diff options
author | Misha Brukman <brukman+llvm@gmail.com> | 2009-01-09 19:25:42 +0000 |
---|---|---|
committer | Misha Brukman <brukman+llvm@gmail.com> | 2009-01-09 19:25:42 +0000 |
commit | 57dffea9950f12c3ec948ff152ce0b9aa78724a6 (patch) | |
tree | c7cd9d64b35ff34786c12499439ef5e525642d50 /include/llvm/ADT/SmallVector.h | |
parent | 10e63334f4a4a2bb420dc6aad7d4a0b7a5a70dec (diff) | |
download | external_llvm-57dffea9950f12c3ec948ff152ce0b9aa78724a6.zip external_llvm-57dffea9950f12c3ec948ff152ce0b9aa78724a6.tar.gz external_llvm-57dffea9950f12c3ec948ff152ce0b9aa78724a6.tar.bz2 |
Removed trailing whitespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62000 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include/llvm/ADT/SmallVector.h')
-rw-r--r-- | include/llvm/ADT/SmallVector.h | 152 |
1 files changed, 76 insertions, 76 deletions
diff --git a/include/llvm/ADT/SmallVector.h b/include/llvm/ADT/SmallVector.h index 4fc93df..8a2e17b 100644 --- a/include/llvm/ADT/SmallVector.h +++ b/include/llvm/ADT/SmallVector.h @@ -54,7 +54,7 @@ template <typename T> class SmallVectorImpl { protected: T *Begin, *End, *Capacity; - + // Allocate raw space for N elements of type T. If T has a ctor or dtor, we // don't want it to be automatically run, so we need to represent the space as // something else. An array of char would work great, but might not be @@ -76,11 +76,11 @@ protected: public: // Default ctor - Initialize to empty. SmallVectorImpl(unsigned N) - : Begin(reinterpret_cast<T*>(&FirstEl)), - End(reinterpret_cast<T*>(&FirstEl)), + : Begin(reinterpret_cast<T*>(&FirstEl)), + End(reinterpret_cast<T*>(&FirstEl)), Capacity(reinterpret_cast<T*>(&FirstEl)+N) { } - + ~SmallVectorImpl() { // Destroy the constructed elements in the vector. destroy_range(Begin, End); @@ -89,16 +89,16 @@ public: if (!isSmall()) operator delete(Begin); } - + typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; typedef T* iterator; typedef const T* const_iterator; - + typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; - + typedef T& reference; typedef const T& const_reference; typedef T* pointer; @@ -113,14 +113,14 @@ public: const_iterator begin() const { return Begin; } iterator end() { return End; } const_iterator end() const { return End; } - + // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} - - + + /* These asserts could be "Begin + idx < End", but there are lots of places in llvm where we use &v[v.size()] instead of v.end(). */ reference operator[](unsigned idx) { @@ -131,21 +131,21 @@ public: assert (Begin + idx <= End); return Begin[idx]; } - + reference front() { return begin()[0]; } const_reference front() const { return begin()[0]; } - + reference back() { return end()[-1]; } const_reference back() const { return end()[-1]; } - + void push_back(const_reference Elt) { if (End < Capacity) { Retry: @@ -156,23 +156,23 @@ public: grow(); goto Retry; } - + void pop_back() { --End; End->~T(); } - + T pop_back_val() { T Result = back(); pop_back(); return Result; } - + void clear() { destroy_range(Begin, End); End = Begin; } - + void resize(unsigned N) { if (N < size()) { destroy_range(Begin+N, End); @@ -184,7 +184,7 @@ public: End = Begin+N; } } - + void resize(unsigned N, const T &NV) { if (N < size()) { destroy_range(Begin+N, End); @@ -196,14 +196,14 @@ public: End = Begin+N; } } - + void reserve(unsigned N) { if (unsigned(Capacity-Begin) < N) grow(N); } - + void swap(SmallVectorImpl &RHS); - + /// append - Add the specified range to the end of the SmallVector. /// template<typename in_iter> @@ -217,7 +217,7 @@ public: std::uninitialized_copy(in_start, in_end, End); End += NumInputs; } - + /// append - Add the specified range to the end of the SmallVector. /// void append(size_type NumInputs, const T &Elt) { @@ -229,7 +229,7 @@ public: std::uninitialized_fill_n(End, NumInputs, Elt); End += NumInputs; } - + void assign(unsigned NumElts, const T &Elt) { clear(); if (unsigned(Capacity-Begin) < NumElts) @@ -237,7 +237,7 @@ public: End = Begin+NumElts; construct_range(Begin, End, Elt); } - + iterator erase(iterator I) { iterator N = I; // Shift all elts down one. @@ -246,7 +246,7 @@ public: pop_back(); return(N); } - + iterator erase(iterator S, iterator E) { iterator N = S; // Shift all elts down. @@ -256,13 +256,13 @@ public: End = I; return(N); } - + iterator insert(iterator I, const T &Elt) { if (I == End) { // Important special case for empty vector. push_back(Elt); return end()-1; } - + if (End < Capacity) { Retry: new (End) T(back()); @@ -283,100 +283,100 @@ public: append(NumToInsert, Elt); return end()-1; } - + // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I-begin(); - + // Ensure there is enough space. reserve(static_cast<unsigned>(size() + NumToInsert)); - + // Uninvalidate the iterator. I = begin()+InsertElt; - + // If we already have this many elements in the collection, append the // dest elements at the end, then copy over the appropriate elements. Since // we already reserved space, we know that this won't reallocate the vector. if (size() >= NumToInsert) { T *OldEnd = End; append(End-NumToInsert, End); - + // Copy the existing elements that get replaced. std::copy(I, OldEnd-NumToInsert, I+NumToInsert); - + std::fill_n(I, NumToInsert, Elt); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - + // Copy over the elements that we're about to overwrite. T *OldEnd = End; End += NumToInsert; size_t NumOverwritten = OldEnd-I; std::uninitialized_copy(I, OldEnd, End-NumOverwritten); - + // Replace the overwritten part. std::fill_n(I, NumOverwritten, Elt); - + // Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); return I; } - + template<typename ItTy> iterator insert(iterator I, ItTy From, ItTy To) { if (I == End) { // Important special case for empty vector. append(From, To); return end()-1; } - + size_t NumToInsert = std::distance(From, To); // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I-begin(); - + // Ensure there is enough space. reserve(static_cast<unsigned>(size() + NumToInsert)); - + // Uninvalidate the iterator. I = begin()+InsertElt; - + // If we already have this many elements in the collection, append the // dest elements at the end, then copy over the appropriate elements. Since // we already reserved space, we know that this won't reallocate the vector. if (size() >= NumToInsert) { T *OldEnd = End; append(End-NumToInsert, End); - + // Copy the existing elements that get replaced. std::copy(I, OldEnd-NumToInsert, I+NumToInsert); - + std::copy(From, To, I); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. - + // Copy over the elements that we're about to overwrite. T *OldEnd = End; End += NumToInsert; size_t NumOverwritten = OldEnd-I; std::uninitialized_copy(I, OldEnd, End-NumOverwritten); - + // Replace the overwritten part. std::copy(From, From+NumOverwritten, I); - + // Insert the non-overwritten middle part. std::uninitialized_copy(From+NumOverwritten, To, OldEnd); return I; } - + const SmallVectorImpl &operator=(const SmallVectorImpl &RHS); - + bool operator==(const SmallVectorImpl &RHS) const { if (size() != RHS.size()) return false; - for (T *This = Begin, *That = RHS.Begin, *E = Begin+size(); + for (T *This = Begin, *That = RHS.Begin, *E = Begin+size(); This != E; ++This, ++That) if (*This != *That) return false; @@ -388,12 +388,12 @@ public: return std::lexicographical_compare(begin(), end(), RHS.begin(), RHS.end()); } - + private: /// isSmall - Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool isSmall() const { - return static_cast<const void*>(Begin) == + return static_cast<const void*>(Begin) == static_cast<const void*>(&FirstEl); } @@ -405,7 +405,7 @@ private: for (; S != E; ++S) new (S) T(Elt); } - + void destroy_range(T *S, T *E) { while (S != E) { --E; @@ -423,21 +423,21 @@ void SmallVectorImpl<T>::grow(size_t MinSize) { if (NewCapacity < MinSize) NewCapacity = MinSize; T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T))); - + // Copy the elements over. if (is_class<T>::value) std::uninitialized_copy(Begin, End, NewElts); else // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove). memcpy(NewElts, Begin, CurSize * sizeof(T)); - + // Destroy the original elements. destroy_range(Begin, End); - + // If this wasn't grown from the inline copy, deallocate the old space. if (!isSmall()) operator delete(Begin); - + Begin = NewElts; End = NewElts+CurSize; Capacity = Begin+NewCapacity; @@ -446,7 +446,7 @@ void SmallVectorImpl<T>::grow(size_t MinSize) { template <typename T> void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { if (this == &RHS) return; - + // We can only avoid copying elements if neither vector is small. if (!isSmall() && !RHS.isSmall()) { std::swap(Begin, RHS.Begin); @@ -458,13 +458,13 @@ void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { grow(RHS.size()); if (RHS.begin()+size() > RHS.Capacity) RHS.grow(size()); - + // Swap the shared elements. size_t NumShared = size(); if (NumShared > RHS.size()) NumShared = RHS.size(); for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i) std::swap(Begin[i], RHS[i]); - + // Copy over the extra elts. if (size() > RHS.size()) { size_t EltDiff = size() - RHS.size(); @@ -480,13 +480,13 @@ void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { RHS.End = RHS.Begin+NumShared; } } - + template <typename T> const SmallVectorImpl<T> & SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; - + // If we already have sufficient space, assign the common elements, then // destroy any excess. unsigned RHSSize = unsigned(RHS.size()); @@ -498,15 +498,15 @@ SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) { NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin); else NewEnd = Begin; - + // Destroy excess elements. destroy_range(NewEnd, End); - + // Trim. End = NewEnd; return *this; } - + // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. if (unsigned(Capacity-Begin) < RHSSize) { @@ -519,15 +519,15 @@ SmallVectorImpl<T>::operator=(const SmallVectorImpl<T> &RHS) { // Otherwise, use assignment for the already-constructed elements. std::copy(RHS.Begin, RHS.Begin+CurSize, Begin); } - + // Copy construct the new elements in place. std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize); - + // Set end. End = Begin+RHSSize; return *this; } - + /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of @@ -544,36 +544,36 @@ class SmallVector : public SmallVectorImpl<T> { enum { // MinUs - The number of U's require to cover N T's. MinUs = (static_cast<unsigned int>(sizeof(T))*N + - static_cast<unsigned int>(sizeof(U)) - 1) / + static_cast<unsigned int>(sizeof(U)) - 1) / static_cast<unsigned int>(sizeof(U)), - + // NumInlineEltsElts - The number of elements actually in this array. There // is already one in the parent class, and we have to round up to avoid // having a zero-element array. NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1, - + // NumTsAvailable - The number of T's we actually have space for, which may // be more than N due to rounding. NumTsAvailable = (NumInlineEltsElts+1)*static_cast<unsigned int>(sizeof(U))/ static_cast<unsigned int>(sizeof(T)) }; U InlineElts[NumInlineEltsElts]; -public: +public: SmallVector() : SmallVectorImpl<T>(NumTsAvailable) { } - + explicit SmallVector(unsigned Size, const T &Value = T()) : SmallVectorImpl<T>(NumTsAvailable) { this->reserve(Size); while (Size--) this->push_back(Value); } - + template<typename ItTy> SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) { this->append(S, E); } - + SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) { if (!RHS.empty()) SmallVectorImpl<T>::operator=(RHS); @@ -583,7 +583,7 @@ public: SmallVectorImpl<T>::operator=(RHS); return *this; } - + }; } // End llvm namespace @@ -595,7 +595,7 @@ namespace std { swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { LHS.swap(RHS); } - + /// Implement std::swap in terms of SmallVector swap. template<typename T, unsigned N> inline void |