diff options
author | Erick Tryzelaar <idadesub@users.sourceforge.net> | 2008-03-27 08:18:07 +0000 |
---|---|---|
committer | Erick Tryzelaar <idadesub@users.sourceforge.net> | 2008-03-27 08:18:07 +0000 |
commit | 9ba8a5736a9140232629fdbbad7b7c5c2bd5ffcb (patch) | |
tree | f152806c0dde48a09c48128d4fc5c9983f39ab34 /docs/tutorial | |
parent | 2896652be29de97a6e08b5cccc015096f4ed17b5 (diff) | |
download | external_llvm-9ba8a5736a9140232629fdbbad7b7c5c2bd5ffcb.zip external_llvm-9ba8a5736a9140232629fdbbad7b7c5c2bd5ffcb.tar.gz external_llvm-9ba8a5736a9140232629fdbbad7b7c5c2bd5ffcb.tar.bz2 |
Adding the first two chapters of the ocaml/kaleidoscope tutorial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48871 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs/tutorial')
-rw-r--r-- | docs/tutorial/OCamlLangImpl1.html | 365 | ||||
-rw-r--r-- | docs/tutorial/OCamlLangImpl2.html | 1045 | ||||
-rw-r--r-- | docs/tutorial/index.html | 11 |
3 files changed, 1421 insertions, 0 deletions
diff --git a/docs/tutorial/OCamlLangImpl1.html b/docs/tutorial/OCamlLangImpl1.html new file mode 100644 index 0000000..4b252a4 --- /dev/null +++ b/docs/tutorial/OCamlLangImpl1.html @@ -0,0 +1,365 @@ +<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" + "http://www.w3.org/TR/html4/strict.dtd"> + +<html> +<head> + <title>Kaleidoscope: Tutorial Introduction and the Lexer</title> + <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> + <meta name="author" content="Chris Lattner"> + <meta name="author" content="Erick Tryzelaar"> + <link rel="stylesheet" href="../llvm.css" type="text/css"> +</head> + +<body> + +<div class="doc_title">Kaleidoscope: Tutorial Introduction and the Lexer</div> + +<ul> +<li><a href="index.html">Up to Tutorial Index</a></li> +<li>Chapter 1 + <ol> + <li><a href="#intro">Tutorial Introduction</a></li> + <li><a href="#language">The Basic Language</a></li> + <li><a href="#lexer">The Lexer</a></li> + </ol> +</li> +<li><a href="OCamlLangImpl2.html">Chapter 2</a>: Implementing a Parser and +AST</li> +</ul> + +<div class="doc_author"> + <p> + Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> + and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a> + </p> +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="intro">Tutorial Introduction</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>Welcome to the "Implementing a language with LLVM" tutorial. This tutorial +runs through the implementation of a simple language, showing how fun and +easy it can be. This tutorial will get you up and started as well as help to +build a framework you can extend to other languages. The code in this tutorial +can also be used as a playground to hack on other LLVM specific things. +</p> + +<p> +The goal of this tutorial is to progressively unveil our language, describing +how it is built up over time. This will let us cover a fairly broad range of +language design and LLVM-specific usage issues, showing and explaining the code +for it all along the way, without overwhelming you with tons of details up +front.</p> + +<p>It is useful to point out ahead of time that this tutorial is really about +teaching compiler techniques and LLVM specifically, <em>not</em> about teaching +modern and sane software engineering principles. In practice, this means that +we'll take a number of shortcuts to simplify the exposition. For example, the +code leaks memory, uses global variables all over the place, doesn't use nice +design patterns like <a +href="http://en.wikipedia.org/wiki/Visitor_pattern">visitors</a>, etc... but it +is very simple. If you dig in and use the code as a basis for future projects, +fixing these deficiencies shouldn't be hard.</p> + +<p>I've tried to put this tutorial together in a way that makes chapters easy to +skip over if you are already familiar with or are uninterested in the various +pieces. The structure of the tutorial is: +</p> + +<ul> +<li><b><a href="#language">Chapter #1</a>: Introduction to the Kaleidoscope +language, and the definition of its Lexer</b> - This shows where we are going +and the basic functionality that we want it to do. In order to make this +tutorial maximally understandable and hackable, we choose to implement +everything in Objective Caml instead of using lexer and parser generators. +LLVM obviously works just fine with such tools, feel free to use one if you +prefer.</li> +<li><b><a href="OCamlLangImpl2.html">Chapter #2</a>: Implementing a Parser and +AST</b> - With the lexer in place, we can talk about parsing techniques and +basic AST construction. This tutorial describes recursive descent parsing and +operator precedence parsing. Nothing in Chapters 1 or 2 is LLVM-specific, +the code doesn't even link in LLVM at this point. :)</li> +<li><b><a href="OCamlLangImpl3.html">Chapter #3</a>: Code generation to LLVM +IR</b> - With the AST ready, we can show off how easy generation of LLVM IR +really is.</li> +<li><b><a href="OCamlLangImpl4.html">Chapter #4</a>: Adding JIT and Optimizer +Support</b> - Because a lot of people are interested in using LLVM as a JIT, +we'll dive right into it and show you the 3 lines it takes to add JIT support. +LLVM is also useful in many other ways, but this is one simple and "sexy" way +to shows off its power. :)</li> +<li><b><a href="OCamlLangImpl5.html">Chapter #5</a>: Extending the Language: +Control Flow</b> - With the language up and running, we show how to extend it +with control flow operations (if/then/else and a 'for' loop). This gives us a +chance to talk about simple SSA construction and control flow.</li> +<li><b><a href="OCamlLangImpl6.html">Chapter #6</a>: Extending the Language: +User-defined Operators</b> - This is a silly but fun chapter that talks about +extending the language to let the user program define their own arbitrary +unary and binary operators (with assignable precedence!). This lets us build a +significant piece of the "language" as library routines.</li> +<li><b><a href="OCamlLangImpl7.html">Chapter #7</a>: Extending the Language: +Mutable Variables</b> - This chapter talks about adding user-defined local +variables along with an assignment operator. The interesting part about this +is how easy and trivial it is to construct SSA form in LLVM: no, LLVM does +<em>not</em> require your front-end to construct SSA form!</li> +<li><b><a href="OCamlLangImpl8.html">Chapter #8</a>: Conclusion and other +useful LLVM tidbits</b> - This chapter wraps up the series by talking about +potential ways to extend the language, but also includes a bunch of pointers to +info about "special topics" like adding garbage collection support, exceptions, +debugging, support for "spaghetti stacks", and a bunch of other tips and +tricks.</li> + +</ul> + +<p>By the end of the tutorial, we'll have written a bit less than 700 lines of +non-comment, non-blank, lines of code. With this small amount of code, we'll +have built up a very reasonable compiler for a non-trivial language including +a hand-written lexer, parser, AST, as well as code generation support with a JIT +compiler. While other systems may have interesting "hello world" tutorials, +I think the breadth of this tutorial is a great testament to the strengths of +LLVM and why you should consider it if you're interested in language or compiler +design.</p> + +<p>A note about this tutorial: we expect you to extend the language and play +with it on your own. Take the code and go crazy hacking away at it, compilers +don't need to be scary creatures - it can be a lot of fun to play with +languages!</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="language">The Basic Language</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>This tutorial will be illustrated with a toy language that we'll call +"<a href="http://en.wikipedia.org/wiki/Kaleidoscope">Kaleidoscope</a>" (derived +from "meaning beautiful, form, and view"). +Kaleidoscope is a procedural language that allows you to define functions, use +conditionals, math, etc. Over the course of the tutorial, we'll extend +Kaleidoscope to support the if/then/else construct, a for loop, user defined +operators, JIT compilation with a simple command line interface, etc.</p> + +<p>Because we want to keep things simple, the only datatype in Kaleidoscope is a +64-bit floating point type (aka 'float' in O'Caml parlance). As such, all +values are implicitly double precision and the language doesn't require type +declarations. This gives the language a very nice and simple syntax. For +example, the following simple example computes <a +href="http://en.wikipedia.org/wiki/Fibonacci_number">Fibonacci numbers:</a></p> + +<div class="doc_code"> +<pre> +# Compute the x'th fibonacci number. +def fib(x) + if x < 3 then + 1 + else + fib(x-1)+fib(x-2) + +# This expression will compute the 40th number. +fib(40) +</pre> +</div> + +<p>We also allow Kaleidoscope to call into standard library functions (the LLVM +JIT makes this completely trivial). This means that you can use the 'extern' +keyword to define a function before you use it (this is also useful for mutually +recursive functions). For example:</p> + +<div class="doc_code"> +<pre> +extern sin(arg); +extern cos(arg); +extern atan2(arg1 arg2); + +atan2(sin(.4), cos(42)) +</pre> +</div> + +<p>A more interesting example is included in Chapter 6 where we write a little +Kaleidoscope application that <a href="OCamlLangImpl6.html#example">displays +a Mandelbrot Set</a> at various levels of magnification.</p> + +<p>Lets dive into the implementation of this language!</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="lexer">The Lexer</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>When it comes to implementing a language, the first thing needed is +the ability to process a text file and recognize what it says. The traditional +way to do this is to use a "<a +href="http://en.wikipedia.org/wiki/Lexical_analysis">lexer</a>" (aka 'scanner') +to break the input up into "tokens". Each token returned by the lexer includes +a token code and potentially some metadata (e.g. the numeric value of a number). +First, we define the possibilities: +</p> + +<div class="doc_code"> +<pre> +(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of + * these others for known things. *) +type token = + (* commands *) + | Def | Extern + + (* primary *) + | Ident of string | Number of float + + (* unknown *) + | Kwd of char +</pre> +</div> + +<p>Each token returned by our lexer will be one of the token variant values. +An unknown character like '+' will be returned as <tt>Kwd '+'</tt>. If the +curr token is an identifier, the value will be <tt>Ident s</tt>. If the +current token is a numeric literal (like 1.0), the value will be +<tt>Number 1.0</tt>. +</p> + +<p>The actual implementation of the lexer is a collection of functions driven +by a function named <tt>lex</tt>. The <tt>lex</tt> function is called to +return the next token from standard input. We will use +<a href="http://caml.inria.fr/pub/docs/manual-camlp4/index.html">Camlp4</a> +to simplify the tokenization of the standard input. Its definition starts +as:</p> + +<div class="doc_code"> +<pre> +(*===----------------------------------------------------------------------=== + * Lexer + *===----------------------------------------------------------------------===*) + +let rec lex = parser + (* Skip any whitespace. *) + | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream +</pre> +</div> + +<p> +<tt>lex</tt> works by recursing over a <tt>char Stream.t</tt> to read +characters one at a time from the standard input. It eats them as it recognizes +them and stores them in in a <tt>token</tt> variant. The first thing that it +has to do is ignore whitespace between tokens. This is accomplished with the +recursive call above.</p> + +<p>The next thing <tt>lex</tt> needs to do is recognize identifiers and +specific keywords like "def". Kaleidoscope does this with this a pattern match +and a helper function.<p> + +<div class="doc_code"> +<pre> + (* identifier: [a-zA-Z][a-zA-Z0-9] *) + | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> + let buffer = Buffer.create 1 in + Buffer.add_char buffer c; + lex_ident buffer stream + +... + +and lex_ident buffer = parser + | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> + Buffer.add_char buffer c; + lex_ident buffer stream + | [< stream=lex >] -> + match Buffer.contents buffer with + | "def" -> [< 'Token.Def; stream >] + | "extern" -> [< 'Token.Extern; stream >] + | id -> [< 'Token.Ident id; stream >] +</pre> +</div> + +Numeric values are similar:</p> + +<div class="doc_code"> +<pre> + (* number: [0-9.]+ *) + | [< ' ('0' .. '9' as c); stream >] -> + let buffer = Buffer.create 1 in + Buffer.add_char buffer c; + lex_number buffer stream + +... + +and lex_number buffer = parser + | [< ' ('0' .. '9' | '.' as c); stream >] -> + Buffer.add_char buffer c; + lex_number buffer stream + | [< stream=lex >] -> + [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] +</pre> +</div> + +<p>This is all pretty straight-forward code for processing input. When reading +a numeric value from input, we use the ocaml <tt>float_of_string</tt> function +to convert it to a numeric value that we store in <tt>NumVal</tt>. Note that +this isn't doing sufficient error checking: it will raise <tt>Failure</tt> +if the string "1.23.45.67". Feel free to extend it :). Next we handle +comments: +</p> + +<div class="doc_code"> +<pre> + (* Comment until end of line. *) + | [< ' ('#'); stream >] -> + lex_comment stream + +... + +and lex_comment = parser + | [< ' ('\n'); stream=lex >] -> stream + | [< 'c; e=lex_comment >] -> e + | [< >] -> [< >] +</pre> +</div> + +<p>We handle comments by skipping to the end of the line and then return the +next token. Finally, if the input doesn't match one of the above cases, it is +either an operator character like '+' or the end of the file. These are handled +with this code:</p> + +<div class="doc_code"> +<pre> + (* Otherwise, just return the character as its ascii value. *) + | [< 'c; stream >] -> + [< 'Token.Kwd c; lex stream >] + + (* end of stream. *) + | [< >] -> [< >] +</pre> +</div> + +<p>With this, we have the complete lexer for the basic Kaleidoscope language +(the <a href="OCamlLangImpl2.html#code">full code listing</a> for the Lexer is +available in the <a href="OCamlLangImpl2.html">next chapter</a> of the +tutorial). Next we'll <a href="OCamlLangImpl2.html">build a simple parser that +uses this to build an Abstract Syntax Tree</a>. When we have that, we'll +include a driver so that you can use the lexer and parser together. +</p> + +<a href="OCamlLangImpl2.html">Next: Implementing a Parser and AST</a> +</div> + +<!-- *********************************************************************** --> +<hr> +<address> + <a href="http://jigsaw.w3.org/css-validator/check/referer"><img + src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> + <a href="http://validator.w3.org/check/referer"><img + src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> + + <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> + <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br> + <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> + Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ +</address> +</body> +</html> diff --git a/docs/tutorial/OCamlLangImpl2.html b/docs/tutorial/OCamlLangImpl2.html new file mode 100644 index 0000000..2aff51a --- /dev/null +++ b/docs/tutorial/OCamlLangImpl2.html @@ -0,0 +1,1045 @@ +<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" + "http://www.w3.org/TR/html4/strict.dtd"> + +<html> +<head> + <title>Kaleidoscope: Implementing a Parser and AST</title> + <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> + <meta name="author" content="Chris Lattner"> + <meta name="author" content="Erick Tryzelaar"> + <link rel="stylesheet" href="../llvm.css" type="text/css"> +</head> + +<body> + +<div class="doc_title">Kaleidoscope: Implementing a Parser and AST</div> + +<ul> +<li><a href="index.html">Up to Tutorial Index</a></li> +<li>Chapter 2 + <ol> + <li><a href="#intro">Chapter 2 Introduction</a></li> + <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li> + <li><a href="#parserbasics">Parser Basics</a></li> + <li><a href="#parserprimexprs">Basic Expression Parsing</a></li> + <li><a href="#parserbinops">Binary Expression Parsing</a></li> + <li><a href="#parsertop">Parsing the Rest</a></li> + <li><a href="#driver">The Driver</a></li> + <li><a href="#conclusions">Conclusions</a></li> + <li><a href="#code">Full Code Listing</a></li> + </ol> +</li> +<li><a href="OCamlLangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li> +</ul> + +<div class="doc_author"> + <p> + Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> + and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a> + </p> +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="intro">Chapter 2 Introduction</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language +with LLVM in Objective Caml</a>" tutorial. This chapter shows you how to use +the lexer, built in <a href="OCamlLangImpl1.html">Chapter 1</a>, to build a +full <a href="http://en.wikipedia.org/wiki/Parsing">parser</a> for our +Kaleidoscope language. Once we have a parser, we'll define and build an <a +href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax +Tree</a> (AST).</p> + +<p>The parser we will build uses a combination of <a +href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent +Parsing</a> and <a href= +"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence +Parsing</a> to parse the Kaleidoscope language (the latter for +binary expressions and the former for everything else). Before we get to +parsing though, lets talk about the output of the parser: the Abstract Syntax +Tree.</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="ast">The Abstract Syntax Tree (AST)</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>The AST for a program captures its behavior in such a way that it is easy for +later stages of the compiler (e.g. code generation) to interpret. We basically +want one object for each construct in the language, and the AST should closely +model the language. In Kaleidoscope, we have expressions, a prototype, and a +function object. We'll start with expressions first:</p> + +<div class="doc_code"> +<pre> +(* expr - Base type for all expression nodes. *) +type expr = + (* variant for numeric literals like "1.0". *) + | Number of float +</pre> +</div> + +<p>The code above shows the definition of the base ExprAST class and one +subclass which we use for numeric literals. The important thing to note about +this code is that the Number variant captures the numeric value of the +literal as an instance variable. This allows later phases of the compiler to +know what the stored numeric value is.</p> + +<p>Right now we only create the AST, so there are no useful functions on +them. It would be very easy to add a function to pretty print the code, +for example. Here are the other expression AST node definitions that we'll use +in the basic form of the Kaleidoscope language: +</p> + +<div class="doc_code"> +<pre> + (* variant for referencing a variable, like "a". *) + | Variable of string + + (* variant for a binary operator. *) + | Binary of char * expr * expr + + (* variant for function calls. *) + | Call of string * expr array +</pre> +</div> + +<p>This is all (intentionally) rather straight-forward: variables capture the +variable name, binary operators capture their opcode (e.g. '+'), and calls +capture a function name as well as a list of any argument expressions. One thing +that is nice about our AST is that it captures the language features without +talking about the syntax of the language. Note that there is no discussion about +precedence of binary operators, lexical structure, etc.</p> + +<p>For our basic language, these are all of the expression nodes we'll define. +Because it doesn't have conditional control flow, it isn't Turing-complete; +we'll fix that in a later installment. The two things we need next are a way +to talk about the interface to a function, and a way to talk about functions +themselves:</p> + +<div class="doc_code"> +<pre> +(* proto - This type represents the "prototype" for a function, which captures + * its name, and its argument names (thus implicitly the number of arguments the + * function takes). *) +type proto = Prototype of string * string array + +(* func - This type represents a function definition itself. *) +type func = Function of proto * expr +</pre> +</div> + +<p>In Kaleidoscope, functions are typed with just a count of their arguments. +Since all values are double precision floating point, the type of each argument +doesn't need to be stored anywhere. In a more aggressive and realistic +language, the "expr" variants would probably have a type field.</p> + +<p>With this scaffolding, we can now talk about parsing expressions and function +bodies in Kaleidoscope.</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="parserbasics">Parser Basics</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>Now that we have an AST to build, we need to define the parser code to build +it. The idea here is that we want to parse something like "x+y" (which is +returned as three tokens by the lexer) into an AST that could be generated with +calls like this:</p> + +<div class="doc_code"> +<pre> + let x = Variable "x" in + let y = Variable "y" in + let result = Binary ('+', x, y) in + ... +</pre> +</div> + +<p> +The error handling routines make use of the builtin <tt>Stream.Failure</tt> and +<tt>Stream.Error</tt>s. <tt>Stream.Failure</tt> is raised when the parser is +unable to find any matching token in the first position of a pattern. +<tt>Stream.Error</tt> is raised when the first token matches, but the rest do +not. The error recovery in our parser will not be the best and is not +particular user-friendly, but it will be enough for our tutorial. These +exceptions make it easier to handle errors in routines that have various return +types.</p> + +<p>With these basic types and exceptions, we can implement the first +piece of our grammar: numeric literals.</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="parserprimexprs">Basic Expression + Parsing</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>We start with numeric literals, because they are the simplest to process. +For each production in our grammar, we'll define a function which parses that +production. We call this class of expressions "primary" expressions, for +reasons that will become more clear <a href="OCamlLangImpl6.html#unary"> +later in the tutorial</a>. In order to parse an arbitrary primary expression, +we need to determine what sort of expression it is. For numeric literals, we +have:</p> + +<div class="doc_code"> +<pre> +(* primary + * ::= identifier + * ::= numberexpr + * ::= parenexpr *) +parse_primary = parser + (* numberexpr ::= number *) + | [< 'Token.Number n >] -> Ast.Number n +</pre> +</div> + +<p>This routine is very simple: it expects to be called when the current token +is a <tt>Token.Number</tt> token. It takes the current number value, creates +a <tt>Ast.Number</tt> node, advances the lexer to the next token, and finally +returns.</p> + +<p>There are some interesting aspects to this. The most important one is that +this routine eats all of the tokens that correspond to the production and +returns the lexer buffer with the next token (which is not part of the grammar +production) ready to go. This is a fairly standard way to go for recursive +descent parsers. For a better example, the parenthesis operator is defined like +this:</p> + +<div class="doc_code"> +<pre> + (* parenexpr ::= '(' expression ')' *) + | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e +</pre> +</div> + +<p>This function illustrates a number of interesting things about the +parser:</p> + +<p> +1) It shows how we use the <tt>Stream.Error</tt> exception. When called, this +function expects that the current token is a '(' token, but after parsing the +subexpression, it is possible that there is no ')' waiting. For example, if +the user types in "(4 x" instead of "(4)", the parser should emit an error. +Because errors can occur, the parser needs a way to indicate that they +happened. In our parser, we use the camlp4 shortcut syntax <tt>token ?? "parse +error"</tt>, where if the token before the <tt>??</tt> does not match, then +<tt>Stream.Error "parse error"</tt> will be raised.</p> + +<p>2) Another interesting aspect of this function is that it uses recursion by +calling <tt>parse_primary</tt> (we will soon see that <tt>parse_primary</tt> can +call <tt>parse_primary</tt>). This is powerful because it allows us to handle +recursive grammars, and keeps each production very simple. Note that +parentheses do not cause construction of AST nodes themselves. While we could +do it this way, the most important role of parentheses are to guide the parser +and provide grouping. Once the parser constructs the AST, parentheses are not +needed.</p> + +<p>The next simple production is for handling variable references and function +calls:</p> + +<div class="doc_code"> +<pre> + (* identifierexpr + * ::= identifier + * ::= identifier '(' argumentexpr ')' *) + | [< 'Token.Ident id; stream >] -> + let rec parse_args accumulator = parser + | [< e=parse_expr; stream >] -> + begin parser + | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e + | [< >] -> e :: accumulator + end stream + | [< >] -> accumulator + in + let rec parse_ident id = parser + (* Call. *) + | [< 'Token.Kwd '('; + args=parse_args []; + 'Token.Kwd ')' ?? "expected ')'">] -> + Ast.Call (id, Array.of_list (List.rev args)) + + (* Simple variable ref. *) + | [< >] -> Ast.Variable id + in + parse_ident id stream +</pre> +</div> + +<p>This routine follows the same style as the other routines. (It expects to be +called if the current token is a <tt>Token.Ident</tt> token). It also has +recursion and error handling. One interesting aspect of this is that it uses +<em>look-ahead</em> to determine if the current identifier is a stand alone +variable reference or if it is a function call expression. It handles this by +checking to see if the token after the identifier is a '(' token, constructing +either a <tt>Ast.Variable</tt> or <tt>Ast.Call</tt> node as appropriate. +</p> + +<p>We finish up by raising an exception if we received a token we didn't +expect:</p> + +<div class="doc_code"> +<pre> + | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") +</pre> +</div> + +<p>Now that basic expressions are handled, we need to handle binary expressions. +They are a bit more complex.</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="parserbinops">Binary Expression + Parsing</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>Binary expressions are significantly harder to parse because they are often +ambiguous. For example, when given the string "x+y*z", the parser can choose +to parse it as either "(x+y)*z" or "x+(y*z)". With common definitions from +mathematics, we expect the later parse, because "*" (multiplication) has +higher <em>precedence</em> than "+" (addition).</p> + +<p>There are many ways to handle this, but an elegant and efficient way is to +use <a href= +"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence +Parsing</a>. This parsing technique uses the precedence of binary operators to +guide recursion. To start with, we need a table of precedences:</p> + +<div class="doc_code"> +<pre> +(* binop_precedence - This holds the precedence for each binary operator that is + * defined *) +let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 + +(* precedence - Get the precedence of the pending binary operator token. *) +let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 + +... + +let main () = + (* Install standard binary operators. + * 1 is the lowest precedence. *) + Hashtbl.add Parser.binop_precedence '<' 10; + Hashtbl.add Parser.binop_precedence '+' 20; + Hashtbl.add Parser.binop_precedence '-' 20; + Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) + ... +</pre> +</div> + +<p>For the basic form of Kaleidoscope, we will only support 4 binary operators +(this can obviously be extended by you, our brave and intrepid reader). The +<tt>precedence</tt> function returns the precedence for the current token, +or -1 if the token is not a binary operator. Having a <tt>Hashtbl.t</tt> makes +it easy to add new operators and makes it clear that the algorithm doesn't +depend on the specific operators involved, but it would be easy enough to +eliminate the <tt>Hashtbl.t</tt> and do the comparisons in the +<tt>precedence</tt> function. (Or just use a fixed-size array).</p> + +<p>With the helper above defined, we can now start parsing binary expressions. +The basic idea of operator precedence parsing is to break down an expression +with potentially ambiguous binary operators into pieces. Consider ,for example, +the expression "a+b+(c+d)*e*f+g". Operator precedence parsing considers this +as a stream of primary expressions separated by binary operators. As such, +it will first parse the leading primary expression "a", then it will see the +pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses +are primary expressions, the binary expression parser doesn't need to worry +about nested subexpressions like (c+d) at all. +</p> + +<p> +To start, an expression is a primary expression potentially followed by a +sequence of [binop,primaryexpr] pairs:</p> + +<div class="doc_code"> +<pre> +(* expression + * ::= primary binoprhs *) +and parse_expr = parser + | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream +</pre> +</div> + +<p><tt>parse_bin_rhs</tt> is the function that parses the sequence of pairs for +us. It takes a precedence and a pointer to an expression for the part that has been +parsed so far. Note that "x" is a perfectly valid expression: As such, "binoprhs" is +allowed to be empty, in which case it returns the expression that is passed into +it. In our example above, the code passes the expression for "a" into +<tt>ParseBinOpRHS</tt> and the current token is "+".</p> + +<p>The precedence value passed into <tt>parse_bin_rhs</tt> indicates the <em> +minimal operator precedence</em> that the function is allowed to eat. For +example, if the current pair stream is [+, x] and <tt>parse_bin_rhs</tt> is +passed in a precedence of 40, it will not consume any tokens (because the +precedence of '+' is only 20). With this in mind, <tt>parse_bin_rhs</tt> starts +with:</p> + +<div class="doc_code"> +<pre> +(* binoprhs + * ::= ('+' primary)* *) +and parse_bin_rhs expr_prec lhs stream = + match Stream.peek stream with + (* If this is a binop, find its precedence. *) + | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> + let token_prec = precedence c in + + (* If this is a binop that binds at least as tightly as the current binop, + * consume it, otherwise we are done. *) + if token_prec < expr_prec then lhs else begin +</pre> +</div> + +<p>This code gets the precedence of the current token and checks to see if if is +too low. Because we defined invalid tokens to have a precedence of -1, this +check implicitly knows that the pair-stream ends when the token stream runs out +of binary operators. If this check succeeds, we know that the token is a binary +operator and that it will be included in this expression:</p> + +<div class="doc_code"> +<pre> + (* Eat the binop. *) + Stream.junk stream; + + (* Okay, we know this is a binop. *) + let rhs = + match Stream.peek stream with + | Some (Token.Kwd c2) -> +</pre> +</div> + +<p>As such, this code eats (and remembers) the binary operator and then parses +the primary expression that follows. This builds up the whole pair, the first of +which is [+, b] for the running example.</p> + +<p>Now that we parsed the left-hand side of an expression and one pair of the +RHS sequence, we have to decide which way the expression associates. In +particular, we could have "(a+b) binop unparsed" or "a + (b binop unparsed)". +To determine this, we look ahead at "binop" to determine its precedence and +compare it to BinOp's precedence (which is '+' in this case):</p> + +<div class="doc_code"> +<pre> + (* If BinOp binds less tightly with rhs than the operator after + * rhs, let the pending operator take rhs as its lhs. *) + let next_prec = precedence c2 in + if token_prec < next_prec +</pre> +</div> + +<p>If the precedence of the binop to the right of "RHS" is lower or equal to the +precedence of our current operator, then we know that the parentheses associate +as "(a+b) binop ...". In our example, the current operator is "+" and the next +operator is "+", we know that they have the same precedence. In this case we'll +create the AST node for "a+b", and then continue parsing:</p> + +<div class="doc_code"> +<pre> + ... if body omitted ... + in + + (* Merge lhs/rhs. *) + let lhs = Ast.Binary (c, lhs, rhs) in + parse_bin_rhs expr_prec lhs stream + end +</pre> +</div> + +<p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next +iteration of the loop, with "+" as the current token. The code above will eat, +remember, and parse "(c+d)" as the primary expression, which makes the +current pair equal to [+, (c+d)]. It will then evaluate the 'if' conditional above with +"*" as the binop to the right of the primary. In this case, the precedence of "*" is +higher than the precedence of "+" so the if condition will be entered.</p> + +<p>The critical question left here is "how can the if condition parse the right +hand side in full"? In particular, to build the AST correctly for our example, +it needs to get all of "(c+d)*e*f" as the RHS expression variable. The code to +do this is surprisingly simple (code from the above two blocks duplicated for +context):</p> + +<div class="doc_code"> +<pre> + match Stream.peek stream with + | Some (Token.Kwd c2) -> + (* If BinOp binds less tightly with rhs than the operator after + * rhs, let the pending operator take rhs as its lhs. *) + if token_prec < precedence c2 + then <b>parse_bin_rhs (token_prec + 1) rhs stream</b> + else rhs + | _ -> rhs + in + + (* Merge lhs/rhs. *) + let lhs = Ast.Binary (c, lhs, rhs) in + parse_bin_rhs expr_prec lhs stream + end +</pre> +</div> + +<p>At this point, we know that the binary operator to the RHS of our primary +has higher precedence than the binop we are currently parsing. As such, we know +that any sequence of pairs whose operators are all higher precedence than "+" +should be parsed together and returned as "RHS". To do this, we recursively +invoke the <tt>parse_bin_rhs</tt> function specifying "token_prec+1" as the +minimum precedence required for it to continue. In our example above, this will +cause it to return the AST node for "(c+d)*e*f" as RHS, which is then set as the +RHS of the '+' expression.</p> + +<p>Finally, on the next iteration of the while loop, the "+g" piece is parsed +and added to the AST. With this little bit of code (14 non-trivial lines), we +correctly handle fully general binary expression parsing in a very elegant way. +This was a whirlwind tour of this code, and it is somewhat subtle. I recommend +running through it with a few tough examples to see how it works. +</p> + +<p>This wraps up handling of expressions. At this point, we can point the +parser at an arbitrary token stream and build an expression from it, stopping +at the first token that is not part of the expression. Next up we need to +handle function definitions, etc.</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="parsertop">Parsing the Rest</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p> +The next thing missing is handling of function prototypes. In Kaleidoscope, +these are used both for 'extern' function declarations as well as function body +definitions. The code to do this is straight-forward and not very interesting +(once you've survived expressions): +</p> + +<div class="doc_code"> +<pre> +(* prototype + * ::= id '(' id* ')' *) +let parse_prototype = + let rec parse_args accumulator = parser + | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e + | [< >] -> accumulator + in + + parser + | [< 'Token.Ident id; + 'Token.Kwd '(' ?? "expected '(' in prototype"; + args=parse_args []; + 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> + (* success. *) + Ast.Prototype (id, Array.of_list (List.rev args)) + + | [< >] -> + raise (Stream.Error "expected function name in prototype") +</pre> +</div> + +<p>Given this, a function definition is very simple, just a prototype plus +an expression to implement the body:</p> + +<div class="doc_code"> +<pre> +(* definition ::= 'def' prototype expression *) +let parse_definition = parser + | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> + Ast.Function (p, e) +</pre> +</div> + +<p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as +well as to support forward declaration of user functions. These 'extern's are just +prototypes with no body:</p> + +<div class="doc_code"> +<pre> +(* external ::= 'extern' prototype *) +let parse_extern = parser + | [< 'Token.Extern; e=parse_prototype >] -> e +</pre> +</div> + +<p>Finally, we'll also let the user type in arbitrary top-level expressions and +evaluate them on the fly. We will handle this by defining anonymous nullary +(zero argument) functions for them:</p> + +<div class="doc_code"> +<pre> +(* toplevelexpr ::= expression *) +let parse_toplevel = parser + | [< e=parse_expr >] -> + (* Make an anonymous proto. *) + Ast.Function (Ast.Prototype ("", [||]), e) +</pre> +</div> + +<p>Now that we have all the pieces, let's build a little driver that will let us +actually <em>execute</em> this code we've built!</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="driver">The Driver</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>The driver for this simply invokes all of the parsing pieces with a top-level +dispatch loop. There isn't much interesting here, so I'll just include the +top-level loop. See <a href="#code">below</a> for full code in the "Top-Level +Parsing" section.</p> + +<div class="doc_code"> +<pre> +(* top ::= definition | external | expression | ';' *) +let rec main_loop stream = + match Stream.peek stream with + | None -> () + + (* ignore top-level semicolons. *) + | Some (Token.Kwd ';') -> + Stream.junk stream; + main_loop stream + + | Some token -> + begin + try match token with + | Token.Def -> + ignore(Parser.parse_definition stream); + print_endline "parsed a function definition."; + | Token.Extern -> + ignore(Parser.parse_extern stream); + print_endline "parsed an extern."; + | _ -> + (* Evaluate a top-level expression into an anonymous function. *) + ignore(Parser.parse_toplevel stream); + print_endline "parsed a top-level expr"; + with Stream.Error s -> + (* Skip token for error recovery. *) + Stream.junk stream; + print_endline s; + end; + print_string "ready> "; flush stdout; + main_loop stream +</pre> +</div> + +<p>The most interesting part of this is that we ignore top-level semicolons. +Why is this, you ask? The basic reason is that if you type "4 + 5" at the +command line, the parser doesn't know whether that is the end of what you will type +or not. For example, on the next line you could type "def foo..." in which case +4+5 is the end of a top-level expression. Alternatively you could type "* 6", +which would continue the expression. Having top-level semicolons allows you to +type "4+5;", and the parser will know you are done.</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="conclusions">Conclusions</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>With just under 300 lines of commented code (240 lines of non-comment, +non-blank code), we fully defined our minimal language, including a lexer, +parser, and AST builder. With this done, the executable will validate +Kaleidoscope code and tell us if it is grammatically invalid. For +example, here is a sample interaction:</p> + +<div class="doc_code"> +<pre> +$ <b>./toy.byte</b> +ready> <b>def foo(x y) x+foo(y, 4.0);</b> +Parsed a function definition. +ready> <b>def foo(x y) x+y y;</b> +Parsed a function definition. +Parsed a top-level expr +ready> <b>def foo(x y) x+y );</b> +Parsed a function definition. +Error: unknown token when expecting an expression +ready> <b>extern sin(a);</b> +ready> Parsed an extern +ready> <b>^D</b> +$ +</pre> +</div> + +<p>There is a lot of room for extension here. You can define new AST nodes, +extend the language in many ways, etc. In the <a href="OCamlLangImpl3.html"> +next installment</a>, we will describe how to generate LLVM Intermediate +Representation (IR) from the AST.</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"><a name="code">Full Code Listing</a></div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p> +Here is the complete code listing for this and the previous chapter. +Note that it is fully self-contained: you don't need LLVM or any external +libraries at all for this. (Besides the ocaml standard libraries, of +course.) To build this, just compile with:</p> + +<div class="doc_code"> +<pre> +# Compile +ocamlbuild toy.byte +# Run +./toy +</pre> +</div> + +<p>Here is the code:</p> + +<dl> +<dt>_tags:</dt> +<dd class="doc_code"> +<pre> +<{lexer,parser}.ml>: use_camlp4, pp(camlp4of) +</pre> +</dd> + +<dt>token.ml:</dt> +<dd class="doc_code"> +<pre> +(*===----------------------------------------------------------------------=== + * Lexer Tokens + *===----------------------------------------------------------------------===*) + +(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of + * these others for known things. *) +type token = + (* commands *) + | Def | Extern + + (* primary *) + | Ident of string | Number of float + + (* unknown *) + | Kwd of char +</pre> +</dd> + +<dt>lexer.ml:</dt> +<dd class="doc_code"> +<pre> +(*===----------------------------------------------------------------------=== + * Lexer + *===----------------------------------------------------------------------===*) + +let rec lex = parser + (* Skip any whitespace. *) + | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream + + (* identifier: [a-zA-Z][a-zA-Z0-9] *) + | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> + let buffer = Buffer.create 1 in + Buffer.add_char buffer c; + lex_ident buffer stream + + (* number: [0-9.]+ *) + | [< ' ('0' .. '9' as c); stream >] -> + let buffer = Buffer.create 1 in + Buffer.add_char buffer c; + lex_number buffer stream + + (* Comment until end of line. *) + | [< ' ('#'); stream >] -> + lex_comment stream + + (* Otherwise, just return the character as its ascii value. *) + | [< 'c; stream >] -> + [< 'Token.Kwd c; lex stream >] + + (* end of stream. *) + | [< >] -> [< >] + +and lex_number buffer = parser + | [< ' ('0' .. '9' | '.' as c); stream >] -> + Buffer.add_char buffer c; + lex_number buffer stream + | [< stream=lex >] -> + [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] + +and lex_ident buffer = parser + | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> + Buffer.add_char buffer c; + lex_ident buffer stream + | [< stream=lex >] -> + match Buffer.contents buffer with + | "def" -> [< 'Token.Def; stream >] + | "extern" -> [< 'Token.Extern; stream >] + | id -> [< 'Token.Ident id; stream >] + +and lex_comment = parser + | [< ' ('\n'); stream=lex >] -> stream + | [< 'c; e=lex_comment >] -> e + | [< >] -> [< >] +</pre> +</dd> + +<dt>ast.ml:</dt> +<dd class="doc_code"> +<pre> +(*===----------------------------------------------------------------------=== + * Abstract Syntax Tree (aka Parse Tree) + *===----------------------------------------------------------------------===*) + +(* expr - Base type for all expression nodes. *) +type expr = + (* variant for numeric literals like "1.0". *) + | Number of float + + (* variant for referencing a variable, like "a". *) + | Variable of string + + (* variant for a binary operator. *) + | Binary of char * expr * expr + + (* variant for function calls. *) + | Call of string * expr array + +(* proto - This type represents the "prototype" for a function, which captures + * its name, and its argument names (thus implicitly the number of arguments the + * function takes). *) +type proto = Prototype of string * string array + +(* func - This type represents a function definition itself. *) +type func = Function of proto * expr +</pre> +</dd> + +<dt>parser.ml:</dt> +<dd class="doc_code"> +<pre> +(*===---------------------------------------------------------------------=== + * Parser + *===---------------------------------------------------------------------===*) + +(* binop_precedence - This holds the precedence for each binary operator that is + * defined *) +let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 + +(* precedence - Get the precedence of the pending binary operator token. *) +let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 + +(* primary + * ::= identifier + * ::= numberexpr + * ::= parenexpr *) +let rec parse_primary = parser + (* numberexpr ::= number *) + | [< 'Token.Number n >] -> Ast.Number n + + (* parenexpr ::= '(' expression ')' *) + | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e + + (* identifierexpr + * ::= identifier + * ::= identifier '(' argumentexpr ')' *) + | [< 'Token.Ident id; stream >] -> + let rec parse_args accumulator = parser + | [< e=parse_expr; stream >] -> + begin parser + | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e + | [< >] -> e :: accumulator + end stream + | [< >] -> accumulator + in + let rec parse_ident id = parser + (* Call. *) + | [< 'Token.Kwd '('; + args=parse_args []; + 'Token.Kwd ')' ?? "expected ')'">] -> + Ast.Call (id, Array.of_list (List.rev args)) + + (* Simple variable ref. *) + | [< >] -> Ast.Variable id + in + parse_ident id stream + + | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") + +(* binoprhs + * ::= ('+' primary)* *) +and parse_bin_rhs expr_prec lhs stream = + match Stream.peek stream with + (* If this is a binop, find its precedence. *) + | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> + let token_prec = precedence c in + + (* If this is a binop that binds at least as tightly as the current binop, + * consume it, otherwise we are done. *) + if token_prec < expr_prec then lhs else begin + (* Eat the binop. *) + Stream.junk stream; + + (* Parse the primary expression after the binary operator. *) + let rhs = parse_primary stream in + + (* Okay, we know this is a binop. *) + let rhs = + match Stream.peek stream with + | Some (Token.Kwd c2) -> + (* If BinOp binds less tightly with rhs than the operator after + * rhs, let the pending operator take rhs as its lhs. *) + let next_prec = precedence c2 in + if token_prec < next_prec + then parse_bin_rhs (token_prec + 1) rhs stream + else rhs + | _ -> rhs + in + + (* Merge lhs/rhs. *) + let lhs = Ast.Binary (c, lhs, rhs) in + parse_bin_rhs expr_prec lhs stream + end + | _ -> lhs + +(* expression + * ::= primary binoprhs *) +and parse_expr = parser + | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream + +(* prototype + * ::= id '(' id* ')' *) +let parse_prototype = + let rec parse_args accumulator = parser + | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e + | [< >] -> accumulator + in + + parser + | [< 'Token.Ident id; + 'Token.Kwd '(' ?? "expected '(' in prototype"; + args=parse_args []; + 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> + (* success. *) + Ast.Prototype (id, Array.of_list (List.rev args)) + + | [< >] -> + raise (Stream.Error "expected function name in prototype") + +(* definition ::= 'def' prototype expression *) +let parse_definition = parser + | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> + Ast.Function (p, e) + +(* toplevelexpr ::= expression *) +let parse_toplevel = parser + | [< e=parse_expr >] -> + (* Make an anonymous proto. *) + Ast.Function (Ast.Prototype ("", [||]), e) + +(* external ::= 'extern' prototype *) +let parse_extern = parser + | [< 'Token.Extern; e=parse_prototype >] -> e +</pre> +</dd> + +<dt>toplevel.ml:</dt> +<dd class="doc_code"> +<pre> +(*===----------------------------------------------------------------------=== + * Top-Level parsing and JIT Driver + *===----------------------------------------------------------------------===*) + +(* top ::= definition | external | expression | ';' *) +let rec main_loop stream = + match Stream.peek stream with + | None -> () + + (* ignore top-level semicolons. *) + | Some (Token.Kwd ';') -> + Stream.junk stream; + main_loop stream + + | Some token -> + begin + try match token with + | Token.Def -> + ignore(Parser.parse_definition stream); + print_endline "parsed a function definition."; + | Token.Extern -> + ignore(Parser.parse_extern stream); + print_endline "parsed an extern."; + | _ -> + (* Evaluate a top-level expression into an anonymous function. *) + ignore(Parser.parse_toplevel stream); + print_endline "parsed a top-level expr"; + with Stream.Error s -> + (* Skip token for error recovery. *) + Stream.junk stream; + print_endline s; + end; + print_string "ready> "; flush stdout; + main_loop stream +</pre> +</dd> + +<dt>toy.ml:</dt> +<dd class="doc_code"> +<pre> +(*===----------------------------------------------------------------------=== + * Main driver code. + *===----------------------------------------------------------------------===*) + +let main () = + (* Install standard binary operators. + * 1 is the lowest precedence. *) + Hashtbl.add Parser.binop_precedence '<' 10; + Hashtbl.add Parser.binop_precedence '+' 20; + Hashtbl.add Parser.binop_precedence '-' 20; + Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) + + (* Prime the first token. *) + print_string "ready> "; flush stdout; + let stream = Lexer.lex (Stream.of_channel stdin) in + + (* Run the main "interpreter loop" now. *) + Toplevel.main_loop stream; +;; + +main () +</pre> +</dd> +</dl> + +<a href="OCamlLangImpl3.html">Next: Implementing Code Generation to LLVM IR</a> +</div> + +<!-- *********************************************************************** --> +<hr> +<address> + <a href="http://jigsaw.w3.org/css-validator/check/referer"><img + src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> + <a href="http://validator.w3.org/check/referer"><img + src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> + + <a href="mailto:sabre@nondot.org">Chris Lattner</a> + <a href="mailto:erickt@users.sourceforge.net">Erick Tryzelaar</a><br> + <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> + Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ +</address> +</body> +</html> diff --git a/docs/tutorial/index.html b/docs/tutorial/index.html index 5f82cf6..e6caf22 100644 --- a/docs/tutorial/index.html +++ b/docs/tutorial/index.html @@ -36,6 +36,17 @@ <li><a href="LangImpl7.html">Extending the language: mutable variables / SSA construction</a></li> <li><a href="LangImpl8.html">Conclusion and other useful LLVM tidbits</a></li> </ol></li> + <li>Kaleidoscope: Implementing a Language with LLVM in Objective Caml + <ol> + <li><a href="OCamlLangImpl1.html">Tutorial Introduction and the Lexer</a></li> + <li><a href="OCamlLangImpl2.html">Implementing a Parser and AST</a></li> + <li><a href="OCamlLangImpl3.html">Implementing Code Generation to LLVM IR</a></li> + <li><a href="OCamlLangImpl4.html">Adding JIT and Optimizer Support</a></li> + <li><a href="OCamlLangImpl5.html">Extending the language: control flow</a></li> + <li><a href="OCamlLangImpl6.html">Extending the language: user-defined operators</a></li> + <li><a href="OCamlLangImpl7.html">Extending the language: mutable variables / SSA construction</a></li> + <li><a href="OCamlLangImpl8.html">Conclusion and other useful LLVM tidbits</a></li> + </ol></li> <li>Advanced Topics <ol> <li><a href="http://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.html">Writing |