aboutsummaryrefslogtreecommitdiffstats
path: root/examples/Kaleidoscope/MCJIT
diff options
context:
space:
mode:
authorAndrew Kaylor <andrew.kaylor@intel.com>2013-07-22 18:47:24 +0000
committerAndrew Kaylor <andrew.kaylor@intel.com>2013-07-22 18:47:24 +0000
commitdbbbccc3492aa7f91f21d8902cfb0b766dabb849 (patch)
treed9b8fba2bc3e5b1edf4f7ad992407288c0a8a27f /examples/Kaleidoscope/MCJIT
parent8945f753edf14b998fe57fd0a8b675b61aeb0164 (diff)
downloadexternal_llvm-dbbbccc3492aa7f91f21d8902cfb0b766dabb849.zip
external_llvm-dbbbccc3492aa7f91f21d8902cfb0b766dabb849.tar.gz
external_llvm-dbbbccc3492aa7f91f21d8902cfb0b766dabb849.tar.bz2
Adding example source to support MCJIT/Kaleidoscope blog posts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186854 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'examples/Kaleidoscope/MCJIT')
-rw-r--r--examples/Kaleidoscope/MCJIT/README.txt12
-rw-r--r--examples/Kaleidoscope/MCJIT/cached/Makefile11
-rw-r--r--examples/Kaleidoscope/MCJIT/cached/README.txt28
-rw-r--r--examples/Kaleidoscope/MCJIT/cached/genk-timing.py219
-rw-r--r--examples/Kaleidoscope/MCJIT/cached/split-lib.py70
-rw-r--r--examples/Kaleidoscope/MCJIT/cached/toy-jit.cpp1207
-rw-r--r--examples/Kaleidoscope/MCJIT/cached/toy.cpp1551
-rw-r--r--examples/Kaleidoscope/MCJIT/complete/Makefile4
-rw-r--r--examples/Kaleidoscope/MCJIT/complete/README.txt25
-rw-r--r--examples/Kaleidoscope/MCJIT/complete/genk-timing.py224
-rw-r--r--examples/Kaleidoscope/MCJIT/complete/split-lib.py70
-rw-r--r--examples/Kaleidoscope/MCJIT/complete/toy.cpp1710
-rw-r--r--examples/Kaleidoscope/MCJIT/initial/Makefile4
-rw-r--r--examples/Kaleidoscope/MCJIT/initial/README.txt18
-rw-r--r--examples/Kaleidoscope/MCJIT/initial/toy.cpp1381
-rw-r--r--examples/Kaleidoscope/MCJIT/lazy/Makefile7
-rw-r--r--examples/Kaleidoscope/MCJIT/lazy/README.txt25
-rw-r--r--examples/Kaleidoscope/MCJIT/lazy/genk-timing.py219
-rw-r--r--examples/Kaleidoscope/MCJIT/lazy/toy-jit.cpp1167
-rw-r--r--examples/Kaleidoscope/MCJIT/lazy/toy.cpp1422
20 files changed, 9374 insertions, 0 deletions
diff --git a/examples/Kaleidoscope/MCJIT/README.txt b/examples/Kaleidoscope/MCJIT/README.txt
new file mode 100644
index 0000000..ba74264
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/README.txt
@@ -0,0 +1,12 @@
+//===----------------------------------------------------------------------===/
+// Kaleidoscope with MCJIT
+//===----------------------------------------------------------------------===//
+
+The files in this directory are meant to accompany a series of blog posts
+that describe the process of porting the Kaleidoscope tutorial to use the MCJIT
+execution engine instead of the older JIT engine.
+
+When the blog posts are ready this file will be updated with links to the posts.
+
+These directories contain Makefiles that allow the code to be built in a
+standalone manner, independent of the larger LLVM build infrastructure. \ No newline at end of file
diff --git a/examples/Kaleidoscope/MCJIT/cached/Makefile b/examples/Kaleidoscope/MCJIT/cached/Makefile
new file mode 100644
index 0000000..dde39a7
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/cached/Makefile
@@ -0,0 +1,11 @@
+all: toy-mcjit toy-jit toy-ir-gen
+
+toy-mcjit : toy.cpp
+ clang++ toy.cpp -g -O3 -rdynamic -fno-rtti `llvm-config --cppflags --ldflags --libs core mcjit native irreader` -o toy-mcjit
+
+toy-jit : toy-jit.cpp
+ clang++ toy-jit.cpp -g -O3 -rdynamic -fno-rtti `llvm-config --cppflags --ldflags --libs core jit native irreader` -o toy-jit
+
+# This is a special build for the purpose of converting Kaleidoscope input to an IR file
+toy-ir-gen : toy-jit.cpp
+ clang++ toy-jit.cpp -g -O3 -rdynamic -fno-rtti -DDUMP_FINAL_MODULE `llvm-config --cppflags --ldflags --libs core jit native irreader` -o toy-ir-gen
diff --git a/examples/Kaleidoscope/MCJIT/cached/README.txt b/examples/Kaleidoscope/MCJIT/cached/README.txt
new file mode 100644
index 0000000..6acaf05
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/cached/README.txt
@@ -0,0 +1,28 @@
+//===----------------------------------------------------------------------===/
+// Kaleidoscope with MCJIT
+//===----------------------------------------------------------------------===//
+
+The files in this directory are meant to accompany the first in a series of
+three blog posts that describe the process of porting the Kaleidoscope tutorial
+to use the MCJIT execution engine instead of the older JIT engine.
+
+When the blog post is ready this file will be updated with a link to the post.
+
+The source code in this directory demonstrates the third version of the
+program, now modified to accept an input IR file on the command line and,
+optionally, to use a basic caching mechanism to store generated object images.
+
+The toy-jit.cpp file contains a version of the original JIT-based source code
+that has been modified to support the input IR file command line option.
+
+This directory contain a Makefile that allow the code to be built in a
+standalone manner, independent of the larger LLVM build infrastructure. To build
+the program you will need to have 'clang++' and 'llvm-config' in your path. If
+you attempt to build using the LLVM 3.3 release, some minor modifications will
+be required.
+
+This directory also contains a Python script that may be used to generate random
+input for the program and test scripts to capture data for rough performance
+comparisons. Another Python script will split generated input files into
+definitions and function calls for the purpose of testing the IR input and
+caching facilities. \ No newline at end of file
diff --git a/examples/Kaleidoscope/MCJIT/cached/genk-timing.py b/examples/Kaleidoscope/MCJIT/cached/genk-timing.py
new file mode 100644
index 0000000..96dd6db
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/cached/genk-timing.py
@@ -0,0 +1,219 @@
+#!/usr/bin/env python
+
+import sys
+import random
+
+class TimingScriptGenerator:
+ """Used to generate a bash script which will invoke the toy and time it"""
+ def __init__(self, scriptname, outputname):
+ self.timeFile = outputname
+ self.shfile = open(scriptname, 'w')
+ self.shfile.write("echo \"\" > %s\n" % self.timeFile)
+
+ def writeTimingCall(self, filename, numFuncs, funcsCalled, totalCalls):
+ """Echo some comments and invoke both versions of toy"""
+ rootname = filename
+ if '.' in filename:
+ rootname = filename[:filename.rfind('.')]
+ self.shfile.write("echo \"%s: Calls %d of %d functions, %d total\" >> %s\n" % (filename, funcsCalled, numFuncs, totalCalls, self.timeFile))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With MCJIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy-mcjit < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (filename, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With JIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy-jit < %s > %s-jit.out 2> %s-jit.err\n" % (filename, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+
+class KScriptGenerator:
+ """Used to generate random Kaleidoscope code"""
+ def __init__(self, filename):
+ self.kfile = open(filename, 'w')
+ self.nextFuncNum = 1
+ self.lastFuncNum = None
+ self.callWeighting = 0.1
+ # A mapping of calls within functions with no duplicates
+ self.calledFunctionTable = {}
+ # A list of function calls which will actually be executed
+ self.calledFunctions = []
+ # A comprehensive mapping of calls within functions
+ # used for computing the total number of calls
+ self.comprehensiveCalledFunctionTable = {}
+ self.totalCallsExecuted = 0
+
+ def updateTotalCallCount(self, callee):
+ # Count this call
+ self.totalCallsExecuted += 1
+ # Then count all the functions it calls
+ if callee in self.comprehensiveCalledFunctionTable:
+ for child in self.comprehensiveCalledFunctionTable[callee]:
+ self.updateTotalCallCount(child)
+
+ def updateFunctionCallMap(self, caller, callee):
+ """Maintains a map of functions that are called from other functions"""
+ if not caller in self.calledFunctionTable:
+ self.calledFunctionTable[caller] = []
+ if not callee in self.calledFunctionTable[caller]:
+ self.calledFunctionTable[caller].append(callee)
+ if not caller in self.comprehensiveCalledFunctionTable:
+ self.comprehensiveCalledFunctionTable[caller] = []
+ self.comprehensiveCalledFunctionTable[caller].append(callee)
+
+ def updateCalledFunctionList(self, callee):
+ """Maintains a list of functions that will actually be called"""
+ # Update the total call count
+ self.updateTotalCallCount(callee)
+ # If this function is already in the list, don't do anything else
+ if callee in self.calledFunctions:
+ return
+ # Add this function to the list of those that will be called.
+ self.calledFunctions.append(callee)
+ # If this function calls other functions, add them too
+ if callee in self.calledFunctionTable:
+ for subCallee in self.calledFunctionTable[callee]:
+ self.updateCalledFunctionList(subCallee)
+
+ def setCallWeighting(self, weight):
+ """ Sets the probably of generating a function call"""
+ self.callWeighting = weight
+
+ def writeln(self, line):
+ self.kfile.write(line + '\n')
+
+ def writeComment(self, comment):
+ self.writeln('# ' + comment)
+
+ def writeEmptyLine(self):
+ self.writeln("")
+
+ def writePredefinedFunctions(self):
+ self.writeComment("Define ':' for sequencing: as a low-precedence operator that ignores operands")
+ self.writeComment("and just returns the RHS.")
+ self.writeln("def binary : 1 (x y) y;")
+ self.writeEmptyLine()
+ self.writeComment("Helper functions defined within toy")
+ self.writeln("extern putchard(x);")
+ self.writeln("extern printd(d);")
+ self.writeln("extern printlf();")
+ self.writeEmptyLine()
+ self.writeComment("Print the result of a function call")
+ self.writeln("def printresult(N Result)")
+ self.writeln(" # 'result('")
+ self.writeln(" putchard(114) : putchard(101) : putchard(115) : putchard(117) : putchard(108) : putchard(116) : putchard(40) :")
+ self.writeln(" printd(N) :");
+ self.writeln(" # ') = '")
+ self.writeln(" putchard(41) : putchard(32) : putchard(61) : putchard(32) :")
+ self.writeln(" printd(Result) :");
+ self.writeln(" printlf();")
+ self.writeEmptyLine()
+
+ def writeRandomOperation(self, LValue, LHS, RHS):
+ shouldCallFunc = (self.lastFuncNum > 2 and random.random() < self.callWeighting)
+ if shouldCallFunc:
+ funcToCall = random.randrange(1, self.lastFuncNum - 1)
+ self.updateFunctionCallMap(self.lastFuncNum, funcToCall)
+ self.writeln(" %s = func%d(%s, %s) :" % (LValue, funcToCall, LHS, RHS))
+ else:
+ possibleOperations = ["+", "-", "*", "/"]
+ operation = random.choice(possibleOperations)
+ if operation == "-":
+ # Don't let our intermediate value become zero
+ # This is complicated by the fact that '<' is our only comparison operator
+ self.writeln(" if %s < %s then" % (LHS, RHS))
+ self.writeln(" %s = %s %s %s" % (LValue, LHS, operation, RHS))
+ self.writeln(" else if %s < %s then" % (RHS, LHS))
+ self.writeln(" %s = %s %s %s" % (LValue, LHS, operation, RHS))
+ self.writeln(" else")
+ self.writeln(" %s = %s %s %f :" % (LValue, LHS, operation, random.uniform(1, 100)))
+ else:
+ self.writeln(" %s = %s %s %s :" % (LValue, LHS, operation, RHS))
+
+ def getNextFuncNum(self):
+ result = self.nextFuncNum
+ self.nextFuncNum += 1
+ self.lastFuncNum = result
+ return result
+
+ def writeFunction(self, elements):
+ funcNum = self.getNextFuncNum()
+ self.writeComment("Auto-generated function number %d" % funcNum)
+ self.writeln("def func%d(X Y)" % funcNum)
+ self.writeln(" var temp1 = X,")
+ self.writeln(" temp2 = Y,")
+ self.writeln(" temp3 in")
+ # Initialize the variable names to be rotated
+ first = "temp3"
+ second = "temp1"
+ third = "temp2"
+ # Write some random operations
+ for i in range(elements):
+ self.writeRandomOperation(first, second, third)
+ # Rotate the variables
+ temp = first
+ first = second
+ second = third
+ third = temp
+ self.writeln(" " + third + ";")
+ self.writeEmptyLine()
+
+ def writeFunctionCall(self):
+ self.writeComment("Call the last function")
+ arg1 = random.uniform(1, 100)
+ arg2 = random.uniform(1, 100)
+ self.writeln("printresult(%d, func%d(%f, %f) )" % (self.lastFuncNum, self.lastFuncNum, arg1, arg2))
+ self.writeEmptyLine()
+ self.updateCalledFunctionList(self.lastFuncNum)
+
+ def writeFinalFunctionCounts(self):
+ self.writeComment("Called %d of %d functions" % (len(self.calledFunctions), self.lastFuncNum))
+
+def generateKScript(filename, numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting, timingScript):
+ """ Generate a random Kaleidoscope script based on the given parameters """
+ print "Generating " + filename
+ print(" %d functions, %d elements per function, %d functions between execution" %
+ (numFuncs, elementsPerFunc, funcsBetweenExec))
+ print(" Call weighting = %f" % callWeighting)
+ script = KScriptGenerator(filename)
+ script.setCallWeighting(callWeighting)
+ script.writeComment("===========================================================================")
+ script.writeComment("Auto-generated script")
+ script.writeComment(" %d functions, %d elements per function, %d functions between execution"
+ % (numFuncs, elementsPerFunc, funcsBetweenExec))
+ script.writeComment(" call weighting = %f" % callWeighting)
+ script.writeComment("===========================================================================")
+ script.writeEmptyLine()
+ script.writePredefinedFunctions()
+ funcsSinceLastExec = 0
+ for i in range(numFuncs):
+ script.writeFunction(elementsPerFunc)
+ funcsSinceLastExec += 1
+ if funcsSinceLastExec == funcsBetweenExec:
+ script.writeFunctionCall()
+ funcsSinceLastExec = 0
+ # Always end with a function call
+ if funcsSinceLastExec > 0:
+ script.writeFunctionCall()
+ script.writeEmptyLine()
+ script.writeFinalFunctionCounts()
+ funcsCalled = len(script.calledFunctions)
+ print " Called %d of %d functions, %d total" % (funcsCalled, numFuncs, script.totalCallsExecuted)
+ timingScript.writeTimingCall(filename, numFuncs, funcsCalled, script.totalCallsExecuted)
+
+# Execution begins here
+random.seed()
+
+timingScript = TimingScriptGenerator("time-toy.sh", "timing-data.txt")
+
+dataSets = [(5000, 3, 50, 0.50), (5000, 10, 100, 0.10), (5000, 10, 5, 0.10), (5000, 10, 1, 0.0),
+ (1000, 3, 10, 0.50), (1000, 10, 100, 0.10), (1000, 10, 5, 0.10), (1000, 10, 1, 0.0),
+ ( 200, 3, 2, 0.50), ( 200, 10, 40, 0.10), ( 200, 10, 2, 0.10), ( 200, 10, 1, 0.0)]
+
+# Generate the code
+for (numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting) in dataSets:
+ filename = "test-%d-%d-%d-%d.k" % (numFuncs, elementsPerFunc, funcsBetweenExec, int(callWeighting * 100))
+ generateKScript(filename, numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting, timingScript)
+print "All done!"
diff --git a/examples/Kaleidoscope/MCJIT/cached/split-lib.py b/examples/Kaleidoscope/MCJIT/cached/split-lib.py
new file mode 100644
index 0000000..5cdcc6d
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/cached/split-lib.py
@@ -0,0 +1,70 @@
+#!/usr/bin/env python
+
+class TimingScriptGenerator:
+ """Used to generate a bash script which will invoke the toy and time it"""
+ def __init__(self, scriptname, outputname):
+ self.shfile = open(scriptname, 'w')
+ self.timeFile = outputname
+ self.shfile.write("echo \"\" > %s\n" % self.timeFile)
+
+ def writeTimingCall(self, irname, callname):
+ """Echo some comments and invoke both versions of toy"""
+ rootname = irname
+ if '.' in irname:
+ rootname = irname[:irname.rfind('.')]
+ self.shfile.write("echo \"%s: Calls %s\" >> %s\n" % (callname, irname, self.timeFile))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With MCJIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy-mcjit -use-object-cache -input-IR=%s < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (irname, callname, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With MCJIT again\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy-mcjit -use-object-cache -input-IR=%s < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (irname, callname, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With JIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy-jit -input-IR=%s < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (irname, callname, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+
+class LibScriptGenerator:
+ """Used to generate a bash script which will convert Kaleidoscope files to IR"""
+ def __init__(self, filename):
+ self.shfile = open(filename, 'w')
+
+ def writeLibGenCall(self, libname, irname):
+ self.shfile.write("./toy-ir-gen < %s 2> %s\n" % (libname, irname))
+
+def splitScript(inputname, libGenScript, timingScript):
+ rootname = inputname[:-2]
+ libname = rootname + "-lib.k"
+ irname = rootname + "-lib.ir"
+ callname = rootname + "-call.k"
+ infile = open(inputname, "r")
+ libfile = open(libname, "w")
+ callfile = open(callname, "w")
+ print "Splitting %s into %s and %s" % (inputname, callname, libname)
+ for line in infile:
+ if not line.startswith("#"):
+ if line.startswith("print"):
+ callfile.write(line)
+ else:
+ libfile.write(line)
+ libGenScript.writeLibGenCall(libname, irname)
+ timingScript.writeTimingCall(irname, callname)
+
+# Execution begins here
+libGenScript = LibScriptGenerator("make-libs.sh")
+timingScript = TimingScriptGenerator("time-lib.sh", "lib-timing.txt")
+
+script_list = ["test-5000-3-50-50.k", "test-5000-10-100-10.k", "test-5000-10-5-10.k", "test-5000-10-1-0.k",
+ "test-1000-3-10-50.k", "test-1000-10-100-10.k", "test-1000-10-5-10.k", "test-1000-10-1-0.k",
+ "test-200-3-2-50.k", "test-200-10-40-10.k", "test-200-10-2-10.k", "test-200-10-1-0.k"]
+
+for script in script_list:
+ splitScript(script, libGenScript, timingScript)
+print "All done!"
diff --git a/examples/Kaleidoscope/MCJIT/cached/toy-jit.cpp b/examples/Kaleidoscope/MCJIT/cached/toy-jit.cpp
new file mode 100644
index 0000000..2539025
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/cached/toy-jit.cpp
@@ -0,0 +1,1207 @@
+#define MINIMAL_STDERR_OUTPUT
+
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/JIT.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IRReader/IRReader.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/Transforms/Scalar.h"
+#include <cstdio>
+#include <map>
+#include <string>
+#include <vector>
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Command-line options
+//===----------------------------------------------------------------------===//
+
+namespace {
+ cl::opt<std::string>
+ InputIR("input-IR",
+ cl::desc("Specify the name of an IR file to load for function definitions"),
+ cl::value_desc("input IR file name"));
+} // namespace
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ if (IdentifierStr == "var") return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &name) : Name(name) {}
+ const std::string &getName() const { return Name; }
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<ExprAST*> Args;
+public:
+ CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+
+ void CreateArgumentAllocas(Function *F);
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser is looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<ExprAST*> Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// varexpr ::= 'var' identifier ('=' expression)?
+// (',' identifier ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ case tok_var: return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal < 1 || NumVal > 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind && ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static Module *TheModule;
+static FunctionPassManager *TheFPM;
+static IRBuilder<> Builder(getGlobalContext());
+static std::map<std::string, AllocaInst*> NamedValues;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &VarName) {
+ IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+ TheFunction->getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
+ VarName.c_str());
+}
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ if (V == 0) return ErrorV("Unknown variable name");
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand->Codegen();
+ if (OperandV == 0) return 0;
+#ifdef USE_MCJIT
+ Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
+#else
+ Function *F = TheModule->getFunction(std::string("unary")+Opcode);
+#endif
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ // For now, I'm building without RTTI because LLVM builds that way by
+ // default and so we need to build that way to use the command line supprt.
+ // If you build LLVM with RTTI this can be changed back to a dynamic_cast.
+ VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS->Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE->getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+ Value *L = LHS->Codegen();
+ Value *R = RHS->Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateFAdd(L, R, "addtmp");
+ case '-': return Builder.CreateFSub(L, R, "subtmp");
+ case '*': return Builder.CreateFMul(L, R, "multmp");
+ case '/': return Builder.CreateFDiv(L, R, "divtmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheModule->getFunction(std::string("binary")+Op);
+ assert(F && "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheModule->getFunction(Callee);
+ if (CalleeF == 0) {
+ char error_str[64];
+ sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
+ return ErrorV(error_str);
+ }
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector<Value*> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond->Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+ BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+ "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // var = alloca double
+ // ...
+ // start = startexpr
+ // store start -> var
+ // goto loop
+ // loop:
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // endcond = endexpr
+ //
+ // curvar = load var
+ // nextvar = curvar + step
+ // store nextvar -> var
+ // br endcond, loop, endloop
+ // outloop:
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->Codegen();
+ if (StartVal == 0) return 0;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body->Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step->Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End->Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+Value *VarExprAST::Codegen() {
+ std::vector<AllocaInst *> OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init->Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body->Codegen();
+ if (BodyVal == 0) return 0;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<Type*> Doubles(Args.size(),
+ Type::getDoubleTy(getGlobalContext()));
+ FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+ Doubles, false);
+
+ Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+ // If F conflicted, there was already something named 'Name'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F->getName() != Name) {
+ // Delete the one we just made and get the existing one.
+ F->eraseFromParent();
+ F = TheModule->getFunction(Name);
+ // If F already has a body, reject this.
+ if (!F->empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+ // If F took a different number of args, reject.
+ if (F->arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+ ++AI, ++Idx)
+ AI->setName(Args[Idx]);
+
+ return F;
+}
+
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F->arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto->isBinaryOp())
+ BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Add all arguments to the symbol table and create their allocas.
+ Proto->CreateArgumentAllocas(TheFunction);
+
+ if (Value *RetVal = Body->Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ // Optimize the function.
+ TheFPM->run(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+
+ if (Proto->isBinaryOp())
+ BinopPrecedence.erase(Proto->getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static ExecutionEngine *TheExecutionEngine;
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ if (Function *LF = F->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read function definition:");
+ LF->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ if (Function *F = P->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read extern: ");
+ F->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top-level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F->Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())(intptr_t)FPtr;
+#ifdef MINIMAL_STDERR_OUTPUT
+ FP();
+#else
+ fprintf(stderr, "Evaluated to %f\n", FP());
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top-level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f", X);
+ return 0;
+}
+
+extern "C"
+double printlf() {
+ printf("\n");
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Command line input file handlers
+//===----------------------------------------------------------------------===//
+
+Module* parseInputIR(std::string InputFile) {
+ SMDiagnostic Err;
+ Module *M = ParseIRFile(InputFile, Err, getGlobalContext());
+ if (!M) {
+ Err.print("IR parsing failed: ", errs());
+ return NULL;
+ }
+
+ return M;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main(int argc, char **argv) {
+ InitializeNativeTarget();
+ LLVMContext &Context = getGlobalContext();
+
+ cl::ParseCommandLineOptions(argc, argv,
+ "Kaleidoscope example program\n");
+
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['<'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['/'] = 40;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Make the module, which holds all the code.
+ if (!InputIR.empty()) {
+ TheModule = parseInputIR(InputIR);
+ } else {
+ TheModule = new Module("my cool jit", Context);
+ }
+
+ // Create the JIT. This takes ownership of the module.
+ std::string ErrStr;
+ TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+ if (!TheExecutionEngine) {
+ fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+ exit(1);
+ }
+
+ FunctionPassManager OurFPM(TheModule);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+ // Provide basic AliasAnalysis support for GVN.
+ OurFPM.add(createBasicAliasAnalysisPass());
+ // Promote allocas to registers.
+ OurFPM.add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ OurFPM.add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ OurFPM.add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ OurFPM.add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ OurFPM.add(createCFGSimplificationPass());
+
+ OurFPM.doInitialization();
+
+ // Set the global so the code gen can use this.
+ TheFPM = &OurFPM;
+
+ // Prime the first token.
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ getNextToken();
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+ // Print out all of the generated code.
+ TheFPM = 0;
+#if !defined(MINIMAL_STDERR_OUTPUT) || defined(DUMP_FINAL_MODULE)
+ TheModule->dump();
+#endif
+ return 0;
+}
diff --git a/examples/Kaleidoscope/MCJIT/cached/toy.cpp b/examples/Kaleidoscope/MCJIT/cached/toy.cpp
new file mode 100644
index 0000000..6c8e38b
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/cached/toy.cpp
@@ -0,0 +1,1551 @@
+#define MINIMAL_STDERR_OUTPUT
+
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/MCJIT.h"
+#include "llvm/ExecutionEngine/ObjectCache.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IRReader/IRReader.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/Transforms/Scalar.h"
+#include <cstdio>
+#include <map>
+#include <string>
+#include <vector>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Command-line options
+//===----------------------------------------------------------------------===//
+
+cl::opt<std::string>
+InputIR("input-IR",
+ cl::desc("Specify the name of an IR file to load for function definitions"),
+ cl::value_desc("input IR file name"));
+
+cl::opt<bool>
+UseObjectCache("use-object-cache",
+ cl::desc("Enable use of the MCJIT object caching"),
+ cl::init(false));
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ if (IdentifierStr == "var") return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &name) : Name(name) {}
+ const std::string &getName() const { return Name; }
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<ExprAST*> Args;
+public:
+ CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+
+ void CreateArgumentAllocas(Function *F);
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser is looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<ExprAST*> Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// varexpr ::= 'var' identifier ('=' expression)?
+// (',' identifier ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ case tok_var: return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal < 1 || NumVal > 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind && ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Quick and dirty hack
+//===----------------------------------------------------------------------===//
+
+// FIXME: Obviously we can do better than this
+std::string GenerateUniqueName(const char *root)
+{
+ static int i = 0;
+ char s[16];
+ sprintf(s, "%s%d", root, i++);
+ std::string S = s;
+ return S;
+}
+
+std::string MakeLegalFunctionName(std::string Name)
+{
+ std::string NewName;
+ if (!Name.length())
+ return GenerateUniqueName("anon_func_");
+
+ // Start with what we have
+ NewName = Name;
+
+ // Look for a numberic first character
+ if (NewName.find_first_of("0123456789") == 0) {
+ NewName.insert(0, 1, 'n');
+ }
+
+ // Replace illegal characters with their ASCII equivalent
+ std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
+ size_t pos;
+ while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
+ char old_c = NewName.at(pos);
+ char new_str[16];
+ sprintf(new_str, "%d", (int)old_c);
+ NewName = NewName.replace(pos, 1, new_str);
+ }
+
+ return NewName;
+}
+
+//===----------------------------------------------------------------------===//
+// MCJIT object cache class
+//===----------------------------------------------------------------------===//
+
+class MCJITObjectCache : public ObjectCache {
+public:
+ MCJITObjectCache() {
+ // Set IR cache directory
+ sys::fs::current_path(CacheDir);
+ sys::path::append(CacheDir, "toy_object_cache");
+ }
+
+ virtual ~MCJITObjectCache() {
+ }
+
+ virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
+ // Get the ModuleID
+ const std::string ModuleID = M->getModuleIdentifier();
+
+ // If we've flagged this as an IR file, cache it
+ if (0 == ModuleID.compare(0, 3, "IR:")) {
+ std::string IRFileName = ModuleID.substr(3);
+ SmallString<128>IRCacheFile = CacheDir;
+ sys::path::append(IRCacheFile, IRFileName);
+ if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
+ fprintf(stderr, "Unable to create cache directory\n");
+ return;
+ }
+ std::string ErrStr;
+ raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
+ IRObjectFile << Obj->getBuffer();
+ }
+ }
+
+ // MCJIT will call this function before compiling any module
+ // MCJIT takes ownership of both the MemoryBuffer object and the memory
+ // to which it refers.
+ virtual MemoryBuffer* getObject(const Module* M) {
+ // Get the ModuleID
+ const std::string ModuleID = M->getModuleIdentifier();
+
+ // If we've flagged this as an IR file, cache it
+ if (0 == ModuleID.compare(0, 3, "IR:")) {
+ std::string IRFileName = ModuleID.substr(3);
+ SmallString<128> IRCacheFile = CacheDir;
+ sys::path::append(IRCacheFile, IRFileName);
+ if (!sys::fs::exists(IRCacheFile.str())) {
+ // This file isn't in our cache
+ return NULL;
+ }
+ OwningPtr<MemoryBuffer> IRObjectBuffer;
+ MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
+ // MCJIT will want to write into this buffer, and we don't want that
+ // because the file has probably just been mmapped. Instead we make
+ // a copy. The filed-based buffer will be released when it goes
+ // out of scope.
+ return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
+ }
+
+ return NULL;
+ }
+
+private:
+ SmallString<128> CacheDir;
+};
+
+//===----------------------------------------------------------------------===//
+// MCJIT helper class
+//===----------------------------------------------------------------------===//
+
+class MCJITHelper
+{
+public:
+ MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
+ ~MCJITHelper();
+
+ Function *getFunction(const std::string FnName);
+ Module *getModuleForNewFunction();
+ void *getPointerToFunction(Function* F);
+ void *getPointerToNamedFunction(const std::string &Name);
+ ExecutionEngine *compileModule(Module *M);
+ void closeCurrentModule();
+ void addModule(Module *M);
+ void dump();
+
+private:
+ typedef std::vector<Module*> ModuleVector;
+
+ LLVMContext &Context;
+ Module *OpenModule;
+ ModuleVector Modules;
+ std::map<Module *, ExecutionEngine *> EngineMap;
+ MCJITObjectCache OurObjectCache;
+};
+
+class HelpingMemoryManager : public SectionMemoryManager
+{
+ HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
+ void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
+
+public:
+ HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
+ virtual ~HelpingMemoryManager() {}
+
+ /// This method returns the address of the specified function.
+ /// Our implementation will attempt to find functions in other
+ /// modules associated with the MCJITHelper to cross link functions
+ /// from one generated module to another.
+ ///
+ /// If \p AbortOnFailure is false and no function with the given name is
+ /// found, this function returns a null pointer. Otherwise, it prints a
+ /// message to stderr and aborts.
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true);
+private:
+ MCJITHelper *MasterHelper;
+};
+
+void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure)
+{
+ // Try the standard symbol resolution first, but ask it not to abort.
+ void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
+ if (pfn)
+ return pfn;
+
+ pfn = MasterHelper->getPointerToNamedFunction(Name);
+ if (!pfn && AbortOnFailure)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+ return pfn;
+}
+
+MCJITHelper::~MCJITHelper()
+{
+ // Walk the vector of modules.
+ ModuleVector::iterator it, end;
+ for (it = Modules.begin(), end = Modules.end();
+ it != end; ++it) {
+ // See if we have an execution engine for this module.
+ std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
+ // If we have an EE, the EE owns the module so just delete the EE.
+ if (mapIt != EngineMap.end()) {
+ delete mapIt->second;
+ } else {
+ // Otherwise, we still own the module. Delete it now.
+ delete *it;
+ }
+ }
+}
+
+Function *MCJITHelper::getFunction(const std::string FnName) {
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ Function *F = (*it)->getFunction(FnName);
+ if (F) {
+ if (*it == OpenModule)
+ return F;
+
+ assert(OpenModule != NULL);
+
+ // This function is in a module that has already been JITed.
+ // We need to generate a new prototype for external linkage.
+ Function *PF = OpenModule->getFunction(FnName);
+ if (PF && !PF->empty()) {
+ ErrorF("redefinition of function across modules");
+ return 0;
+ }
+
+ // If we don't have a prototype yet, create one.
+ if (!PF)
+ PF = Function::Create(F->getFunctionType(),
+ Function::ExternalLinkage,
+ FnName,
+ OpenModule);
+ return PF;
+ }
+ }
+ return NULL;
+}
+
+Module *MCJITHelper::getModuleForNewFunction() {
+ // If we have a Module that hasn't been JITed, use that.
+ if (OpenModule)
+ return OpenModule;
+
+ // Otherwise create a new Module.
+ std::string ModName = GenerateUniqueName("mcjit_module_");
+ Module *M = new Module(ModName, Context);
+ Modules.push_back(M);
+ OpenModule = M;
+ return M;
+}
+
+void *MCJITHelper::getPointerToFunction(Function* F) {
+ // Look for this function in an existing module
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ std::string FnName = F->getName();
+ for (it = begin; it != end; ++it) {
+ Function *MF = (*it)->getFunction(FnName);
+ if (MF == F) {
+ std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
+ if (eeIt != EngineMap.end()) {
+ void *P = eeIt->second->getPointerToFunction(F);
+ if (P)
+ return P;
+ } else {
+ ExecutionEngine *EE = compileModule(*it);
+ void *P = EE->getPointerToFunction(F);
+ if (P)
+ return P;
+ }
+ }
+ }
+ return NULL;
+}
+
+void MCJITHelper::closeCurrentModule() {
+ OpenModule = NULL;
+}
+
+ExecutionEngine *MCJITHelper::compileModule(Module *M) {
+ if (M == OpenModule)
+ closeCurrentModule();
+
+ std::string ErrStr;
+ ExecutionEngine *NewEngine = EngineBuilder(M)
+ .setErrorStr(&ErrStr)
+ .setUseMCJIT(true)
+ .setMCJITMemoryManager(new HelpingMemoryManager(this))
+ .create();
+ if (!NewEngine) {
+ fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+ exit(1);
+ }
+
+ if (UseObjectCache)
+ NewEngine->setObjectCache(&OurObjectCache);
+
+ // Get the ModuleID so we can identify IR input files
+ const std::string ModuleID = M->getModuleIdentifier();
+
+ // If we've flagged this as an IR file, it doesn't need function passes run.
+ if (0 != ModuleID.compare(0, 3, "IR:")) {
+ // Create a function pass manager for this engine
+ FunctionPassManager *FPM = new FunctionPassManager(M);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ FPM->add(new DataLayout(*NewEngine->getDataLayout()));
+ // Provide basic AliasAnalysis support for GVN.
+ FPM->add(createBasicAliasAnalysisPass());
+ // Promote allocas to registers.
+ FPM->add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ FPM->add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ FPM->add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ FPM->add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ FPM->add(createCFGSimplificationPass());
+ FPM->doInitialization();
+
+ // For each function in the module
+ Module::iterator it;
+ Module::iterator end = M->end();
+ for (it = M->begin(); it != end; ++it) {
+ // Run the FPM on this function
+ FPM->run(*it);
+ }
+
+ // We don't need this anymore
+ delete FPM;
+ }
+
+ // Store this engine
+ EngineMap[M] = NewEngine;
+ NewEngine->finalizeObject();
+
+ return NewEngine;
+}
+
+void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
+{
+ // Look for the functions in our modules, compiling only as necessary
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ Function *F = (*it)->getFunction(Name);
+ if (F && !F->empty()) {
+ std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
+ if (eeIt != EngineMap.end()) {
+ void *P = eeIt->second->getPointerToFunction(F);
+ if (P)
+ return P;
+ } else {
+ ExecutionEngine *EE = compileModule(*it);
+ void *P = EE->getPointerToFunction(F);
+ if (P)
+ return P;
+ }
+ }
+ }
+ return NULL;
+}
+
+void MCJITHelper::addModule(Module* M) {
+ Modules.push_back(M);
+}
+
+void MCJITHelper::dump()
+{
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it)
+ (*it)->dump();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static MCJITHelper *TheHelper;
+static IRBuilder<> Builder(getGlobalContext());
+static std::map<std::string, AllocaInst*> NamedValues;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &VarName) {
+ IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+ TheFunction->getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
+ VarName.c_str());
+}
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ char ErrStr[256];
+ sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
+ if (V == 0) return ErrorV(ErrStr);
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand->Codegen();
+ if (OperandV == 0) return 0;
+
+ Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS->Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE->getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+ Value *L = LHS->Codegen();
+ Value *R = RHS->Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateFAdd(L, R, "addtmp");
+ case '-': return Builder.CreateFSub(L, R, "subtmp");
+ case '*': return Builder.CreateFMul(L, R, "multmp");
+ case '/': return Builder.CreateFDiv(L, R, "divtmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
+ assert(F && "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheHelper->getFunction(Callee);
+ if (CalleeF == 0)
+ return ErrorV("Unknown function referenced");
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector<Value*> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond->Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+ BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+ "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // var = alloca double
+ // ...
+ // start = startexpr
+ // store start -> var
+ // goto loop
+ // loop:
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // endcond = endexpr
+ //
+ // curvar = load var
+ // nextvar = curvar + step
+ // store nextvar -> var
+ // br endcond, loop, endloop
+ // outloop:
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->Codegen();
+ if (StartVal == 0) return 0;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body->Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step->Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End->Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+Value *VarExprAST::Codegen() {
+ std::vector<AllocaInst *> OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init->Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body->Codegen();
+ if (BodyVal == 0) return 0;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<Type*> Doubles(Args.size(),
+ Type::getDoubleTy(getGlobalContext()));
+ FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+ Doubles, false);
+
+ std::string FnName = MakeLegalFunctionName(Name);
+
+ Module* M = TheHelper->getModuleForNewFunction();
+
+ Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
+
+ // If F conflicted, there was already something named 'FnName'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F->getName() != FnName) {
+ // Delete the one we just made and get the existing one.
+ F->eraseFromParent();
+ F = M->getFunction(Name);
+
+ // If F already has a body, reject this.
+ if (!F->empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+
+ // If F took a different number of args, reject.
+ if (F->arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+ ++AI, ++Idx)
+ AI->setName(Args[Idx]);
+
+ return F;
+}
+
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F->arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto->isBinaryOp())
+ BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Add all arguments to the symbol table and create their allocas.
+ Proto->CreateArgumentAllocas(TheFunction);
+
+ if (Value *RetVal = Body->Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+
+ if (Proto->isBinaryOp())
+ BinopPrecedence.erase(Proto->getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ TheHelper->closeCurrentModule();
+ if (Function *LF = F->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read function definition:");
+ LF->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ if (Function *F = P->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read extern: ");
+ F->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top-level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F->Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheHelper->getPointerToFunction(LF);
+
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())(intptr_t)FPtr;
+#ifdef MINIMAL_STDERR_OUTPUT
+ FP();
+#else
+ fprintf(stderr, "Evaluated to %f\n", FP());
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top-level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f", X);
+ return 0;
+}
+
+extern "C"
+double printlf() {
+ printf("\n");
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Command line input file handler
+//===----------------------------------------------------------------------===//
+
+Module* parseInputIR(std::string InputFile) {
+ SMDiagnostic Err;
+ Module *M = ParseIRFile(InputFile, Err, getGlobalContext());
+ if (!M) {
+ Err.print("IR parsing failed: ", errs());
+ return NULL;
+ }
+
+ char ModID[256];
+ sprintf(ModID, "IR:%s", InputFile.c_str());
+ M->setModuleIdentifier(ModID);
+
+ TheHelper->addModule(M);
+ return M;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main(int argc, char **argv) {
+ InitializeNativeTarget();
+ InitializeNativeTargetAsmPrinter();
+ InitializeNativeTargetAsmParser();
+ LLVMContext &Context = getGlobalContext();
+
+ cl::ParseCommandLineOptions(argc, argv,
+ "Kaleidoscope example program\n");
+
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['<'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['/'] = 40;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Prime the first token.
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ getNextToken();
+
+ // Make the helper, which holds all the code.
+ TheHelper = new MCJITHelper(Context);
+
+ if (!InputIR.empty()) {
+ parseInputIR(InputIR);
+ }
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+#ifndef MINIMAL_STDERR_OUTPUT
+ // Print out all of the generated code.
+ TheHelper->dump();
+#endif
+
+ return 0;
+}
diff --git a/examples/Kaleidoscope/MCJIT/complete/Makefile b/examples/Kaleidoscope/MCJIT/complete/Makefile
new file mode 100644
index 0000000..9e45d17
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/complete/Makefile
@@ -0,0 +1,4 @@
+all: toy
+
+toy : toy.cpp
+ clang++ toy.cpp -g -O3 -rdynamic -fno-rtti `llvm-config --cppflags --ldflags --libs core jit mcjit native irreader` -o toy
diff --git a/examples/Kaleidoscope/MCJIT/complete/README.txt b/examples/Kaleidoscope/MCJIT/complete/README.txt
new file mode 100644
index 0000000..82bc397
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/complete/README.txt
@@ -0,0 +1,25 @@
+//===----------------------------------------------------------------------===/
+// Kaleidoscope with MCJIT
+//===----------------------------------------------------------------------===//
+
+The files in this directory are meant to accompany the first in a series of
+three blog posts that describe the process of porting the Kaleidoscope tutorial
+to use the MCJIT execution engine instead of the older JIT engine.
+
+When the blog post is ready this file will be updated with a link to the post.
+
+The source code in this directory combines all previous versions, including the
+old JIT-based implementation, into a single file for easy comparison with
+command line options to select between the various possibilities.
+
+This directory contain a Makefile that allow the code to be built in a
+standalone manner, independent of the larger LLVM build infrastructure. To build
+the program you will need to have 'clang++' and 'llvm-config' in your path. If
+you attempt to build using the LLVM 3.3 release, some minor modifications will
+be required.
+
+This directory also contains a Python script that may be used to generate random
+input for the program and test scripts to capture data for rough performance
+comparisons. Another Python script will split generated input files into
+definitions and function calls for the purpose of testing the IR input and
+caching facilities. \ No newline at end of file
diff --git a/examples/Kaleidoscope/MCJIT/complete/genk-timing.py b/examples/Kaleidoscope/MCJIT/complete/genk-timing.py
new file mode 100644
index 0000000..72591fe
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/complete/genk-timing.py
@@ -0,0 +1,224 @@
+#!/usr/bin/env python
+
+import sys
+import random
+
+class TimingScriptGenerator:
+ """Used to generate a bash script which will invoke the toy and time it"""
+ def __init__(self, scriptname, outputname):
+ self.timeFile = outputname
+ self.shfile = open(scriptname, 'w')
+ self.shfile.write("echo \"\" > %s\n" % self.timeFile)
+
+ def writeTimingCall(self, filename, numFuncs, funcsCalled, totalCalls):
+ """Echo some comments and invoke both versions of toy"""
+ rootname = filename
+ if '.' in filename:
+ rootname = filename[:filename.rfind('.')]
+ self.shfile.write("echo \"%s: Calls %d of %d functions, %d total\" >> %s\n" % (filename, funcsCalled, numFuncs, totalCalls, self.timeFile))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With MCJIT (original)\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy -suppress-prompts -use-mcjit=true -enable-lazy-compilation=false < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (filename, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With MCJIT (lazy)\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy -suppress-prompts -use-mcjit=true -enable-lazy-compilation=true < %s > %s-mcjit-lazy.out 2> %s-mcjit-lazy.err\n" % (filename, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With JIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy -suppress-prompts -use-mcjit=false < %s > %s-jit.out 2> %s-jit.err\n" % (filename, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+
+class KScriptGenerator:
+ """Used to generate random Kaleidoscope code"""
+ def __init__(self, filename):
+ self.kfile = open(filename, 'w')
+ self.nextFuncNum = 1
+ self.lastFuncNum = None
+ self.callWeighting = 0.1
+ # A mapping of calls within functions with no duplicates
+ self.calledFunctionTable = {}
+ # A list of function calls which will actually be executed
+ self.calledFunctions = []
+ # A comprehensive mapping of calls within functions
+ # used for computing the total number of calls
+ self.comprehensiveCalledFunctionTable = {}
+ self.totalCallsExecuted = 0
+
+ def updateTotalCallCount(self, callee):
+ # Count this call
+ self.totalCallsExecuted += 1
+ # Then count all the functions it calls
+ if callee in self.comprehensiveCalledFunctionTable:
+ for child in self.comprehensiveCalledFunctionTable[callee]:
+ self.updateTotalCallCount(child)
+
+ def updateFunctionCallMap(self, caller, callee):
+ """Maintains a map of functions that are called from other functions"""
+ if not caller in self.calledFunctionTable:
+ self.calledFunctionTable[caller] = []
+ if not callee in self.calledFunctionTable[caller]:
+ self.calledFunctionTable[caller].append(callee)
+ if not caller in self.comprehensiveCalledFunctionTable:
+ self.comprehensiveCalledFunctionTable[caller] = []
+ self.comprehensiveCalledFunctionTable[caller].append(callee)
+
+ def updateCalledFunctionList(self, callee):
+ """Maintains a list of functions that will actually be called"""
+ # Update the total call count
+ self.updateTotalCallCount(callee)
+ # If this function is already in the list, don't do anything else
+ if callee in self.calledFunctions:
+ return
+ # Add this function to the list of those that will be called.
+ self.calledFunctions.append(callee)
+ # If this function calls other functions, add them too
+ if callee in self.calledFunctionTable:
+ for subCallee in self.calledFunctionTable[callee]:
+ self.updateCalledFunctionList(subCallee)
+
+ def setCallWeighting(self, weight):
+ """ Sets the probably of generating a function call"""
+ self.callWeighting = weight
+
+ def writeln(self, line):
+ self.kfile.write(line + '\n')
+
+ def writeComment(self, comment):
+ self.writeln('# ' + comment)
+
+ def writeEmptyLine(self):
+ self.writeln("")
+
+ def writePredefinedFunctions(self):
+ self.writeComment("Define ':' for sequencing: as a low-precedence operator that ignores operands")
+ self.writeComment("and just returns the RHS.")
+ self.writeln("def binary : 1 (x y) y;")
+ self.writeEmptyLine()
+ self.writeComment("Helper functions defined within toy")
+ self.writeln("extern putchard(x);")
+ self.writeln("extern printd(d);")
+ self.writeln("extern printlf();")
+ self.writeEmptyLine()
+ self.writeComment("Print the result of a function call")
+ self.writeln("def printresult(N Result)")
+ self.writeln(" # 'result('")
+ self.writeln(" putchard(114) : putchard(101) : putchard(115) : putchard(117) : putchard(108) : putchard(116) : putchard(40) :")
+ self.writeln(" printd(N) :");
+ self.writeln(" # ') = '")
+ self.writeln(" putchard(41) : putchard(32) : putchard(61) : putchard(32) :")
+ self.writeln(" printd(Result) :");
+ self.writeln(" printlf();")
+ self.writeEmptyLine()
+
+ def writeRandomOperation(self, LValue, LHS, RHS):
+ shouldCallFunc = (self.lastFuncNum > 2 and random.random() < self.callWeighting)
+ if shouldCallFunc:
+ funcToCall = random.randrange(1, self.lastFuncNum - 1)
+ self.updateFunctionCallMap(self.lastFuncNum, funcToCall)
+ self.writeln(" %s = func%d(%s, %s) :" % (LValue, funcToCall, LHS, RHS))
+ else:
+ possibleOperations = ["+", "-", "*", "/"]
+ operation = random.choice(possibleOperations)
+ if operation == "-":
+ # Don't let our intermediate value become zero
+ # This is complicated by the fact that '<' is our only comparison operator
+ self.writeln(" if %s < %s then" % (LHS, RHS))
+ self.writeln(" %s = %s %s %s" % (LValue, LHS, operation, RHS))
+ self.writeln(" else if %s < %s then" % (RHS, LHS))
+ self.writeln(" %s = %s %s %s" % (LValue, LHS, operation, RHS))
+ self.writeln(" else")
+ self.writeln(" %s = %s %s %f :" % (LValue, LHS, operation, random.uniform(1, 100)))
+ else:
+ self.writeln(" %s = %s %s %s :" % (LValue, LHS, operation, RHS))
+
+ def getNextFuncNum(self):
+ result = self.nextFuncNum
+ self.nextFuncNum += 1
+ self.lastFuncNum = result
+ return result
+
+ def writeFunction(self, elements):
+ funcNum = self.getNextFuncNum()
+ self.writeComment("Auto-generated function number %d" % funcNum)
+ self.writeln("def func%d(X Y)" % funcNum)
+ self.writeln(" var temp1 = X,")
+ self.writeln(" temp2 = Y,")
+ self.writeln(" temp3 in")
+ # Initialize the variable names to be rotated
+ first = "temp3"
+ second = "temp1"
+ third = "temp2"
+ # Write some random operations
+ for i in range(elements):
+ self.writeRandomOperation(first, second, third)
+ # Rotate the variables
+ temp = first
+ first = second
+ second = third
+ third = temp
+ self.writeln(" " + third + ";")
+ self.writeEmptyLine()
+
+ def writeFunctionCall(self):
+ self.writeComment("Call the last function")
+ arg1 = random.uniform(1, 100)
+ arg2 = random.uniform(1, 100)
+ self.writeln("printresult(%d, func%d(%f, %f) )" % (self.lastFuncNum, self.lastFuncNum, arg1, arg2))
+ self.writeEmptyLine()
+ self.updateCalledFunctionList(self.lastFuncNum)
+
+ def writeFinalFunctionCounts(self):
+ self.writeComment("Called %d of %d functions" % (len(self.calledFunctions), self.lastFuncNum))
+
+def generateKScript(filename, numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting, timingScript):
+ """ Generate a random Kaleidoscope script based on the given parameters """
+ print "Generating " + filename
+ print(" %d functions, %d elements per function, %d functions between execution" %
+ (numFuncs, elementsPerFunc, funcsBetweenExec))
+ print(" Call weighting = %f" % callWeighting)
+ script = KScriptGenerator(filename)
+ script.setCallWeighting(callWeighting)
+ script.writeComment("===========================================================================")
+ script.writeComment("Auto-generated script")
+ script.writeComment(" %d functions, %d elements per function, %d functions between execution"
+ % (numFuncs, elementsPerFunc, funcsBetweenExec))
+ script.writeComment(" call weighting = %f" % callWeighting)
+ script.writeComment("===========================================================================")
+ script.writeEmptyLine()
+ script.writePredefinedFunctions()
+ funcsSinceLastExec = 0
+ for i in range(numFuncs):
+ script.writeFunction(elementsPerFunc)
+ funcsSinceLastExec += 1
+ if funcsSinceLastExec == funcsBetweenExec:
+ script.writeFunctionCall()
+ funcsSinceLastExec = 0
+ # Always end with a function call
+ if funcsSinceLastExec > 0:
+ script.writeFunctionCall()
+ script.writeEmptyLine()
+ script.writeFinalFunctionCounts()
+ funcsCalled = len(script.calledFunctions)
+ print " Called %d of %d functions, %d total" % (funcsCalled, numFuncs, script.totalCallsExecuted)
+ timingScript.writeTimingCall(filename, numFuncs, funcsCalled, script.totalCallsExecuted)
+
+# Execution begins here
+random.seed()
+
+timingScript = TimingScriptGenerator("time-toy.sh", "timing-data.txt")
+
+dataSets = [(5000, 3, 50, 0.50), (5000, 10, 100, 0.10), (5000, 10, 5, 0.10), (5000, 10, 1, 0.0),
+ (1000, 3, 10, 0.50), (1000, 10, 100, 0.10), (1000, 10, 5, 0.10), (1000, 10, 1, 0.0),
+ ( 200, 3, 2, 0.50), ( 200, 10, 40, 0.10), ( 200, 10, 2, 0.10), ( 200, 10, 1, 0.0)]
+
+# Generate the code
+for (numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting) in dataSets:
+ filename = "test-%d-%d-%d-%d.k" % (numFuncs, elementsPerFunc, funcsBetweenExec, int(callWeighting * 100))
+ generateKScript(filename, numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting, timingScript)
+print "All done!"
diff --git a/examples/Kaleidoscope/MCJIT/complete/split-lib.py b/examples/Kaleidoscope/MCJIT/complete/split-lib.py
new file mode 100644
index 0000000..f6bec02
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/complete/split-lib.py
@@ -0,0 +1,70 @@
+#!/usr/bin/env python
+
+class TimingScriptGenerator:
+ """Used to generate a bash script which will invoke the toy and time it"""
+ def __init__(self, scriptname, outputname):
+ self.shfile = open(scriptname, 'w')
+ self.timeFile = outputname
+ self.shfile.write("echo \"\" > %s\n" % self.timeFile)
+
+ def writeTimingCall(self, irname, callname):
+ """Echo some comments and invoke both versions of toy"""
+ rootname = irname
+ if '.' in irname:
+ rootname = irname[:irname.rfind('.')]
+ self.shfile.write("echo \"%s: Calls %s\" >> %s\n" % (callname, irname, self.timeFile))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With MCJIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy -suppress-prompts -use-mcjit=true -enable-lazy-compilation=true -use-object-cache -input-IR=%s < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (irname, callname, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With MCJIT again\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy -suppress-prompts -use-mcjit=true -enable-lazy-compilation=true -use-object-cache -input-IR=%s < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (irname, callname, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With JIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy -suppress-prompts -use-mcjit=false -input-IR=%s < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (irname, callname, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+
+class LibScriptGenerator:
+ """Used to generate a bash script which will invoke the toy and time it"""
+ def __init__(self, filename):
+ self.shfile = open(filename, 'w')
+
+ def writeLibGenCall(self, libname, irname):
+ self.shfile.write("./toy -suppress-prompts -use-mcjit=false -dump-modules < %s 2> %s\n" % (libname, irname))
+
+def splitScript(inputname, libGenScript, timingScript):
+ rootname = inputname[:-2]
+ libname = rootname + "-lib.k"
+ irname = rootname + "-lib.ir"
+ callname = rootname + "-call.k"
+ infile = open(inputname, "r")
+ libfile = open(libname, "w")
+ callfile = open(callname, "w")
+ print "Splitting %s into %s and %s" % (inputname, callname, libname)
+ for line in infile:
+ if not line.startswith("#"):
+ if line.startswith("print"):
+ callfile.write(line)
+ else:
+ libfile.write(line)
+ libGenScript.writeLibGenCall(libname, irname)
+ timingScript.writeTimingCall(irname, callname)
+
+# Execution begins here
+libGenScript = LibScriptGenerator("make-libs.sh")
+timingScript = TimingScriptGenerator("time-lib.sh", "lib-timing.txt")
+
+script_list = ["test-5000-3-50-50.k", "test-5000-10-100-10.k", "test-5000-10-5-10.k", "test-5000-10-1-0.k",
+ "test-1000-3-10-50.k", "test-1000-10-100-10.k", "test-1000-10-5-10.k", "test-1000-10-1-0.k",
+ "test-200-3-2-50.k", "test-200-10-40-10.k", "test-200-10-2-10.k", "test-200-10-1-0.k"]
+
+for script in script_list:
+ splitScript(script, libGenScript, timingScript)
+print "All done!"
diff --git a/examples/Kaleidoscope/MCJIT/complete/toy.cpp b/examples/Kaleidoscope/MCJIT/complete/toy.cpp
new file mode 100644
index 0000000..da3f3b1
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/complete/toy.cpp
@@ -0,0 +1,1710 @@
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/JIT.h"
+#include "llvm/ExecutionEngine/MCJIT.h"
+#include "llvm/ExecutionEngine/ObjectCache.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IRReader/IRReader.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/Transforms/Scalar.h"
+#include <cstdio>
+#include <map>
+#include <string>
+#include <vector>
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Command-line options
+//===----------------------------------------------------------------------===//
+
+namespace {
+ cl::opt<std::string>
+ InputIR("input-IR",
+ cl::desc("Specify the name of an IR file to load for function definitions"),
+ cl::value_desc("input IR file name"));
+
+ cl::opt<bool>
+ VerboseOutput("verbose",
+ cl::desc("Enable verbose output (results, IR, etc.) to stderr"),
+ cl::init(false));
+
+ cl::opt<bool>
+ SuppressPrompts("suppress-prompts",
+ cl::desc("Disable printing the 'ready' prompt"),
+ cl::init(false));
+
+ cl::opt<bool>
+ DumpModulesOnExit("dump-modules",
+ cl::desc("Dump IR from modules to stderr on shutdown"),
+ cl::init(false));
+
+ cl::opt<bool> UseMCJIT(
+ "use-mcjit", cl::desc("Use the MCJIT execution engine"),
+ cl::init(true));
+
+ cl::opt<bool> EnableLazyCompilation(
+ "enable-lazy-compilation", cl::desc("Enable lazy compilation when using the MCJIT engine"),
+ cl::init(true));
+
+ cl::opt<bool> UseObjectCache(
+ "use-object-cache", cl::desc("Enable use of the MCJIT object caching"),
+ cl::init(false));
+} // namespace
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ if (IdentifierStr == "var") return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &name) : Name(name) {}
+ const std::string &getName() const { return Name; }
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<ExprAST*> Args;
+public:
+ CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+
+ void CreateArgumentAllocas(Function *F);
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser is looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<ExprAST*> Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// varexpr ::= 'var' identifier ('=' expression)?
+// (',' identifier ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ case tok_var: return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal < 1 || NumVal > 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind && ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Quick and dirty hack
+//===----------------------------------------------------------------------===//
+
+// FIXME: Obviously we can do better than this
+std::string GenerateUniqueName(const char *root)
+{
+ static int i = 0;
+ char s[16];
+ sprintf(s, "%s%d", root, i++);
+ std::string S = s;
+ return S;
+}
+
+std::string MakeLegalFunctionName(std::string Name)
+{
+ std::string NewName;
+ if (!Name.length())
+ return GenerateUniqueName("anon_func_");
+
+ // Start with what we have
+ NewName = Name;
+
+ // Look for a numberic first character
+ if (NewName.find_first_of("0123456789") == 0) {
+ NewName.insert(0, 1, 'n');
+ }
+
+ // Replace illegal characters with their ASCII equivalent
+ std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
+ size_t pos;
+ while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
+ char old_c = NewName.at(pos);
+ char new_str[16];
+ sprintf(new_str, "%d", (int)old_c);
+ NewName = NewName.replace(pos, 1, new_str);
+ }
+
+ return NewName;
+}
+
+//===----------------------------------------------------------------------===//
+// MCJIT object cache class
+//===----------------------------------------------------------------------===//
+
+class MCJITObjectCache : public ObjectCache {
+public:
+ MCJITObjectCache() {
+ // Set IR cache directory
+ sys::fs::current_path(CacheDir);
+ sys::path::append(CacheDir, "toy_object_cache");
+ }
+
+ virtual ~MCJITObjectCache() {
+ }
+
+ virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
+ // Get the ModuleID
+ const std::string ModuleID = M->getModuleIdentifier();
+
+ // If we've flagged this as an IR file, cache it
+ if (0 == ModuleID.compare(0, 3, "IR:")) {
+ std::string IRFileName = ModuleID.substr(3);
+ SmallString<128>IRCacheFile = CacheDir;
+ sys::path::append(IRCacheFile, IRFileName);
+ if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) {
+ fprintf(stderr, "Unable to create cache directory\n");
+ return;
+ }
+ std::string ErrStr;
+ raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary);
+ IRObjectFile << Obj->getBuffer();
+ }
+ }
+
+ // MCJIT will call this function before compiling any module
+ // MCJIT takes ownership of both the MemoryBuffer object and the memory
+ // to which it refers.
+ virtual MemoryBuffer* getObject(const Module* M) {
+ // Get the ModuleID
+ const std::string ModuleID = M->getModuleIdentifier();
+
+ // If we've flagged this as an IR file, cache it
+ if (0 == ModuleID.compare(0, 3, "IR:")) {
+ std::string IRFileName = ModuleID.substr(3);
+ SmallString<128> IRCacheFile = CacheDir;
+ sys::path::append(IRCacheFile, IRFileName);
+ if (!sys::fs::exists(IRCacheFile.str())) {
+ // This file isn't in our cache
+ return NULL;
+ }
+ OwningPtr<MemoryBuffer> IRObjectBuffer;
+ MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
+ // MCJIT will want to write into this buffer, and we don't want that
+ // because the file has probably just been mmapped. Instead we make
+ // a copy. The filed-based buffer will be released when it goes
+ // out of scope.
+ return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
+ }
+
+ return NULL;
+ }
+
+private:
+ SmallString<128> CacheDir;
+};
+
+//===----------------------------------------------------------------------===//
+// IR input file handler
+//===----------------------------------------------------------------------===//
+
+Module* parseInputIR(std::string InputFile, LLVMContext &Context) {
+ SMDiagnostic Err;
+ Module *M = ParseIRFile(InputFile, Err, Context);
+ if (!M) {
+ Err.print("IR parsing failed: ", errs());
+ return NULL;
+ }
+
+ char ModID[256];
+ sprintf(ModID, "IR:%s", InputFile.c_str());
+ M->setModuleIdentifier(ModID);
+ return M;
+}
+
+//===----------------------------------------------------------------------===//
+// Helper class for execution engine abstraction
+//===----------------------------------------------------------------------===//
+
+class BaseHelper
+{
+public:
+ BaseHelper() {}
+ virtual ~BaseHelper() {}
+
+ virtual Function *getFunction(const std::string FnName) = 0;
+ virtual Module *getModuleForNewFunction() = 0;
+ virtual void *getPointerToFunction(Function* F) = 0;
+ virtual void *getPointerToNamedFunction(const std::string &Name) = 0;
+ virtual void closeCurrentModule() = 0;
+ virtual void runFPM(Function &F) = 0;
+ virtual void dump();
+};
+
+//===----------------------------------------------------------------------===//
+// Helper class for JIT execution engine
+//===----------------------------------------------------------------------===//
+
+class JITHelper : public BaseHelper {
+public:
+ JITHelper(LLVMContext &Context) {
+ // Make the module, which holds all the code.
+ if (!InputIR.empty()) {
+ TheModule = parseInputIR(InputIR, Context);
+ } else {
+ TheModule = new Module("my cool jit", Context);
+ }
+
+ // Create the JIT. This takes ownership of the module.
+ std::string ErrStr;
+ TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+ if (!TheExecutionEngine) {
+ fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+ exit(1);
+ }
+
+ TheFPM = new FunctionPassManager(TheModule);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ TheFPM->add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+ // Provide basic AliasAnalysis support for GVN.
+ TheFPM->add(createBasicAliasAnalysisPass());
+ // Promote allocas to registers.
+ TheFPM->add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ TheFPM->add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ TheFPM->add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ TheFPM->add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ TheFPM->add(createCFGSimplificationPass());
+
+ TheFPM->doInitialization();
+ }
+
+ virtual ~JITHelper() {
+ if (TheFPM)
+ delete TheFPM;
+ if (TheExecutionEngine)
+ delete TheExecutionEngine;
+ }
+
+ virtual Function *getFunction(const std::string FnName) {
+ assert(TheModule);
+ return TheModule->getFunction(FnName);
+ }
+
+ virtual Module *getModuleForNewFunction() {
+ assert(TheModule);
+ return TheModule;
+ }
+
+ virtual void *getPointerToFunction(Function* F) {
+ assert(TheExecutionEngine);
+ return TheExecutionEngine->getPointerToFunction(F);
+ }
+
+ virtual void *getPointerToNamedFunction(const std::string &Name) {
+ return TheExecutionEngine->getPointerToNamedFunction(Name);
+ }
+
+ virtual void runFPM(Function &F) {
+ assert(TheFPM);
+ TheFPM->run(F);
+ }
+
+ virtual void closeCurrentModule() {
+ // This should never be called for JIT
+ assert(false);
+ }
+
+ virtual void dump() {
+ assert(TheModule);
+ TheModule->dump();
+ }
+
+private:
+ Module *TheModule;
+ ExecutionEngine *TheExecutionEngine;
+ FunctionPassManager *TheFPM;
+};
+
+//===----------------------------------------------------------------------===//
+// MCJIT helper class
+//===----------------------------------------------------------------------===//
+
+class MCJITHelper : public BaseHelper
+{
+public:
+ MCJITHelper(LLVMContext& C) : Context(C), CurrentModule(NULL) {
+ if (!InputIR.empty()) {
+ Module *M = parseInputIR(InputIR, Context);
+ Modules.push_back(M);
+ if (!EnableLazyCompilation)
+ compileModule(M);
+ }
+ }
+ ~MCJITHelper();
+
+ Function *getFunction(const std::string FnName);
+ Module *getModuleForNewFunction();
+ void *getPointerToFunction(Function* F);
+ void *getPointerToNamedFunction(const std::string &Name);
+ void closeCurrentModule();
+ virtual void runFPM(Function &F) {} // Not needed, see compileModule
+ void dump();
+
+protected:
+ ExecutionEngine *compileModule(Module *M);
+
+private:
+ typedef std::vector<Module*> ModuleVector;
+
+ MCJITObjectCache OurObjectCache;
+
+ LLVMContext &Context;
+ ModuleVector Modules;
+
+ std::map<Module *, ExecutionEngine *> EngineMap;
+
+ Module *CurrentModule;
+};
+
+class HelpingMemoryManager : public SectionMemoryManager
+{
+ HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
+ void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
+
+public:
+ HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
+ virtual ~HelpingMemoryManager() {}
+
+ /// This method returns the address of the specified function.
+ /// Our implementation will attempt to find functions in other
+ /// modules associated with the MCJITHelper to cross link functions
+ /// from one generated module to another.
+ ///
+ /// If \p AbortOnFailure is false and no function with the given name is
+ /// found, this function returns a null pointer. Otherwise, it prints a
+ /// message to stderr and aborts.
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true);
+private:
+ MCJITHelper *MasterHelper;
+};
+
+void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure)
+{
+ // Try the standard symbol resolution first, but ask it not to abort.
+ void *pfn = RTDyldMemoryManager::getPointerToNamedFunction(Name, false);
+ if (pfn)
+ return pfn;
+
+ pfn = MasterHelper->getPointerToNamedFunction(Name);
+ if (!pfn && AbortOnFailure)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+ return pfn;
+}
+
+MCJITHelper::~MCJITHelper()
+{
+ // Walk the vector of modules.
+ ModuleVector::iterator it, end;
+ for (it = Modules.begin(), end = Modules.end();
+ it != end; ++it) {
+ // See if we have an execution engine for this module.
+ std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
+ // If we have an EE, the EE owns the module so just delete the EE.
+ if (mapIt != EngineMap.end()) {
+ delete mapIt->second;
+ } else {
+ // Otherwise, we still own the module. Delete it now.
+ delete *it;
+ }
+ }
+}
+
+Function *MCJITHelper::getFunction(const std::string FnName) {
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ Function *F = (*it)->getFunction(FnName);
+ if (F) {
+ if (*it == CurrentModule)
+ return F;
+
+ assert(CurrentModule != NULL);
+
+ // This function is in a module that has already been JITed.
+ // We just need a prototype for external linkage.
+ Function *PF = CurrentModule->getFunction(FnName);
+ if (PF && !PF->empty()) {
+ ErrorF("redefinition of function across modules");
+ return 0;
+ }
+
+ // If we don't have a prototype yet, create one.
+ if (!PF)
+ PF = Function::Create(F->getFunctionType(),
+ Function::ExternalLinkage,
+ FnName,
+ CurrentModule);
+ return PF;
+ }
+ }
+ return NULL;
+}
+
+Module *MCJITHelper::getModuleForNewFunction() {
+ // If we have a Module that hasn't been JITed, use that.
+ if (CurrentModule)
+ return CurrentModule;
+
+ // Otherwise create a new Module.
+ std::string ModName = GenerateUniqueName("mcjit_module_");
+ Module *M = new Module(ModName, Context);
+ Modules.push_back(M);
+ CurrentModule = M;
+
+ return M;
+}
+
+ExecutionEngine *MCJITHelper::compileModule(Module *M) {
+ assert(EngineMap.find(M) == EngineMap.end());
+
+ if (M == CurrentModule)
+ closeCurrentModule();
+
+ std::string ErrStr;
+ ExecutionEngine *EE = EngineBuilder(M)
+ .setErrorStr(&ErrStr)
+ .setUseMCJIT(true)
+ .setMCJITMemoryManager(new HelpingMemoryManager(this))
+ .create();
+ if (!EE) {
+ fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+ exit(1);
+ }
+
+ if (UseObjectCache)
+ EE->setObjectCache(&OurObjectCache);
+ // Get the ModuleID so we can identify IR input files
+ const std::string ModuleID = M->getModuleIdentifier();
+
+ // If we've flagged this as an IR file, it doesn't need function passes run.
+ if (0 != ModuleID.compare(0, 3, "IR:")) {
+ FunctionPassManager *FPM = 0;
+
+ // Create a FPM for this module
+ FPM = new FunctionPassManager(M);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ FPM->add(new DataLayout(*EE->getDataLayout()));
+ // Provide basic AliasAnalysis support for GVN.
+ FPM->add(createBasicAliasAnalysisPass());
+ // Promote allocas to registers.
+ FPM->add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ FPM->add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ FPM->add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ FPM->add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ FPM->add(createCFGSimplificationPass());
+
+ FPM->doInitialization();
+
+ // For each function in the module
+ Module::iterator it;
+ Module::iterator end = M->end();
+ for (it = M->begin(); it != end; ++it) {
+ // Run the FPM on this function
+ FPM->run(*it);
+ }
+
+ delete FPM;
+ }
+
+ EE->finalizeObject();
+
+ // Store this engine
+ EngineMap[M] = EE;
+
+ return EE;
+}
+
+void *MCJITHelper::getPointerToFunction(Function* F) {
+ // Look for this function in an existing module
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ std::string FnName = F->getName();
+ for (it = begin; it != end; ++it) {
+ Function *MF = (*it)->getFunction(FnName);
+ if (MF == F) {
+ std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
+ if (eeIt != EngineMap.end()) {
+ void *P = eeIt->second->getPointerToFunction(F);
+ if (P)
+ return P;
+ } else {
+ ExecutionEngine *EE = compileModule(*it);
+ void *P = EE->getPointerToFunction(F);
+ if (P)
+ return P;
+ }
+ }
+ }
+ return NULL;
+}
+
+void MCJITHelper::closeCurrentModule() {
+ // If we have an open module (and we should), pack it up
+ if (CurrentModule) {
+ CurrentModule = NULL;
+ }
+}
+
+void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
+{
+ // Look for the functions in our modules, compiling only as necessary
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ Function *F = (*it)->getFunction(Name);
+ if (F && !F->empty()) {
+ std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
+ if (eeIt != EngineMap.end()) {
+ void *P = eeIt->second->getPointerToFunction(F);
+ if (P)
+ return P;
+ } else {
+ ExecutionEngine *EE = compileModule(*it);
+ void *P = EE->getPointerToFunction(F);
+ if (P)
+ return P;
+ }
+ }
+ }
+ return NULL;
+}
+
+void MCJITHelper::dump()
+{
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it)
+ (*it)->dump();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static BaseHelper *TheHelper;
+static IRBuilder<> Builder(getGlobalContext());
+static std::map<std::string, AllocaInst*> NamedValues;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &VarName) {
+ IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+ TheFunction->getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
+ VarName.c_str());
+}
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ if (V == 0) return ErrorV("Unknown variable name");
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand->Codegen();
+ if (OperandV == 0) return 0;
+ Function *F;
+ if (UseMCJIT)
+ F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
+ else
+ F = TheHelper->getFunction(std::string("unary")+Opcode);
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ // This assume we're building without RTTI because LLVM builds that way by
+ // default. If you build LLVM with RTTI this can be changed to a
+ // dynamic_cast for automatic error checking.
+ VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS->Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE->getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+ Value *L = LHS->Codegen();
+ Value *R = RHS->Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateFAdd(L, R, "addtmp");
+ case '-': return Builder.CreateFSub(L, R, "subtmp");
+ case '*': return Builder.CreateFMul(L, R, "multmp");
+ case '/': return Builder.CreateFDiv(L, R, "divtmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F;
+ if (UseMCJIT)
+ F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
+ else
+ F = TheHelper->getFunction(std::string("binary")+Op);
+ assert(F && "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheHelper->getFunction(Callee);
+ if (CalleeF == 0) {
+ char error_str[64];
+ sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
+ return ErrorV(error_str);
+ }
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector<Value*> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond->Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+ BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+ "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // var = alloca double
+ // ...
+ // start = startexpr
+ // store start -> var
+ // goto loop
+ // loop:
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // endcond = endexpr
+ //
+ // curvar = load var
+ // nextvar = curvar + step
+ // store nextvar -> var
+ // br endcond, loop, endloop
+ // outloop:
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->Codegen();
+ if (StartVal == 0) return 0;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body->Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step->Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End->Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+Value *VarExprAST::Codegen() {
+ std::vector<AllocaInst *> OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init->Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body->Codegen();
+ if (BodyVal == 0) return 0;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<Type*> Doubles(Args.size(),
+ Type::getDoubleTy(getGlobalContext()));
+ FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+ Doubles, false);
+
+ std::string FnName;
+ if (UseMCJIT)
+ FnName = MakeLegalFunctionName(Name);
+ else
+ FnName = Name;
+
+ Module* M = TheHelper->getModuleForNewFunction();
+ Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
+
+ // FIXME: Implement duplicate function detection.
+ // The check below will only work if the duplicate is in the open module.
+ // If F conflicted, there was already something named 'Name'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F->getName() != FnName) {
+ // Delete the one we just made and get the existing one.
+ F->eraseFromParent();
+ F = M->getFunction(FnName);
+ // If F already has a body, reject this.
+ if (!F->empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+ // If F took a different number of args, reject.
+ if (F->arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+ ++AI, ++Idx)
+ AI->setName(Args[Idx]);
+
+ return F;
+}
+
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F->arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto->isBinaryOp())
+ BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Add all arguments to the symbol table and create their allocas.
+ Proto->CreateArgumentAllocas(TheFunction);
+
+ if (Value *RetVal = Body->Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ // Optimize the function.
+ if (!UseMCJIT)
+ TheHelper->runFPM(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+
+ if (Proto->isBinaryOp())
+ BinopPrecedence.erase(Proto->getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ if (UseMCJIT && EnableLazyCompilation)
+ TheHelper->closeCurrentModule();
+ Function *LF = F->Codegen();
+ if (LF && VerboseOutput) {
+ fprintf(stderr, "Read function definition:");
+ LF->dump();
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ Function *F = P->Codegen();
+ if (F && VerboseOutput) {
+ fprintf(stderr, "Read extern: ");
+ F->dump();
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top-level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F->Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheHelper->getPointerToFunction(LF);
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())(intptr_t)FPtr;
+ double Result = FP();
+ if (VerboseOutput)
+ fprintf(stderr, "Evaluated to %f\n", Result);
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+ if (!SuppressPrompts)
+ fprintf(stderr, "ready> ");
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top-level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f", X);
+ return 0;
+}
+
+extern "C"
+double printlf() {
+ printf("\n");
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main(int argc, char **argv) {
+ InitializeNativeTarget();
+ if (UseMCJIT) {
+ InitializeNativeTargetAsmPrinter();
+ InitializeNativeTargetAsmParser();
+ }
+ LLVMContext &Context = getGlobalContext();
+
+ cl::ParseCommandLineOptions(argc, argv,
+ "Kaleidoscope example program\n");
+
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['<'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['/'] = 40;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Make the Helper, which holds all the code.
+ if (UseMCJIT)
+ TheHelper = new MCJITHelper(Context);
+ else
+ TheHelper = new JITHelper(Context);
+
+ // Prime the first token.
+ if (!SuppressPrompts)
+ fprintf(stderr, "ready> ");
+ getNextToken();
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+ // Print out all of the generated code.
+ if (DumpModulesOnExit)
+ TheHelper->dump();
+
+ return 0;
+}
diff --git a/examples/Kaleidoscope/MCJIT/initial/Makefile b/examples/Kaleidoscope/MCJIT/initial/Makefile
new file mode 100644
index 0000000..2989832
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/initial/Makefile
@@ -0,0 +1,4 @@
+all: toy-mcjit
+
+toy-mcjit : toy.cpp
+ clang++ toy.cpp -g -O3 -rdynamic -fno-rtti `llvm-config --cppflags --ldflags --libs core mcjit native` -o toy-mcjit
diff --git a/examples/Kaleidoscope/MCJIT/initial/README.txt b/examples/Kaleidoscope/MCJIT/initial/README.txt
new file mode 100644
index 0000000..b352a78
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/initial/README.txt
@@ -0,0 +1,18 @@
+//===----------------------------------------------------------------------===/
+// Kaleidoscope with MCJIT
+//===----------------------------------------------------------------------===//
+
+The files in this directory are meant to accompany the first in a series of
+three blog posts that describe the process of porting the Kaleidoscope tutorial
+to use the MCJIT execution engine instead of the older JIT engine.
+
+When the blog post is ready this file will be updated with a link to the post.
+
+The source code in this directory demonstrates the initial working version of
+the program before subsequent performance improvements are applied.
+
+This directory contain a Makefile that allow the code to be built in a
+standalone manner, independent of the larger LLVM build infrastructure. To build
+the program you will need to have 'clang++' and 'llvm-config' in your path. If
+you attempt to build using the LLVM 3.3 release, some minor modifications will
+be required, as mentioned in the blog posts. \ No newline at end of file
diff --git a/examples/Kaleidoscope/MCJIT/initial/toy.cpp b/examples/Kaleidoscope/MCJIT/initial/toy.cpp
new file mode 100644
index 0000000..c682907
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/initial/toy.cpp
@@ -0,0 +1,1381 @@
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/MCJIT.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/Transforms/Scalar.h"
+#include <cstdio>
+#include <map>
+#include <string>
+#include <vector>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ if (IdentifierStr == "var") return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &name) : Name(name) {}
+ const std::string &getName() const { return Name; }
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<ExprAST*> Args;
+public:
+ CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+
+ void CreateArgumentAllocas(Function *F);
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser is looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<ExprAST*> Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// varexpr ::= 'var' identifier ('=' expression)?
+// (',' identifier ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ case tok_var: return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal < 1 || NumVal > 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind && ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Quick and dirty hack
+//===----------------------------------------------------------------------===//
+
+// FIXME: Obviously we can do better than this
+std::string GenerateUniqueName(const char *root)
+{
+ static int i = 0;
+ char s[16];
+ sprintf(s, "%s%d", root, i++);
+ std::string S = s;
+ return S;
+}
+
+std::string MakeLegalFunctionName(std::string Name)
+{
+ std::string NewName;
+ if (!Name.length())
+ return GenerateUniqueName("anon_func_");
+
+ // Start with what we have
+ NewName = Name;
+
+ // Look for a numberic first character
+ if (NewName.find_first_of("0123456789") == 0) {
+ NewName.insert(0, 1, 'n');
+ }
+
+ // Replace illegal characters with their ASCII equivalent
+ std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
+ size_t pos;
+ while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
+ char old_c = NewName.at(pos);
+ char new_str[16];
+ sprintf(new_str, "%d", (int)old_c);
+ NewName = NewName.replace(pos, 1, new_str);
+ }
+
+ return NewName;
+}
+
+//===----------------------------------------------------------------------===//
+// MCJIT helper class
+//===----------------------------------------------------------------------===//
+
+class MCJITHelper
+{
+public:
+ MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
+ ~MCJITHelper();
+
+ Function *getFunction(const std::string FnName);
+ Module *getModuleForNewFunction();
+ void *getPointerToFunction(Function* F);
+ void *getPointerToNamedFunction(const std::string &Name);
+ void dump();
+
+private:
+ typedef std::vector<Module*> ModuleVector;
+ typedef std::vector<ExecutionEngine*> EngineVector;
+
+ LLVMContext &Context;
+ Module *OpenModule;
+ ModuleVector Modules;
+ EngineVector Engines;
+};
+
+class HelpingMemoryManager : public SectionMemoryManager
+{
+ HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
+ void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
+
+public:
+ HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
+ virtual ~HelpingMemoryManager() {}
+
+ /// This method returns the address of the specified function.
+ /// Our implementation will attempt to find functions in other
+ /// modules associated with the MCJITHelper to cross link functions
+ /// from one generated module to another.
+ ///
+ /// If \p AbortOnFailure is false and no function with the given name is
+ /// found, this function returns a null pointer. Otherwise, it prints a
+ /// message to stderr and aborts.
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true);
+private:
+ MCJITHelper *MasterHelper;
+};
+
+void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure)
+{
+ // Try the standard symbol resolution first, but ask it not to abort.
+ void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
+ if (pfn)
+ return pfn;
+
+ pfn = MasterHelper->getPointerToNamedFunction(Name);
+ if (!pfn && AbortOnFailure)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+ return pfn;
+}
+
+MCJITHelper::~MCJITHelper()
+{
+ if (OpenModule)
+ delete OpenModule;
+ EngineVector::iterator begin = Engines.begin();
+ EngineVector::iterator end = Engines.end();
+ EngineVector::iterator it;
+ for (it = begin; it != end; ++it)
+ delete *it;
+}
+
+Function *MCJITHelper::getFunction(const std::string FnName) {
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ Function *F = (*it)->getFunction(FnName);
+ if (F) {
+ if (*it == OpenModule)
+ return F;
+
+ assert(OpenModule != NULL);
+
+ // This function is in a module that has already been JITed.
+ // We need to generate a new prototype for external linkage.
+ Function *PF = OpenModule->getFunction(FnName);
+ if (PF && !PF->empty()) {
+ ErrorF("redefinition of function across modules");
+ return 0;
+ }
+
+ // If we don't have a prototype yet, create one.
+ if (!PF)
+ PF = Function::Create(F->getFunctionType(),
+ Function::ExternalLinkage,
+ FnName,
+ OpenModule);
+ return PF;
+ }
+ }
+ return NULL;
+}
+
+Module *MCJITHelper::getModuleForNewFunction() {
+ // If we have a Module that hasn't been JITed, use that.
+ if (OpenModule)
+ return OpenModule;
+
+ // Otherwise create a new Module.
+ std::string ModName = GenerateUniqueName("mcjit_module_");
+ Module *M = new Module(ModName, Context);
+ Modules.push_back(M);
+ OpenModule = M;
+ return M;
+}
+
+void *MCJITHelper::getPointerToFunction(Function* F) {
+ // See if an existing instance of MCJIT has this function.
+ EngineVector::iterator begin = Engines.begin();
+ EngineVector::iterator end = Engines.end();
+ EngineVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ void *P = (*it)->getPointerToFunction(F);
+ if (P)
+ return P;
+ }
+
+ // If we didn't find the function, see if we can generate it.
+ if (OpenModule) {
+ std::string ErrStr;
+ ExecutionEngine *NewEngine = EngineBuilder(OpenModule)
+ .setErrorStr(&ErrStr)
+ .setUseMCJIT(true)
+ .setMCJITMemoryManager(new HelpingMemoryManager(this))
+ .create();
+ if (!NewEngine) {
+ fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+ exit(1);
+ }
+
+ // Create a function pass manager for this engine
+ FunctionPassManager *FPM = new FunctionPassManager(OpenModule);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ FPM->add(new DataLayout(*NewEngine->getDataLayout()));
+ // Provide basic AliasAnalysis support for GVN.
+ FPM->add(createBasicAliasAnalysisPass());
+ // Promote allocas to registers.
+ FPM->add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ FPM->add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ FPM->add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ FPM->add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ FPM->add(createCFGSimplificationPass());
+ FPM->doInitialization();
+
+ // For each function in the module
+ Module::iterator it;
+ Module::iterator end = OpenModule->end();
+ for (it = OpenModule->begin(); it != end; ++it) {
+ // Run the FPM on this function
+ FPM->run(*it);
+ }
+
+ // We don't need this anymore
+ delete FPM;
+
+ OpenModule = NULL;
+ Engines.push_back(NewEngine);
+ NewEngine->finalizeObject();
+ return NewEngine->getPointerToFunction(F);
+ }
+ return NULL;
+}
+
+void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
+{
+ // Look for the function in each of our execution engines.
+ EngineVector::iterator begin = Engines.begin();
+ EngineVector::iterator end = Engines.end();
+ EngineVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ if (Function *F = (*it)->FindFunctionNamed(Name.c_str()))
+ return (*it)->getPointerToFunction(F);
+ }
+
+ return NULL;
+}
+
+void MCJITHelper::dump()
+{
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it)
+ (*it)->dump();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static MCJITHelper *TheHelper;
+static IRBuilder<> Builder(getGlobalContext());
+static std::map<std::string, AllocaInst*> NamedValues;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &VarName) {
+ IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+ TheFunction->getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
+ VarName.c_str());
+}
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ char ErrStr[256];
+ sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
+ if (V == 0) return ErrorV(ErrStr);
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand->Codegen();
+ if (OperandV == 0) return 0;
+
+ Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS->Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE->getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+ Value *L = LHS->Codegen();
+ Value *R = RHS->Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateFAdd(L, R, "addtmp");
+ case '-': return Builder.CreateFSub(L, R, "subtmp");
+ case '*': return Builder.CreateFMul(L, R, "multmp");
+ case '/': return Builder.CreateFDiv(L, R, "divtmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
+ assert(F && "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheHelper->getFunction(Callee);
+ if (CalleeF == 0)
+ return ErrorV("Unknown function referenced");
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector<Value*> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond->Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+ BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+ "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // var = alloca double
+ // ...
+ // start = startexpr
+ // store start -> var
+ // goto loop
+ // loop:
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // endcond = endexpr
+ //
+ // curvar = load var
+ // nextvar = curvar + step
+ // store nextvar -> var
+ // br endcond, loop, endloop
+ // outloop:
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->Codegen();
+ if (StartVal == 0) return 0;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body->Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step->Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End->Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+Value *VarExprAST::Codegen() {
+ std::vector<AllocaInst *> OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init->Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body->Codegen();
+ if (BodyVal == 0) return 0;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<Type*> Doubles(Args.size(),
+ Type::getDoubleTy(getGlobalContext()));
+ FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+ Doubles, false);
+
+ std::string FnName = MakeLegalFunctionName(Name);
+
+ Module* M = TheHelper->getModuleForNewFunction();
+
+ Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
+
+ // If F conflicted, there was already something named 'FnName'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F->getName() != FnName) {
+ // Delete the one we just made and get the existing one.
+ F->eraseFromParent();
+ F = M->getFunction(Name);
+
+ // If F already has a body, reject this.
+ if (!F->empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+
+ // If F took a different number of args, reject.
+ if (F->arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+ ++AI, ++Idx)
+ AI->setName(Args[Idx]);
+
+ return F;
+}
+
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F->arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto->isBinaryOp())
+ BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Add all arguments to the symbol table and create their allocas.
+ Proto->CreateArgumentAllocas(TheFunction);
+
+ if (Value *RetVal = Body->Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+
+ if (Proto->isBinaryOp())
+ BinopPrecedence.erase(Proto->getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ if (Function *LF = F->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read function definition:");
+ LF->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ if (Function *F = P->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read extern: ");
+ F->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top-level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F->Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheHelper->getPointerToFunction(LF);
+
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())(intptr_t)FPtr;
+#ifdef MINIMAL_STDERR_OUTPUT
+ FP();
+#else
+ fprintf(stderr, "Evaluated to %f\n", FP());
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top-level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f", X);
+ return 0;
+}
+
+extern "C"
+double printlf() {
+ printf("\n");
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+ InitializeNativeTarget();
+ InitializeNativeTargetAsmPrinter();
+ InitializeNativeTargetAsmParser();
+ LLVMContext &Context = getGlobalContext();
+
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['<'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['/'] = 40;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Prime the first token.
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ getNextToken();
+
+ // Make the helper, which holds all the code.
+ TheHelper = new MCJITHelper(Context);
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+#ifndef MINIMAL_STDERR_OUTPUT
+ // Print out all of the generated code.
+ TheHelper->dump();
+#endif
+
+ return 0;
+}
diff --git a/examples/Kaleidoscope/MCJIT/lazy/Makefile b/examples/Kaleidoscope/MCJIT/lazy/Makefile
new file mode 100644
index 0000000..21cbc18
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/lazy/Makefile
@@ -0,0 +1,7 @@
+all: toy-mcjit toy-jit
+
+toy-mcjit : toy.cpp
+ clang++ toy.cpp -g -O3 -rdynamic -fno-rtti `llvm-config --cppflags --ldflags --libs core mcjit native` -o toy-mcjit
+
+toy-jit : toy-jit.cpp
+ clang++ toy-jit.cpp -g -O3 -rdynamic `llvm-config --cppflags --ldflags --libs core jit native` -o toy-jit
diff --git a/examples/Kaleidoscope/MCJIT/lazy/README.txt b/examples/Kaleidoscope/MCJIT/lazy/README.txt
new file mode 100644
index 0000000..c5c271e
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/lazy/README.txt
@@ -0,0 +1,25 @@
+//===----------------------------------------------------------------------===/
+// Kaleidoscope with MCJIT
+//===----------------------------------------------------------------------===//
+
+The files in this directory are meant to accompany the first in a series of
+three blog posts that describe the process of porting the Kaleidoscope tutorial
+to use the MCJIT execution engine instead of the older JIT engine.
+
+When the blog post is ready this file will be updated with a link to the post.
+
+The source code in this directory demonstrates the second version of the
+program, now modified to implement a sort of 'lazy' compilation.
+
+The toy-jit.cpp file contains a version of the original JIT-based source code
+that has been modified to disable most stderr output for timing purposes.
+
+This directory contain a Makefile that allow the code to be built in a
+standalone manner, independent of the larger LLVM build infrastructure. To build
+the program you will need to have 'clang++' and 'llvm-config' in your path. If
+you attempt to build using the LLVM 3.3 release, some minor modifications will
+be required.
+
+This directory also contains a Python script that may be used to generate random
+input for the program and test scripts to capture data for rough performance
+comparisons. \ No newline at end of file
diff --git a/examples/Kaleidoscope/MCJIT/lazy/genk-timing.py b/examples/Kaleidoscope/MCJIT/lazy/genk-timing.py
new file mode 100644
index 0000000..96dd6db
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/lazy/genk-timing.py
@@ -0,0 +1,219 @@
+#!/usr/bin/env python
+
+import sys
+import random
+
+class TimingScriptGenerator:
+ """Used to generate a bash script which will invoke the toy and time it"""
+ def __init__(self, scriptname, outputname):
+ self.timeFile = outputname
+ self.shfile = open(scriptname, 'w')
+ self.shfile.write("echo \"\" > %s\n" % self.timeFile)
+
+ def writeTimingCall(self, filename, numFuncs, funcsCalled, totalCalls):
+ """Echo some comments and invoke both versions of toy"""
+ rootname = filename
+ if '.' in filename:
+ rootname = filename[:filename.rfind('.')]
+ self.shfile.write("echo \"%s: Calls %d of %d functions, %d total\" >> %s\n" % (filename, funcsCalled, numFuncs, totalCalls, self.timeFile))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With MCJIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy-mcjit < %s > %s-mcjit.out 2> %s-mcjit.err\n" % (filename, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"With JIT\" >> %s\n" % self.timeFile)
+ self.shfile.write("/usr/bin/time -f \"Command %C\\n\\tuser time: %U s\\n\\tsytem time: %S s\\n\\tmax set: %M kb\"")
+ self.shfile.write(" -o %s -a " % self.timeFile)
+ self.shfile.write("./toy-jit < %s > %s-jit.out 2> %s-jit.err\n" % (filename, rootname, rootname))
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+ self.shfile.write("echo \"\" >> %s\n" % self.timeFile)
+
+class KScriptGenerator:
+ """Used to generate random Kaleidoscope code"""
+ def __init__(self, filename):
+ self.kfile = open(filename, 'w')
+ self.nextFuncNum = 1
+ self.lastFuncNum = None
+ self.callWeighting = 0.1
+ # A mapping of calls within functions with no duplicates
+ self.calledFunctionTable = {}
+ # A list of function calls which will actually be executed
+ self.calledFunctions = []
+ # A comprehensive mapping of calls within functions
+ # used for computing the total number of calls
+ self.comprehensiveCalledFunctionTable = {}
+ self.totalCallsExecuted = 0
+
+ def updateTotalCallCount(self, callee):
+ # Count this call
+ self.totalCallsExecuted += 1
+ # Then count all the functions it calls
+ if callee in self.comprehensiveCalledFunctionTable:
+ for child in self.comprehensiveCalledFunctionTable[callee]:
+ self.updateTotalCallCount(child)
+
+ def updateFunctionCallMap(self, caller, callee):
+ """Maintains a map of functions that are called from other functions"""
+ if not caller in self.calledFunctionTable:
+ self.calledFunctionTable[caller] = []
+ if not callee in self.calledFunctionTable[caller]:
+ self.calledFunctionTable[caller].append(callee)
+ if not caller in self.comprehensiveCalledFunctionTable:
+ self.comprehensiveCalledFunctionTable[caller] = []
+ self.comprehensiveCalledFunctionTable[caller].append(callee)
+
+ def updateCalledFunctionList(self, callee):
+ """Maintains a list of functions that will actually be called"""
+ # Update the total call count
+ self.updateTotalCallCount(callee)
+ # If this function is already in the list, don't do anything else
+ if callee in self.calledFunctions:
+ return
+ # Add this function to the list of those that will be called.
+ self.calledFunctions.append(callee)
+ # If this function calls other functions, add them too
+ if callee in self.calledFunctionTable:
+ for subCallee in self.calledFunctionTable[callee]:
+ self.updateCalledFunctionList(subCallee)
+
+ def setCallWeighting(self, weight):
+ """ Sets the probably of generating a function call"""
+ self.callWeighting = weight
+
+ def writeln(self, line):
+ self.kfile.write(line + '\n')
+
+ def writeComment(self, comment):
+ self.writeln('# ' + comment)
+
+ def writeEmptyLine(self):
+ self.writeln("")
+
+ def writePredefinedFunctions(self):
+ self.writeComment("Define ':' for sequencing: as a low-precedence operator that ignores operands")
+ self.writeComment("and just returns the RHS.")
+ self.writeln("def binary : 1 (x y) y;")
+ self.writeEmptyLine()
+ self.writeComment("Helper functions defined within toy")
+ self.writeln("extern putchard(x);")
+ self.writeln("extern printd(d);")
+ self.writeln("extern printlf();")
+ self.writeEmptyLine()
+ self.writeComment("Print the result of a function call")
+ self.writeln("def printresult(N Result)")
+ self.writeln(" # 'result('")
+ self.writeln(" putchard(114) : putchard(101) : putchard(115) : putchard(117) : putchard(108) : putchard(116) : putchard(40) :")
+ self.writeln(" printd(N) :");
+ self.writeln(" # ') = '")
+ self.writeln(" putchard(41) : putchard(32) : putchard(61) : putchard(32) :")
+ self.writeln(" printd(Result) :");
+ self.writeln(" printlf();")
+ self.writeEmptyLine()
+
+ def writeRandomOperation(self, LValue, LHS, RHS):
+ shouldCallFunc = (self.lastFuncNum > 2 and random.random() < self.callWeighting)
+ if shouldCallFunc:
+ funcToCall = random.randrange(1, self.lastFuncNum - 1)
+ self.updateFunctionCallMap(self.lastFuncNum, funcToCall)
+ self.writeln(" %s = func%d(%s, %s) :" % (LValue, funcToCall, LHS, RHS))
+ else:
+ possibleOperations = ["+", "-", "*", "/"]
+ operation = random.choice(possibleOperations)
+ if operation == "-":
+ # Don't let our intermediate value become zero
+ # This is complicated by the fact that '<' is our only comparison operator
+ self.writeln(" if %s < %s then" % (LHS, RHS))
+ self.writeln(" %s = %s %s %s" % (LValue, LHS, operation, RHS))
+ self.writeln(" else if %s < %s then" % (RHS, LHS))
+ self.writeln(" %s = %s %s %s" % (LValue, LHS, operation, RHS))
+ self.writeln(" else")
+ self.writeln(" %s = %s %s %f :" % (LValue, LHS, operation, random.uniform(1, 100)))
+ else:
+ self.writeln(" %s = %s %s %s :" % (LValue, LHS, operation, RHS))
+
+ def getNextFuncNum(self):
+ result = self.nextFuncNum
+ self.nextFuncNum += 1
+ self.lastFuncNum = result
+ return result
+
+ def writeFunction(self, elements):
+ funcNum = self.getNextFuncNum()
+ self.writeComment("Auto-generated function number %d" % funcNum)
+ self.writeln("def func%d(X Y)" % funcNum)
+ self.writeln(" var temp1 = X,")
+ self.writeln(" temp2 = Y,")
+ self.writeln(" temp3 in")
+ # Initialize the variable names to be rotated
+ first = "temp3"
+ second = "temp1"
+ third = "temp2"
+ # Write some random operations
+ for i in range(elements):
+ self.writeRandomOperation(first, second, third)
+ # Rotate the variables
+ temp = first
+ first = second
+ second = third
+ third = temp
+ self.writeln(" " + third + ";")
+ self.writeEmptyLine()
+
+ def writeFunctionCall(self):
+ self.writeComment("Call the last function")
+ arg1 = random.uniform(1, 100)
+ arg2 = random.uniform(1, 100)
+ self.writeln("printresult(%d, func%d(%f, %f) )" % (self.lastFuncNum, self.lastFuncNum, arg1, arg2))
+ self.writeEmptyLine()
+ self.updateCalledFunctionList(self.lastFuncNum)
+
+ def writeFinalFunctionCounts(self):
+ self.writeComment("Called %d of %d functions" % (len(self.calledFunctions), self.lastFuncNum))
+
+def generateKScript(filename, numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting, timingScript):
+ """ Generate a random Kaleidoscope script based on the given parameters """
+ print "Generating " + filename
+ print(" %d functions, %d elements per function, %d functions between execution" %
+ (numFuncs, elementsPerFunc, funcsBetweenExec))
+ print(" Call weighting = %f" % callWeighting)
+ script = KScriptGenerator(filename)
+ script.setCallWeighting(callWeighting)
+ script.writeComment("===========================================================================")
+ script.writeComment("Auto-generated script")
+ script.writeComment(" %d functions, %d elements per function, %d functions between execution"
+ % (numFuncs, elementsPerFunc, funcsBetweenExec))
+ script.writeComment(" call weighting = %f" % callWeighting)
+ script.writeComment("===========================================================================")
+ script.writeEmptyLine()
+ script.writePredefinedFunctions()
+ funcsSinceLastExec = 0
+ for i in range(numFuncs):
+ script.writeFunction(elementsPerFunc)
+ funcsSinceLastExec += 1
+ if funcsSinceLastExec == funcsBetweenExec:
+ script.writeFunctionCall()
+ funcsSinceLastExec = 0
+ # Always end with a function call
+ if funcsSinceLastExec > 0:
+ script.writeFunctionCall()
+ script.writeEmptyLine()
+ script.writeFinalFunctionCounts()
+ funcsCalled = len(script.calledFunctions)
+ print " Called %d of %d functions, %d total" % (funcsCalled, numFuncs, script.totalCallsExecuted)
+ timingScript.writeTimingCall(filename, numFuncs, funcsCalled, script.totalCallsExecuted)
+
+# Execution begins here
+random.seed()
+
+timingScript = TimingScriptGenerator("time-toy.sh", "timing-data.txt")
+
+dataSets = [(5000, 3, 50, 0.50), (5000, 10, 100, 0.10), (5000, 10, 5, 0.10), (5000, 10, 1, 0.0),
+ (1000, 3, 10, 0.50), (1000, 10, 100, 0.10), (1000, 10, 5, 0.10), (1000, 10, 1, 0.0),
+ ( 200, 3, 2, 0.50), ( 200, 10, 40, 0.10), ( 200, 10, 2, 0.10), ( 200, 10, 1, 0.0)]
+
+# Generate the code
+for (numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting) in dataSets:
+ filename = "test-%d-%d-%d-%d.k" % (numFuncs, elementsPerFunc, funcsBetweenExec, int(callWeighting * 100))
+ generateKScript(filename, numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting, timingScript)
+print "All done!"
diff --git a/examples/Kaleidoscope/MCJIT/lazy/toy-jit.cpp b/examples/Kaleidoscope/MCJIT/lazy/toy-jit.cpp
new file mode 100644
index 0000000..8650019
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/lazy/toy-jit.cpp
@@ -0,0 +1,1167 @@
+#define MINIMAL_STDERR_OUTPUT
+
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/JIT.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/Transforms/Scalar.h"
+#include <cstdio>
+#include <map>
+#include <string>
+#include <vector>
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ if (IdentifierStr == "var") return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &name) : Name(name) {}
+ const std::string &getName() const { return Name; }
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<ExprAST*> Args;
+public:
+ CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+
+ void CreateArgumentAllocas(Function *F);
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser is looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<ExprAST*> Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// varexpr ::= 'var' identifier ('=' expression)?
+// (',' identifier ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ case tok_var: return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal < 1 || NumVal > 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind && ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static Module *TheModule;
+static FunctionPassManager *TheFPM;
+static IRBuilder<> Builder(getGlobalContext());
+static std::map<std::string, AllocaInst*> NamedValues;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &VarName) {
+ IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+ TheFunction->getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
+ VarName.c_str());
+}
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ if (V == 0) return ErrorV("Unknown variable name");
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand->Codegen();
+ if (OperandV == 0) return 0;
+#ifdef USE_MCJIT
+ Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
+#else
+ Function *F = TheModule->getFunction(std::string("unary")+Opcode);
+#endif
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS->Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE->getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+ Value *L = LHS->Codegen();
+ Value *R = RHS->Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateFAdd(L, R, "addtmp");
+ case '-': return Builder.CreateFSub(L, R, "subtmp");
+ case '*': return Builder.CreateFMul(L, R, "multmp");
+ case '/': return Builder.CreateFDiv(L, R, "divtmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheModule->getFunction(std::string("binary")+Op);
+ assert(F && "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheModule->getFunction(Callee);
+ if (CalleeF == 0) {
+ char error_str[64];
+ sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
+ return ErrorV(error_str);
+ }
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector<Value*> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond->Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+ BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+ "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // var = alloca double
+ // ...
+ // start = startexpr
+ // store start -> var
+ // goto loop
+ // loop:
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // endcond = endexpr
+ //
+ // curvar = load var
+ // nextvar = curvar + step
+ // store nextvar -> var
+ // br endcond, loop, endloop
+ // outloop:
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->Codegen();
+ if (StartVal == 0) return 0;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body->Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step->Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End->Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+Value *VarExprAST::Codegen() {
+ std::vector<AllocaInst *> OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init->Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body->Codegen();
+ if (BodyVal == 0) return 0;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<Type*> Doubles(Args.size(),
+ Type::getDoubleTy(getGlobalContext()));
+ FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+ Doubles, false);
+
+ Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+ // If F conflicted, there was already something named 'Name'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F->getName() != Name) {
+ // Delete the one we just made and get the existing one.
+ F->eraseFromParent();
+ F = TheModule->getFunction(Name);
+ // If F already has a body, reject this.
+ if (!F->empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+ // If F took a different number of args, reject.
+ if (F->arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+ ++AI, ++Idx)
+ AI->setName(Args[Idx]);
+
+ return F;
+}
+
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F->arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto->isBinaryOp())
+ BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Add all arguments to the symbol table and create their allocas.
+ Proto->CreateArgumentAllocas(TheFunction);
+
+ if (Value *RetVal = Body->Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ // Optimize the function.
+ TheFPM->run(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+
+ if (Proto->isBinaryOp())
+ BinopPrecedence.erase(Proto->getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static ExecutionEngine *TheExecutionEngine;
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ if (Function *LF = F->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read function definition:");
+ LF->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ if (Function *F = P->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read extern: ");
+ F->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top-level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F->Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())(intptr_t)FPtr;
+#ifdef MINIMAL_STDERR_OUTPUT
+ FP();
+#else
+ fprintf(stderr, "Evaluated to %f\n", FP());
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top-level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f", X);
+ return 0;
+}
+
+extern "C"
+double printlf() {
+ printf("\n");
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main(int argc, char **argv) {
+ InitializeNativeTarget();
+ LLVMContext &Context = getGlobalContext();
+
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['<'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['/'] = 40;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Make the module, which holds all the code.
+ TheModule = new Module("my cool jit", Context);
+
+ // Create the JIT. This takes ownership of the module.
+ std::string ErrStr;
+ TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
+ if (!TheExecutionEngine) {
+ fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+ exit(1);
+ }
+
+ FunctionPassManager OurFPM(TheModule);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
+ // Provide basic AliasAnalysis support for GVN.
+ OurFPM.add(createBasicAliasAnalysisPass());
+ // Promote allocas to registers.
+ OurFPM.add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ OurFPM.add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ OurFPM.add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ OurFPM.add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ OurFPM.add(createCFGSimplificationPass());
+
+ OurFPM.doInitialization();
+
+ // Set the global so the code gen can use this.
+ TheFPM = &OurFPM;
+
+ // Prime the first token.
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ getNextToken();
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+ // Print out all of the generated code.
+ TheFPM = 0;
+#ifndef MINIMAL_STDERR_OUTPUT
+ TheModule->dump();
+#endif
+ return 0;
+}
diff --git a/examples/Kaleidoscope/MCJIT/lazy/toy.cpp b/examples/Kaleidoscope/MCJIT/lazy/toy.cpp
new file mode 100644
index 0000000..0a8d80e
--- /dev/null
+++ b/examples/Kaleidoscope/MCJIT/lazy/toy.cpp
@@ -0,0 +1,1422 @@
+#define MINIMAL_STDERR_OUTPUT
+
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/MCJIT.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/Transforms/Scalar.h"
+#include <cstdio>
+#include <map>
+#include <string>
+#include <vector>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5,
+
+ // control
+ tok_if = -6, tok_then = -7, tok_else = -8,
+ tok_for = -9, tok_in = -10,
+
+ // operators
+ tok_binary = -11, tok_unary = -12,
+
+ // var definition
+ tok_var = -13
+};
+
+static std::string IdentifierStr; // Filled in if tok_identifier
+static double NumVal; // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ if (IdentifierStr == "if") return tok_if;
+ if (IdentifierStr == "then") return tok_then;
+ if (IdentifierStr == "else") return tok_else;
+ if (IdentifierStr == "for") return tok_for;
+ if (IdentifierStr == "in") return tok_in;
+ if (IdentifierStr == "binary") return tok_binary;
+ if (IdentifierStr == "unary") return tok_unary;
+ if (IdentifierStr == "var") return tok_var;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+ double Val;
+public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+ std::string Name;
+public:
+ VariableExprAST(const std::string &name) : Name(name) {}
+ const std::string &getName() const { return Name; }
+ virtual Value *Codegen();
+};
+
+/// UnaryExprAST - Expression class for a unary operator.
+class UnaryExprAST : public ExprAST {
+ char Opcode;
+ ExprAST *Operand;
+public:
+ UnaryExprAST(char opcode, ExprAST *operand)
+ : Opcode(opcode), Operand(operand) {}
+ virtual Value *Codegen();
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<ExprAST*> Args;
+public:
+ CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+};
+
+/// IfExprAST - Expression class for if/then/else.
+class IfExprAST : public ExprAST {
+ ExprAST *Cond, *Then, *Else;
+public:
+ IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
+ : Cond(cond), Then(then), Else(_else) {}
+ virtual Value *Codegen();
+};
+
+/// ForExprAST - Expression class for for/in.
+class ForExprAST : public ExprAST {
+ std::string VarName;
+ ExprAST *Start, *End, *Step, *Body;
+public:
+ ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
+ ExprAST *step, ExprAST *body)
+ : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ virtual Value *Codegen();
+};
+
+/// VarExprAST - Expression class for var/in
+class VarExprAST : public ExprAST {
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+ ExprAST *Body;
+public:
+ VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
+ ExprAST *body)
+ : VarNames(varnames), Body(body) {}
+
+ virtual Value *Codegen();
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ bool isOperator;
+ unsigned Precedence; // Precedence if a binary op.
+public:
+ PrototypeAST(const std::string &name, const std::vector<std::string> &args,
+ bool isoperator = false, unsigned prec = 0)
+ : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+
+ bool isUnaryOp() const { return isOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+
+ char getOperatorName() const {
+ assert(isUnaryOp() || isBinaryOp());
+ return Name[Name.size()-1];
+ }
+
+ unsigned getBinaryPrecedence() const { return Precedence; }
+
+ Function *Codegen();
+
+ void CreateArgumentAllocas(Function *F);
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+/// token the parser is looking at. getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+ return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0) return -1;
+ return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+/// ::= identifier
+/// ::= identifier '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<ExprAST*> Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+}
+
+/// ifexpr ::= 'if' expression 'then' expression 'else' expression
+static ExprAST *ParseIfExpr() {
+ getNextToken(); // eat the if.
+
+ // condition.
+ ExprAST *Cond = ParseExpression();
+ if (!Cond) return 0;
+
+ if (CurTok != tok_then)
+ return Error("expected then");
+ getNextToken(); // eat the then
+
+ ExprAST *Then = ParseExpression();
+ if (Then == 0) return 0;
+
+ if (CurTok != tok_else)
+ return Error("expected else");
+
+ getNextToken();
+
+ ExprAST *Else = ParseExpression();
+ if (!Else) return 0;
+
+ return new IfExprAST(Cond, Then, Else);
+}
+
+/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
+static ExprAST *ParseForExpr() {
+ getNextToken(); // eat the for.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after for");
+
+ std::string IdName = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '=')
+ return Error("expected '=' after for");
+ getNextToken(); // eat '='.
+
+
+ ExprAST *Start = ParseExpression();
+ if (Start == 0) return 0;
+ if (CurTok != ',')
+ return Error("expected ',' after for start value");
+ getNextToken();
+
+ ExprAST *End = ParseExpression();
+ if (End == 0) return 0;
+
+ // The step value is optional.
+ ExprAST *Step = 0;
+ if (CurTok == ',') {
+ getNextToken();
+ Step = ParseExpression();
+ if (Step == 0) return 0;
+ }
+
+ if (CurTok != tok_in)
+ return Error("expected 'in' after for");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new ForExprAST(IdName, Start, End, Step, Body);
+}
+
+/// varexpr ::= 'var' identifier ('=' expression)?
+// (',' identifier ('=' expression)?)* 'in' expression
+static ExprAST *ParseVarExpr() {
+ getNextToken(); // eat the var.
+
+ std::vector<std::pair<std::string, ExprAST*> > VarNames;
+
+ // At least one variable name is required.
+ if (CurTok != tok_identifier)
+ return Error("expected identifier after var");
+
+ while (1) {
+ std::string Name = IdentifierStr;
+ getNextToken(); // eat identifier.
+
+ // Read the optional initializer.
+ ExprAST *Init = 0;
+ if (CurTok == '=') {
+ getNextToken(); // eat the '='.
+
+ Init = ParseExpression();
+ if (Init == 0) return 0;
+ }
+
+ VarNames.push_back(std::make_pair(Name, Init));
+
+ // End of var list, exit loop.
+ if (CurTok != ',') break;
+ getNextToken(); // eat the ','.
+
+ if (CurTok != tok_identifier)
+ return Error("expected identifier list after var");
+ }
+
+ // At this point, we have to have 'in'.
+ if (CurTok != tok_in)
+ return Error("expected 'in' keyword after 'var'");
+ getNextToken(); // eat 'in'.
+
+ ExprAST *Body = ParseExpression();
+ if (Body == 0) return 0;
+
+ return new VarExprAST(VarNames, Body);
+}
+
+/// primary
+/// ::= identifierexpr
+/// ::= numberexpr
+/// ::= parenexpr
+/// ::= ifexpr
+/// ::= forexpr
+/// ::= varexpr
+static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ case tok_if: return ParseIfExpr();
+ case tok_for: return ParseForExpr();
+ case tok_var: return ParseVarExpr();
+ }
+}
+
+/// unary
+/// ::= primary
+/// ::= '!' unary
+static ExprAST *ParseUnary() {
+ // If the current token is not an operator, it must be a primary expr.
+ if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
+ return ParsePrimary();
+
+ // If this is a unary operator, read it.
+ int Opc = CurTok;
+ getNextToken();
+ if (ExprAST *Operand = ParseUnary())
+ return new UnaryExprAST(Opc, Operand);
+ return 0;
+}
+
+/// binoprhs
+/// ::= ('+' unary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the unary expression after the binary operator.
+ ExprAST *RHS = ParseUnary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+}
+
+/// expression
+/// ::= unary binoprhs
+///
+static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParseUnary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+/// ::= id '(' id* ')'
+/// ::= binary LETTER number? (id, id)
+/// ::= unary LETTER (id)
+static PrototypeAST *ParsePrototype() {
+ std::string FnName;
+
+ unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
+ unsigned BinaryPrecedence = 30;
+
+ switch (CurTok) {
+ default:
+ return ErrorP("Expected function name in prototype");
+ case tok_identifier:
+ FnName = IdentifierStr;
+ Kind = 0;
+ getNextToken();
+ break;
+ case tok_unary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected unary operator");
+ FnName = "unary";
+ FnName += (char)CurTok;
+ Kind = 1;
+ getNextToken();
+ break;
+ case tok_binary:
+ getNextToken();
+ if (!isascii(CurTok))
+ return ErrorP("Expected binary operator");
+ FnName = "binary";
+ FnName += (char)CurTok;
+ Kind = 2;
+ getNextToken();
+
+ // Read the precedence if present.
+ if (CurTok == tok_number) {
+ if (NumVal < 1 || NumVal > 100)
+ return ErrorP("Invalid precedecnce: must be 1..100");
+ BinaryPrecedence = (unsigned)NumVal;
+ getNextToken();
+ }
+ break;
+ }
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ // Verify right number of names for operator.
+ if (Kind && ArgNames.size() != Kind)
+ return ErrorP("Invalid number of operands for operator");
+
+ return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+ return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Quick and dirty hack
+//===----------------------------------------------------------------------===//
+
+// FIXME: Obviously we can do better than this
+std::string GenerateUniqueName(const char *root)
+{
+ static int i = 0;
+ char s[16];
+ sprintf(s, "%s%d", root, i++);
+ std::string S = s;
+ return S;
+}
+
+std::string MakeLegalFunctionName(std::string Name)
+{
+ std::string NewName;
+ if (!Name.length())
+ return GenerateUniqueName("anon_func_");
+
+ // Start with what we have
+ NewName = Name;
+
+ // Look for a numberic first character
+ if (NewName.find_first_of("0123456789") == 0) {
+ NewName.insert(0, 1, 'n');
+ }
+
+ // Replace illegal characters with their ASCII equivalent
+ std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
+ size_t pos;
+ while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
+ char old_c = NewName.at(pos);
+ char new_str[16];
+ sprintf(new_str, "%d", (int)old_c);
+ NewName = NewName.replace(pos, 1, new_str);
+ }
+
+ return NewName;
+}
+
+//===----------------------------------------------------------------------===//
+// MCJIT helper class
+//===----------------------------------------------------------------------===//
+
+class MCJITHelper
+{
+public:
+ MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
+ ~MCJITHelper();
+
+ Function *getFunction(const std::string FnName);
+ Module *getModuleForNewFunction();
+ void *getPointerToFunction(Function* F);
+ void *getPointerToNamedFunction(const std::string &Name);
+ ExecutionEngine *compileModule(Module *M);
+ void closeCurrentModule();
+ void dump();
+
+private:
+ typedef std::vector<Module*> ModuleVector;
+
+ LLVMContext &Context;
+ Module *OpenModule;
+ ModuleVector Modules;
+ std::map<Module *, ExecutionEngine *> EngineMap;
+};
+
+class HelpingMemoryManager : public SectionMemoryManager
+{
+ HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
+ void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
+
+public:
+ HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
+ virtual ~HelpingMemoryManager() {}
+
+ /// This method returns the address of the specified function.
+ /// Our implementation will attempt to find functions in other
+ /// modules associated with the MCJITHelper to cross link functions
+ /// from one generated module to another.
+ ///
+ /// If \p AbortOnFailure is false and no function with the given name is
+ /// found, this function returns a null pointer. Otherwise, it prints a
+ /// message to stderr and aborts.
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true);
+private:
+ MCJITHelper *MasterHelper;
+};
+
+void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure)
+{
+ // Try the standard symbol resolution first, but ask it not to abort.
+ void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
+ if (pfn)
+ return pfn;
+
+ pfn = MasterHelper->getPointerToNamedFunction(Name);
+ if (!pfn && AbortOnFailure)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+ return pfn;
+}
+
+MCJITHelper::~MCJITHelper()
+{
+ // Walk the vector of modules.
+ ModuleVector::iterator it, end;
+ for (it = Modules.begin(), end = Modules.end();
+ it != end; ++it) {
+ // See if we have an execution engine for this module.
+ std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
+ // If we have an EE, the EE owns the module so just delete the EE.
+ if (mapIt != EngineMap.end()) {
+ delete mapIt->second;
+ } else {
+ // Otherwise, we still own the module. Delete it now.
+ delete *it;
+ }
+ }
+}
+
+Function *MCJITHelper::getFunction(const std::string FnName) {
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ Function *F = (*it)->getFunction(FnName);
+ if (F) {
+ if (*it == OpenModule)
+ return F;
+
+ assert(OpenModule != NULL);
+
+ // This function is in a module that has already been JITed.
+ // We need to generate a new prototype for external linkage.
+ Function *PF = OpenModule->getFunction(FnName);
+ if (PF && !PF->empty()) {
+ ErrorF("redefinition of function across modules");
+ return 0;
+ }
+
+ // If we don't have a prototype yet, create one.
+ if (!PF)
+ PF = Function::Create(F->getFunctionType(),
+ Function::ExternalLinkage,
+ FnName,
+ OpenModule);
+ return PF;
+ }
+ }
+ return NULL;
+}
+
+Module *MCJITHelper::getModuleForNewFunction() {
+ // If we have a Module that hasn't been JITed, use that.
+ if (OpenModule)
+ return OpenModule;
+
+ // Otherwise create a new Module.
+ std::string ModName = GenerateUniqueName("mcjit_module_");
+ Module *M = new Module(ModName, Context);
+ Modules.push_back(M);
+ OpenModule = M;
+ return M;
+}
+
+void *MCJITHelper::getPointerToFunction(Function* F) {
+ // Look for this function in an existing module
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ std::string FnName = F->getName();
+ for (it = begin; it != end; ++it) {
+ Function *MF = (*it)->getFunction(FnName);
+ if (MF == F) {
+ std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
+ if (eeIt != EngineMap.end()) {
+ void *P = eeIt->second->getPointerToFunction(F);
+ if (P)
+ return P;
+ } else {
+ ExecutionEngine *EE = compileModule(*it);
+ void *P = EE->getPointerToFunction(F);
+ if (P)
+ return P;
+ }
+ }
+ }
+ return NULL;
+}
+
+void MCJITHelper::closeCurrentModule() {
+ OpenModule = NULL;
+}
+
+ExecutionEngine *MCJITHelper::compileModule(Module *M) {
+ if (M == OpenModule)
+ closeCurrentModule();
+
+ std::string ErrStr;
+ ExecutionEngine *NewEngine = EngineBuilder(M)
+ .setErrorStr(&ErrStr)
+ .setUseMCJIT(true)
+ .setMCJITMemoryManager(new HelpingMemoryManager(this))
+ .create();
+ if (!NewEngine) {
+ fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
+ exit(1);
+ }
+
+ // Create a function pass manager for this engine
+ FunctionPassManager *FPM = new FunctionPassManager(M);
+
+ // Set up the optimizer pipeline. Start with registering info about how the
+ // target lays out data structures.
+ FPM->add(new DataLayout(*NewEngine->getDataLayout()));
+ // Provide basic AliasAnalysis support for GVN.
+ FPM->add(createBasicAliasAnalysisPass());
+ // Promote allocas to registers.
+ FPM->add(createPromoteMemoryToRegisterPass());
+ // Do simple "peephole" optimizations and bit-twiddling optzns.
+ FPM->add(createInstructionCombiningPass());
+ // Reassociate expressions.
+ FPM->add(createReassociatePass());
+ // Eliminate Common SubExpressions.
+ FPM->add(createGVNPass());
+ // Simplify the control flow graph (deleting unreachable blocks, etc).
+ FPM->add(createCFGSimplificationPass());
+ FPM->doInitialization();
+
+ // For each function in the module
+ Module::iterator it;
+ Module::iterator end = M->end();
+ for (it = M->begin(); it != end; ++it) {
+ // Run the FPM on this function
+ FPM->run(*it);
+ }
+
+ // We don't need this anymore
+ delete FPM;
+
+ // Store this engine
+ EngineMap[M] = NewEngine;
+ NewEngine->finalizeObject();
+
+ return NewEngine;
+}
+
+void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
+{
+ // Look for the functions in our modules, compiling only as necessary
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it) {
+ Function *F = (*it)->getFunction(Name);
+ if (F && !F->empty()) {
+ std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
+ if (eeIt != EngineMap.end()) {
+ void *P = eeIt->second->getPointerToFunction(F);
+ if (P)
+ return P;
+ } else {
+ ExecutionEngine *EE = compileModule(*it);
+ void *P = EE->getPointerToFunction(F);
+ if (P)
+ return P;
+ }
+ }
+ }
+ return NULL;
+}
+
+void MCJITHelper::dump()
+{
+ ModuleVector::iterator begin = Modules.begin();
+ ModuleVector::iterator end = Modules.end();
+ ModuleVector::iterator it;
+ for (it = begin; it != end; ++it)
+ (*it)->dump();
+}
+
+//===----------------------------------------------------------------------===//
+// Code Generation
+//===----------------------------------------------------------------------===//
+
+static MCJITHelper *TheHelper;
+static IRBuilder<> Builder(getGlobalContext());
+static std::map<std::string, AllocaInst*> NamedValues;
+
+Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
+/// the function. This is used for mutable variables etc.
+static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
+ const std::string &VarName) {
+ IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
+ TheFunction->getEntryBlock().begin());
+ return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
+ VarName.c_str());
+}
+
+Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(getGlobalContext(), APFloat(Val));
+}
+
+Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ char ErrStr[256];
+ sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
+ if (V == 0) return ErrorV(ErrStr);
+
+ // Load the value.
+ return Builder.CreateLoad(V, Name.c_str());
+}
+
+Value *UnaryExprAST::Codegen() {
+ Value *OperandV = Operand->Codegen();
+ if (OperandV == 0) return 0;
+
+ Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
+ if (F == 0)
+ return ErrorV("Unknown unary operator");
+
+ return Builder.CreateCall(F, OperandV, "unop");
+}
+
+Value *BinaryExprAST::Codegen() {
+ // Special case '=' because we don't want to emit the LHS as an expression.
+ if (Op == '=') {
+ // Assignment requires the LHS to be an identifier.
+ VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
+ if (!LHSE)
+ return ErrorV("destination of '=' must be a variable");
+ // Codegen the RHS.
+ Value *Val = RHS->Codegen();
+ if (Val == 0) return 0;
+
+ // Look up the name.
+ Value *Variable = NamedValues[LHSE->getName()];
+ if (Variable == 0) return ErrorV("Unknown variable name");
+
+ Builder.CreateStore(Val, Variable);
+ return Val;
+ }
+
+ Value *L = LHS->Codegen();
+ Value *R = RHS->Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateFAdd(L, R, "addtmp");
+ case '-': return Builder.CreateFSub(L, R, "subtmp");
+ case '*': return Builder.CreateFMul(L, R, "multmp");
+ case '/': return Builder.CreateFDiv(L, R, "divtmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ default: break;
+ }
+
+ // If it wasn't a builtin binary operator, it must be a user defined one. Emit
+ // a call to it.
+ Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
+ assert(F && "binary operator not found!");
+
+ Value *Ops[] = { L, R };
+ return Builder.CreateCall(F, Ops, "binop");
+}
+
+Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheHelper->getFunction(Callee);
+ if (CalleeF == 0)
+ return ErrorV("Unknown function referenced");
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector<Value*> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+}
+
+Value *IfExprAST::Codegen() {
+ Value *CondV = Cond->Codegen();
+ if (CondV == 0) return 0;
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ CondV = Builder.CreateFCmpONE(CondV,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "ifcond");
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create blocks for the then and else cases. Insert the 'then' block at the
+ // end of the function.
+ BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
+ BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
+ BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
+
+ Builder.CreateCondBr(CondV, ThenBB, ElseBB);
+
+ // Emit then value.
+ Builder.SetInsertPoint(ThenBB);
+
+ Value *ThenV = Then->Codegen();
+ if (ThenV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
+ ThenBB = Builder.GetInsertBlock();
+
+ // Emit else block.
+ TheFunction->getBasicBlockList().push_back(ElseBB);
+ Builder.SetInsertPoint(ElseBB);
+
+ Value *ElseV = Else->Codegen();
+ if (ElseV == 0) return 0;
+
+ Builder.CreateBr(MergeBB);
+ // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
+ ElseBB = Builder.GetInsertBlock();
+
+ // Emit merge block.
+ TheFunction->getBasicBlockList().push_back(MergeBB);
+ Builder.SetInsertPoint(MergeBB);
+ PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
+ "iftmp");
+
+ PN->addIncoming(ThenV, ThenBB);
+ PN->addIncoming(ElseV, ElseBB);
+ return PN;
+}
+
+Value *ForExprAST::Codegen() {
+ // Output this as:
+ // var = alloca double
+ // ...
+ // start = startexpr
+ // store start -> var
+ // goto loop
+ // loop:
+ // ...
+ // bodyexpr
+ // ...
+ // loopend:
+ // step = stepexpr
+ // endcond = endexpr
+ //
+ // curvar = load var
+ // nextvar = curvar + step
+ // store nextvar -> var
+ // br endcond, loop, endloop
+ // outloop:
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Create an alloca for the variable in the entry block.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+
+ // Emit the start code first, without 'variable' in scope.
+ Value *StartVal = Start->Codegen();
+ if (StartVal == 0) return 0;
+
+ // Store the value into the alloca.
+ Builder.CreateStore(StartVal, Alloca);
+
+ // Make the new basic block for the loop header, inserting after current
+ // block.
+ BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
+
+ // Insert an explicit fall through from the current block to the LoopBB.
+ Builder.CreateBr(LoopBB);
+
+ // Start insertion in LoopBB.
+ Builder.SetInsertPoint(LoopBB);
+
+ // Within the loop, the variable is defined equal to the PHI node. If it
+ // shadows an existing variable, we have to restore it, so save it now.
+ AllocaInst *OldVal = NamedValues[VarName];
+ NamedValues[VarName] = Alloca;
+
+ // Emit the body of the loop. This, like any other expr, can change the
+ // current BB. Note that we ignore the value computed by the body, but don't
+ // allow an error.
+ if (Body->Codegen() == 0)
+ return 0;
+
+ // Emit the step value.
+ Value *StepVal;
+ if (Step) {
+ StepVal = Step->Codegen();
+ if (StepVal == 0) return 0;
+ } else {
+ // If not specified, use 1.0.
+ StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
+ }
+
+ // Compute the end condition.
+ Value *EndCond = End->Codegen();
+ if (EndCond == 0) return EndCond;
+
+ // Reload, increment, and restore the alloca. This handles the case where
+ // the body of the loop mutates the variable.
+ Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
+ Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
+ Builder.CreateStore(NextVar, Alloca);
+
+ // Convert condition to a bool by comparing equal to 0.0.
+ EndCond = Builder.CreateFCmpONE(EndCond,
+ ConstantFP::get(getGlobalContext(), APFloat(0.0)),
+ "loopcond");
+
+ // Create the "after loop" block and insert it.
+ BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
+
+ // Insert the conditional branch into the end of LoopEndBB.
+ Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
+
+ // Any new code will be inserted in AfterBB.
+ Builder.SetInsertPoint(AfterBB);
+
+ // Restore the unshadowed variable.
+ if (OldVal)
+ NamedValues[VarName] = OldVal;
+ else
+ NamedValues.erase(VarName);
+
+
+ // for expr always returns 0.0.
+ return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
+}
+
+Value *VarExprAST::Codegen() {
+ std::vector<AllocaInst *> OldBindings;
+
+ Function *TheFunction = Builder.GetInsertBlock()->getParent();
+
+ // Register all variables and emit their initializer.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
+ const std::string &VarName = VarNames[i].first;
+ ExprAST *Init = VarNames[i].second;
+
+ // Emit the initializer before adding the variable to scope, this prevents
+ // the initializer from referencing the variable itself, and permits stuff
+ // like this:
+ // var a = 1 in
+ // var a = a in ... # refers to outer 'a'.
+ Value *InitVal;
+ if (Init) {
+ InitVal = Init->Codegen();
+ if (InitVal == 0) return 0;
+ } else { // If not specified, use 0.0.
+ InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
+ }
+
+ AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
+ Builder.CreateStore(InitVal, Alloca);
+
+ // Remember the old variable binding so that we can restore the binding when
+ // we unrecurse.
+ OldBindings.push_back(NamedValues[VarName]);
+
+ // Remember this binding.
+ NamedValues[VarName] = Alloca;
+ }
+
+ // Codegen the body, now that all vars are in scope.
+ Value *BodyVal = Body->Codegen();
+ if (BodyVal == 0) return 0;
+
+ // Pop all our variables from scope.
+ for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
+ NamedValues[VarNames[i].first] = OldBindings[i];
+
+ // Return the body computation.
+ return BodyVal;
+}
+
+Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<Type*> Doubles(Args.size(),
+ Type::getDoubleTy(getGlobalContext()));
+ FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+ Doubles, false);
+
+ std::string FnName = MakeLegalFunctionName(Name);
+
+ Module* M = TheHelper->getModuleForNewFunction();
+
+ Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
+
+ // If F conflicted, there was already something named 'FnName'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F->getName() != FnName) {
+ // Delete the one we just made and get the existing one.
+ F->eraseFromParent();
+ F = M->getFunction(Name);
+
+ // If F already has a body, reject this.
+ if (!F->empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+
+ // If F took a different number of args, reject.
+ if (F->arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+ ++AI, ++Idx)
+ AI->setName(Args[Idx]);
+
+ return F;
+}
+
+/// CreateArgumentAllocas - Create an alloca for each argument and register the
+/// argument in the symbol table so that references to it will succeed.
+void PrototypeAST::CreateArgumentAllocas(Function *F) {
+ Function::arg_iterator AI = F->arg_begin();
+ for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
+ // Create an alloca for this variable.
+ AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
+
+ // Store the initial value into the alloca.
+ Builder.CreateStore(AI, Alloca);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = Alloca;
+ }
+}
+
+Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+ // If this is an operator, install it.
+ if (Proto->isBinaryOp())
+ BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ // Add all arguments to the symbol table and create their allocas.
+ Proto->CreateArgumentAllocas(TheFunction);
+
+ if (Value *RetVal = Body->Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ return TheFunction;
+ }
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+
+ if (Proto->isBinaryOp())
+ BinopPrecedence.erase(Proto->getOperatorName());
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing and JIT Driver
+//===----------------------------------------------------------------------===//
+
+static void HandleDefinition() {
+ if (FunctionAST *F = ParseDefinition()) {
+ TheHelper->closeCurrentModule();
+ if (Function *LF = F->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read function definition:");
+ LF->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleExtern() {
+ if (PrototypeAST *P = ParseExtern()) {
+ if (Function *F = P->Codegen()) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "Read extern: ");
+ F->dump();
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+static void HandleTopLevelExpression() {
+ // Evaluate a top-level expression into an anonymous function.
+ if (FunctionAST *F = ParseTopLevelExpr()) {
+ if (Function *LF = F->Codegen()) {
+ // JIT the function, returning a function pointer.
+ void *FPtr = TheHelper->getPointerToFunction(LF);
+
+ // Cast it to the right type (takes no arguments, returns a double) so we
+ // can call it as a native function.
+ double (*FP)() = (double (*)())(intptr_t)FPtr;
+#ifdef MINIMAL_STDERR_OUTPUT
+ FP();
+#else
+ fprintf(stderr, "Evaluated to %f\n", FP());
+#endif
+ }
+ } else {
+ // Skip token for error recovery.
+ getNextToken();
+ }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+ while (1) {
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ switch (CurTok) {
+ case tok_eof: return;
+ case ';': getNextToken(); break; // ignore top-level semicolons.
+ case tok_def: HandleDefinition(); break;
+ case tok_extern: HandleExtern(); break;
+ default: HandleTopLevelExpression(); break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// "Library" functions that can be "extern'd" from user code.
+//===----------------------------------------------------------------------===//
+
+/// putchard - putchar that takes a double and returns 0.
+extern "C"
+double putchard(double X) {
+ putchar((char)X);
+ return 0;
+}
+
+/// printd - printf that takes a double prints it as "%f\n", returning 0.
+extern "C"
+double printd(double X) {
+ printf("%f", X);
+ return 0;
+}
+
+extern "C"
+double printlf() {
+ printf("\n");
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+ InitializeNativeTarget();
+ InitializeNativeTargetAsmPrinter();
+ InitializeNativeTargetAsmParser();
+ LLVMContext &Context = getGlobalContext();
+
+ // Install standard binary operators.
+ // 1 is lowest precedence.
+ BinopPrecedence['='] = 2;
+ BinopPrecedence['<'] = 10;
+ BinopPrecedence['+'] = 20;
+ BinopPrecedence['-'] = 20;
+ BinopPrecedence['/'] = 40;
+ BinopPrecedence['*'] = 40; // highest.
+
+ // Prime the first token.
+#ifndef MINIMAL_STDERR_OUTPUT
+ fprintf(stderr, "ready> ");
+#endif
+ getNextToken();
+
+ // Make the helper, which holds all the code.
+ TheHelper = new MCJITHelper(Context);
+
+ // Run the main "interpreter loop" now.
+ MainLoop();
+
+#ifndef MINIMAL_STDERR_OUTPUT
+ // Print out all of the generated code.
+ TheHelper->dump();
+#endif
+
+ return 0;
+}