt; var
+ // goto loop
+ // loop:
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // endcond = endexpr
+ //
+ // curvar = load var
+ // nextvar = curvar + step
+ // store nextvar -&gt; var
+ // br endcond, loop, endloop
+ // outloop:
+
+ Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start-&gt;Codegen();
+ if (StartVal == 0) return 0;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *PreheaderBB = Builder.GetInsertBlock();
+ BasicBlock *LoopBB = new BasicBlock("loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body-&gt;Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step-&gt;Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End-&gt;Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *LoopEndBB = Builder.GetInsertBlock();
+ BasicBlock *AfterBB = new BasicBlock("afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::DoubleTy);
+}
+
+Value *VarExprAST::Codegen() {
+ std::vector&lt;AllocaInst *&gt; OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()-&gt;getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &amp;VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init-&gt;Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(Type::DoubleTy, APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body-&gt;Codegen();
+ if (BodyVal == 0) return 0;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector&lt;const Type*&gt; Doubles(Args.size(), Type::DoubleTy);
+ FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
+
+ Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule);
+
+ // If F conflicted, there was already something named 'Name'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F-&gt;getName() != Name) {
+ // Delete the one we just made and get the existing one.
+ F-&gt;eraseFromParent();
+ F = TheModule-&gt;getFunction(Name);
+
+ // If F already has a body, reject this.
+ if (!F-&gt;empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+
+ // If F took a different number of args, reject.
+ if (F-&gt;arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
+ ++AI, ++Idx)
+ AI-&gt;setName(Args[Idx]);
+
+ return F;
+}
+
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F-&gt;arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto-&gt;Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto-&gt;isBinaryOp())
+ BinopPrecedence[Proto-&gt;getOperatorName()] = Proto-&gt;getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = new BasicBlock("entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Add all arguments to the symbol table and create their allocas.
+ Proto-&gt;CreateArgumentAllocas(TheFunction);
+
+ if (Value *RetVal = Body-&gt;Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ // Optimize the function.
+ TheFPM-&gt;run(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction-&gt;eraseFromParent();
+
+ if (Proto-&gt;isBinaryOp())
+ BinopPrecedence.erase(Proto-&gt;getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static ExecutionEngine *TheExecutionEngine;
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ if (Function *LF = F-&gt;Codegen()) {
+ fprintf(stderr, "Read function definition:");
+ LF-&gt;dump();
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ if (Function *F = P-&gt;Codegen()) {
+ fprintf(stderr, "Read extern: ");
+ F-&gt;dump();
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F-&gt;Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheExecutionEngine-&gt;getPointerToFunction(LF);
+
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())FPtr;
+ fprintf(stderr, "Evaluated to %f\n", FP());
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+ fprintf(stderr, "ready&gt; ");
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f\n", X);
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['&lt;'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Prime the first token.
+ fprintf(stderr, "ready&gt; ");
+ getNextToken();
+
+ // Make the module, which holds all the code.
+ TheModule = new Module("my cool jit");
+
+ // Create the JIT.
+ TheExecutionEngine = ExecutionEngine::create(TheModule);
+
+ {
+ ExistingModuleProvider OurModuleProvider(TheModule);
+ FunctionPassManager OurFPM(&amp;OurModuleProvider);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ OurFPM.add(new TargetData(*TheExecutionEngine-&gt;getTargetData()));
+ // Promote allocas to registers.
+ OurFPM.add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ OurFPM.add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ OurFPM.add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ OurFPM.add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ OurFPM.add(createCFGSimplificationPass());
+
+ // Set the global so the code gen can use this.
+ TheFPM = &amp;OurFPM;
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+ TheFPM = 0;
+ } // Free module provider and pass manager.
+
+
+ // Print out all of the generated code.
+ TheModule-&gt;dump();
+ return 0;
+}
</pre>
</div>