aboutsummaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorDevang Patel <dpatel@apple.com>2007-06-27 20:53:52 +0000
committerDevang Patel <dpatel@apple.com>2007-06-27 20:53:52 +0000
commit1ceda1d63ed128b34c332c81890f314ce2e5373d (patch)
treeff1a4f59ccb110d923c89073e9427fe1000d9a54 /include
parent292da949f6c87d6499425d64d37d7c5870ec57ad (diff)
downloadexternal_llvm-1ceda1d63ed128b34c332c81890f314ce2e5373d.zip
external_llvm-1ceda1d63ed128b34c332c81890f314ce2e5373d.tar.gz
external_llvm-1ceda1d63ed128b34c332c81890f314ce2e5373d.tar.bz2
Remove ETForest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37765 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include')
-rw-r--r--include/llvm/Analysis/Dominators.h169
-rw-r--r--include/llvm/Analysis/ET-Forest.h312
2 files changed, 1 insertions, 480 deletions
diff --git a/include/llvm/Analysis/Dominators.h b/include/llvm/Analysis/Dominators.h
index 0b62c51..9873759 100644
--- a/include/llvm/Analysis/Dominators.h
+++ b/include/llvm/Analysis/Dominators.h
@@ -9,9 +9,7 @@
//
// This file defines the following classes:
// 1. DominatorTree: Represent dominators as an explicit tree structure.
-// 2. ETForest: Efficient data structure for dominance comparisons and
-// nearest-common-ancestor queries.
-// 3. DominanceFrontier: Calculate and hold the dominance frontier for a
+// 2. DominanceFrontier: Calculate and hold the dominance frontier for a
// function.
//
// These data structures are listed in increasing order of complexity. It
@@ -23,7 +21,6 @@
#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H
-#include "llvm/Analysis/ET-Forest.h"
#include "llvm/Pass.h"
#include <set>
@@ -347,170 +344,6 @@ template <> struct GraphTraits<DominatorTree*>
};
-//===-------------------------------------
-/// ET-Forest Class - Class used to construct forwards and backwards
-/// ET-Forests
-///
-class ETForestBase : public DominatorBase {
-public:
- ETForestBase(intptr_t ID, bool isPostDom)
- : DominatorBase(ID, isPostDom), Nodes(),
- DFSInfoValid(false), SlowQueries(0) {}
-
- virtual void releaseMemory() { reset(); }
-
- typedef std::map<BasicBlock*, ETNode*> ETMapType;
-
- // FIXME : There is no need to make this interface public.
- // Fix predicate simplifier.
- void updateDFSNumbers();
-
- /// dominates - Return true if A dominates B.
- ///
- inline bool dominates(BasicBlock *A, BasicBlock *B) {
- if (A == B)
- return true;
-
- ETNode *NodeA = getNode(A);
- ETNode *NodeB = getNode(B);
-
- if (DFSInfoValid)
- return NodeB->DominatedBy(NodeA);
- else {
- // If we end up with too many slow queries, just update the
- // DFS numbers on the theory that we are going to keep querying.
- SlowQueries++;
- if (SlowQueries > 32) {
- updateDFSNumbers();
- return NodeB->DominatedBy(NodeA);
- }
- return NodeB->DominatedBySlow(NodeA);
- }
- }
-
- // dominates - Return true if A dominates B. This performs the
- // special checks necessary if A and B are in the same basic block.
- bool dominates(Instruction *A, Instruction *B);
-
- /// properlyDominates - Return true if A dominates B and A != B.
- ///
- bool properlyDominates(BasicBlock *A, BasicBlock *B) {
- return dominates(A, B) && A != B;
- }
-
- /// isReachableFromEntry - Return true if A is dominated by the entry
- /// block of the function containing it.
- const bool isReachableFromEntry(BasicBlock* A);
-
- /// Return the nearest common dominator of A and B.
- BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const {
- ETNode *NodeA = getNode(A);
- ETNode *NodeB = getNode(B);
-
- ETNode *Common = NodeA->NCA(NodeB);
- if (!Common)
- return NULL;
- return Common->getData<BasicBlock>();
- }
-
- /// Return the immediate dominator of A.
- BasicBlock *getIDom(BasicBlock *A) const {
- ETNode *NodeA = getNode(A);
- if (!NodeA) return 0;
- const ETNode *idom = NodeA->getFather();
- return idom ? idom->getData<BasicBlock>() : 0;
- }
-
- void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
- ETNode *NodeA = getNode(A);
- if (!NodeA) return;
- const ETNode* son = NodeA->getSon();
-
- if (!son) return;
- children.push_back(son->getData<BasicBlock>());
-
- const ETNode* brother = son->getBrother();
- while (brother != son) {
- children.push_back(brother->getData<BasicBlock>());
- brother = brother->getBrother();
- }
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<DominatorTree>();
- }
- //===--------------------------------------------------------------------===//
- // API to update Forest information based on modifications
- // to the CFG...
-
- /// addNewBlock - Add a new block to the CFG, with the specified immediate
- /// dominator.
- ///
- void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
-
- /// setImmediateDominator - Update the immediate dominator information to
- /// change the current immediate dominator for the specified block
- /// to another block. This method requires that BB for NewIDom
- /// already have an ETNode, otherwise just use addNewBlock.
- ///
- void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
- /// print - Convert to human readable form
- ///
- virtual void print(std::ostream &OS, const Module* = 0) const;
- void print(std::ostream *OS, const Module* M = 0) const {
- if (OS) print(*OS, M);
- }
- virtual void dump();
-protected:
- /// getNode - return the (Post)DominatorTree node for the specified basic
- /// block. This is the same as using operator[] on this class.
- ///
- inline ETNode *getNode(BasicBlock *BB) const {
- ETMapType::const_iterator i = Nodes.find(BB);
- return (i != Nodes.end()) ? i->second : 0;
- }
-
- inline ETNode *operator[](BasicBlock *BB) const {
- return getNode(BB);
- }
-
- void reset();
- ETMapType Nodes;
- bool DFSInfoValid;
- unsigned int SlowQueries;
-
-};
-
-//==-------------------------------------
-/// ETForest Class - Concrete subclass of ETForestBase that is used to
-/// compute a forwards ET-Forest.
-
-class ETForest : public ETForestBase {
-public:
- static char ID; // Pass identification, replacement for typeid
-
- ETForest() : ETForestBase((intptr_t)&ID, false) {}
-
- BasicBlock *getRoot() const {
- assert(Roots.size() == 1 && "Should always have entry node!");
- return Roots[0];
- }
-
- virtual bool runOnFunction(Function &F) {
- reset(); // Reset from the last time we were run...
- DominatorTree &DT = getAnalysis<DominatorTree>();
- Roots = DT.getRoots();
- calculate(DT);
- return false;
- }
-
- void calculate(const DominatorTree &DT);
- // FIXME : There is no need to make getNodeForBlock public. Fix
- // predicate simplifier.
- ETNode *getNodeForBlock(BasicBlock *BB);
-};
-
//===----------------------------------------------------------------------===//
/// DominanceFrontierBase - Common base class for computing forward and inverse
/// dominance frontiers for a function.
diff --git a/include/llvm/Analysis/ET-Forest.h b/include/llvm/Analysis/ET-Forest.h
deleted file mode 100644
index 8bd5e44..0000000
--- a/include/llvm/Analysis/ET-Forest.h
+++ /dev/null
@@ -1,312 +0,0 @@
-//===- llvm/Analysis/ET-Forest.h - ET-Forest implementation -----*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was written by Daniel Berlin from code written by Pavel Nejedy, and
-// is distributed under the University of Illinois Open Source License. See
-// LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the following classes:
-// 1. ETNode: A node in the ET forest.
-// 2. ETOccurrence: An occurrence of the node in the splay tree
-// storing the DFS path information.
-//
-// The ET-forest structure is described in:
-// D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
-// J. G'omput. System Sci., 26(3):362 381, 1983.
-//
-// Basically, the ET-Forest is storing the dominator tree (ETNode),
-// and a splay tree containing the depth first path information for
-// those nodes (ETOccurrence). This enables us to answer queries
-// about domination (DominatedBySlow), and ancestry (NCA) in
-// logarithmic time, and perform updates to the information in
-// logarithmic time.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ANALYSIS_ETFOREST_H
-#define LLVM_ANALYSIS_ETFOREST_H
-
-#include <cassert>
-#include <cstdlib>
-
-namespace llvm {
-class ETNode;
-
-/// ETOccurrence - An occurrence for a node in the et tree
-///
-/// The et occurrence tree is really storing the sequences you get from
-/// doing a DFS over the ETNode's. It is stored as a modified splay
-/// tree.
-/// ET occurrences can occur at multiple places in the ordering depending
-/// on how many ET nodes have it as their father. To handle
-/// this, they are separate from the nodes.
-///
-class ETOccurrence {
-public:
- ETOccurrence(ETNode *n): OccFor(n), Parent(NULL), Left(NULL), Right(NULL),
- Depth(0), Min(0), MinOccurrence(this) {};
-
- void setParent(ETOccurrence *n) {
- assert(n != this && "Trying to set parent to ourselves");
- Parent = n;
- }
-
- // Add D to our current depth
- void setDepthAdd(int d) {
- Min += d;
- Depth += d;
- }
-
- // Reset our depth to D
- void setDepth(int d) {
- Min += d - Depth;
- Depth = d;
- }
-
- // Set Left to N
- void setLeft(ETOccurrence *n) {
- assert(n != this && "Trying to set our left to ourselves");
- Left = n;
- if (n)
- n->setParent(this);
- }
-
- // Set Right to N
- void setRight(ETOccurrence *n) {
- assert(n != this && "Trying to set our right to ourselves");
- Right = n;
- if (n)
- n->setParent(this);
- }
-
- // Splay us to the root of the tree
- void Splay(void);
-
- // Recompute the minimum occurrence for this occurrence.
- void recomputeMin(void) {
- ETOccurrence *themin = Left;
-
- // The min may be our Right, too.
- if (!themin || (Right && themin->Min > Right->Min))
- themin = Right;
-
- if (themin && themin->Min < 0) {
- Min = themin->Min + Depth;
- MinOccurrence = themin->MinOccurrence;
- } else {
- Min = Depth;
- MinOccurrence = this;
- }
- }
- private:
- friend class ETNode;
-
- // Node we represent
- ETNode *OccFor;
-
- // Parent in the splay tree
- ETOccurrence *Parent;
-
- // Left Son in the splay tree
- ETOccurrence *Left;
-
- // Right Son in the splay tree
- ETOccurrence *Right;
-
- // Depth of the node is the sum of the depth on the path to the
- // root.
- int Depth;
-
- // Subtree occurrence's minimum depth
- int Min;
-
- // Subtree occurrence with minimum depth
- ETOccurrence *MinOccurrence;
-};
-
-
-class ETNode {
-public:
- ETNode(void *d) : data(d), DFSNumIn(-1), DFSNumOut(-1),
- Father(NULL), Left(NULL),
- Right(NULL), Son(NULL), ParentOcc(NULL) {
- RightmostOcc = new ETOccurrence(this);
- };
-
- // This does *not* maintain the tree structure.
- // If you want to remove a node from the forest structure, use
- // removeFromForest()
- ~ETNode() {
- delete RightmostOcc;
- delete ParentOcc;
- }
-
- void removeFromForest() {
- // Split us away from all our sons.
- while (Son)
- Son->Split();
-
- // And then split us away from our father.
- if (Father)
- Father->Split();
- }
-
- // Split us away from our parents and children, so that we can be
- // reparented. NB: setFather WILL NOT DO WHAT YOU WANT IF YOU DO NOT
- // SPLIT US FIRST.
- void Split();
-
- // Set our parent node to the passed in node
- void setFather(ETNode *);
-
- // Nearest Common Ancestor of two et nodes.
- ETNode *NCA(ETNode *);
-
- // Return true if we are below the passed in node in the forest.
- bool Below(ETNode *);
- /*
- Given a dominator tree, we can determine whether one thing
- dominates another in constant time by using two DFS numbers:
-
- 1. The number for when we visit a node on the way down the tree
- 2. The number for when we visit a node on the way back up the tree
-
- You can view these as bounds for the range of dfs numbers the
- nodes in the subtree of the dominator tree rooted at that node
- will contain.
-
- The dominator tree is always a simple acyclic tree, so there are
- only three possible relations two nodes in the dominator tree have
- to each other:
-
- 1. Node A is above Node B (and thus, Node A dominates node B)
-
- A
- |
- C
- / \
- B D
-
-
- In the above case, DFS_Number_In of A will be <= DFS_Number_In of
- B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
- because we must hit A in the dominator tree *before* B on the walk
- down, and we will hit A *after* B on the walk back up
-
- 2. Node A is below node B (and thus, node B dominates node B)
-
- B
- |
- A
- / \
- C D
-
- In the above case, DFS_Number_In of A will be >= DFS_Number_In of
- B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
-
- This is because we must hit A in the dominator tree *after* B on
- the walk down, and we will hit A *before* B on the walk back up
-
- 3. Node A and B are siblings (and thus, neither dominates the other)
-
- C
- |
- D
- / \
- A B
-
- In the above case, DFS_Number_In of A will *always* be <=
- DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
- DFS_Number_Out of B. This is because we will always finish the dfs
- walk of one of the subtrees before the other, and thus, the dfs
- numbers for one subtree can't intersect with the range of dfs
- numbers for the other subtree. If you swap A and B's position in
- the dominator tree, the comparison changes direction, but the point
- is that both comparisons will always go the same way if there is no
- dominance relationship.
-
- Thus, it is sufficient to write
-
- A_Dominates_B(node A, node B) {
- return DFS_Number_In(A) <= DFS_Number_In(B) &&
- DFS_Number_Out(A) >= DFS_Number_Out(B);
- }
-
- A_Dominated_by_B(node A, node B) {
- return DFS_Number_In(A) >= DFS_Number_In(A) &&
- DFS_Number_Out(A) <= DFS_Number_Out(B);
- }
- */
- bool DominatedBy(ETNode *other) const {
- return this->DFSNumIn >= other->DFSNumIn &&
- this->DFSNumOut <= other->DFSNumOut;
- }
-
- // This method is slower, but doesn't require the DFS numbers to
- // be up to date.
- bool DominatedBySlow(ETNode *other) {
- return this->Below(other);
- }
-
- void assignDFSNumber (int);
-
- bool hasFather() const {
- return Father != NULL;
- }
-
- // Do not let people play around with fathers.
- const ETNode *getFather() const {
- return Father;
- }
-
- template <typename T>
- T *getData() const {
- return static_cast<T*>(data);
- }
-
- unsigned getDFSNumIn() const {
- return DFSNumIn;
- }
-
- unsigned getDFSNumOut() const {
- return DFSNumOut;
- }
-
- const ETNode *getSon() const {
- return Son;
- }
-
- const ETNode *getBrother() const {
- return Left;
- }
-
- private:
- // Data represented by the node
- void *data;
-
- // DFS Numbers
- int DFSNumIn, DFSNumOut;
-
- // Father
- ETNode *Father;
-
- // Brothers. Node, this ends up being a circularly linked list.
- // Thus, if you want to get all the brothers, you need to stop when
- // you hit node == this again.
- ETNode *Left, *Right;
-
- // First Son
- ETNode *Son;
-
- // Rightmost occurrence for this node
- ETOccurrence *RightmostOcc;
-
- // Parent occurrence for this node
- ETOccurrence *ParentOcc;
-};
-} // end llvm namespace
-
-#endif