diff options
author | Devang Patel <dpatel@apple.com> | 2007-06-27 20:53:52 +0000 |
---|---|---|
committer | Devang Patel <dpatel@apple.com> | 2007-06-27 20:53:52 +0000 |
commit | 1ceda1d63ed128b34c332c81890f314ce2e5373d (patch) | |
tree | ff1a4f59ccb110d923c89073e9427fe1000d9a54 /include | |
parent | 292da949f6c87d6499425d64d37d7c5870ec57ad (diff) | |
download | external_llvm-1ceda1d63ed128b34c332c81890f314ce2e5373d.zip external_llvm-1ceda1d63ed128b34c332c81890f314ce2e5373d.tar.gz external_llvm-1ceda1d63ed128b34c332c81890f314ce2e5373d.tar.bz2 |
Remove ETForest.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37765 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'include')
-rw-r--r-- | include/llvm/Analysis/Dominators.h | 169 | ||||
-rw-r--r-- | include/llvm/Analysis/ET-Forest.h | 312 |
2 files changed, 1 insertions, 480 deletions
diff --git a/include/llvm/Analysis/Dominators.h b/include/llvm/Analysis/Dominators.h index 0b62c51..9873759 100644 --- a/include/llvm/Analysis/Dominators.h +++ b/include/llvm/Analysis/Dominators.h @@ -9,9 +9,7 @@ // // This file defines the following classes: // 1. DominatorTree: Represent dominators as an explicit tree structure. -// 2. ETForest: Efficient data structure for dominance comparisons and -// nearest-common-ancestor queries. -// 3. DominanceFrontier: Calculate and hold the dominance frontier for a +// 2. DominanceFrontier: Calculate and hold the dominance frontier for a // function. // // These data structures are listed in increasing order of complexity. It @@ -23,7 +21,6 @@ #ifndef LLVM_ANALYSIS_DOMINATORS_H #define LLVM_ANALYSIS_DOMINATORS_H -#include "llvm/Analysis/ET-Forest.h" #include "llvm/Pass.h" #include <set> @@ -347,170 +344,6 @@ template <> struct GraphTraits<DominatorTree*> }; -//===------------------------------------- -/// ET-Forest Class - Class used to construct forwards and backwards -/// ET-Forests -/// -class ETForestBase : public DominatorBase { -public: - ETForestBase(intptr_t ID, bool isPostDom) - : DominatorBase(ID, isPostDom), Nodes(), - DFSInfoValid(false), SlowQueries(0) {} - - virtual void releaseMemory() { reset(); } - - typedef std::map<BasicBlock*, ETNode*> ETMapType; - - // FIXME : There is no need to make this interface public. - // Fix predicate simplifier. - void updateDFSNumbers(); - - /// dominates - Return true if A dominates B. - /// - inline bool dominates(BasicBlock *A, BasicBlock *B) { - if (A == B) - return true; - - ETNode *NodeA = getNode(A); - ETNode *NodeB = getNode(B); - - if (DFSInfoValid) - return NodeB->DominatedBy(NodeA); - else { - // If we end up with too many slow queries, just update the - // DFS numbers on the theory that we are going to keep querying. - SlowQueries++; - if (SlowQueries > 32) { - updateDFSNumbers(); - return NodeB->DominatedBy(NodeA); - } - return NodeB->DominatedBySlow(NodeA); - } - } - - // dominates - Return true if A dominates B. This performs the - // special checks necessary if A and B are in the same basic block. - bool dominates(Instruction *A, Instruction *B); - - /// properlyDominates - Return true if A dominates B and A != B. - /// - bool properlyDominates(BasicBlock *A, BasicBlock *B) { - return dominates(A, B) && A != B; - } - - /// isReachableFromEntry - Return true if A is dominated by the entry - /// block of the function containing it. - const bool isReachableFromEntry(BasicBlock* A); - - /// Return the nearest common dominator of A and B. - BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const { - ETNode *NodeA = getNode(A); - ETNode *NodeB = getNode(B); - - ETNode *Common = NodeA->NCA(NodeB); - if (!Common) - return NULL; - return Common->getData<BasicBlock>(); - } - - /// Return the immediate dominator of A. - BasicBlock *getIDom(BasicBlock *A) const { - ETNode *NodeA = getNode(A); - if (!NodeA) return 0; - const ETNode *idom = NodeA->getFather(); - return idom ? idom->getData<BasicBlock>() : 0; - } - - void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const { - ETNode *NodeA = getNode(A); - if (!NodeA) return; - const ETNode* son = NodeA->getSon(); - - if (!son) return; - children.push_back(son->getData<BasicBlock>()); - - const ETNode* brother = son->getBrother(); - while (brother != son) { - children.push_back(brother->getData<BasicBlock>()); - brother = brother->getBrother(); - } - } - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<DominatorTree>(); - } - //===--------------------------------------------------------------------===// - // API to update Forest information based on modifications - // to the CFG... - - /// addNewBlock - Add a new block to the CFG, with the specified immediate - /// dominator. - /// - void addNewBlock(BasicBlock *BB, BasicBlock *IDom); - - /// setImmediateDominator - Update the immediate dominator information to - /// change the current immediate dominator for the specified block - /// to another block. This method requires that BB for NewIDom - /// already have an ETNode, otherwise just use addNewBlock. - /// - void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom); - /// print - Convert to human readable form - /// - virtual void print(std::ostream &OS, const Module* = 0) const; - void print(std::ostream *OS, const Module* M = 0) const { - if (OS) print(*OS, M); - } - virtual void dump(); -protected: - /// getNode - return the (Post)DominatorTree node for the specified basic - /// block. This is the same as using operator[] on this class. - /// - inline ETNode *getNode(BasicBlock *BB) const { - ETMapType::const_iterator i = Nodes.find(BB); - return (i != Nodes.end()) ? i->second : 0; - } - - inline ETNode *operator[](BasicBlock *BB) const { - return getNode(BB); - } - - void reset(); - ETMapType Nodes; - bool DFSInfoValid; - unsigned int SlowQueries; - -}; - -//==------------------------------------- -/// ETForest Class - Concrete subclass of ETForestBase that is used to -/// compute a forwards ET-Forest. - -class ETForest : public ETForestBase { -public: - static char ID; // Pass identification, replacement for typeid - - ETForest() : ETForestBase((intptr_t)&ID, false) {} - - BasicBlock *getRoot() const { - assert(Roots.size() == 1 && "Should always have entry node!"); - return Roots[0]; - } - - virtual bool runOnFunction(Function &F) { - reset(); // Reset from the last time we were run... - DominatorTree &DT = getAnalysis<DominatorTree>(); - Roots = DT.getRoots(); - calculate(DT); - return false; - } - - void calculate(const DominatorTree &DT); - // FIXME : There is no need to make getNodeForBlock public. Fix - // predicate simplifier. - ETNode *getNodeForBlock(BasicBlock *BB); -}; - //===----------------------------------------------------------------------===// /// DominanceFrontierBase - Common base class for computing forward and inverse /// dominance frontiers for a function. diff --git a/include/llvm/Analysis/ET-Forest.h b/include/llvm/Analysis/ET-Forest.h deleted file mode 100644 index 8bd5e44..0000000 --- a/include/llvm/Analysis/ET-Forest.h +++ /dev/null @@ -1,312 +0,0 @@ -//===- llvm/Analysis/ET-Forest.h - ET-Forest implementation -----*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file was written by Daniel Berlin from code written by Pavel Nejedy, and -// is distributed under the University of Illinois Open Source License. See -// LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the following classes: -// 1. ETNode: A node in the ET forest. -// 2. ETOccurrence: An occurrence of the node in the splay tree -// storing the DFS path information. -// -// The ET-forest structure is described in: -// D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. -// J. G'omput. System Sci., 26(3):362 381, 1983. -// -// Basically, the ET-Forest is storing the dominator tree (ETNode), -// and a splay tree containing the depth first path information for -// those nodes (ETOccurrence). This enables us to answer queries -// about domination (DominatedBySlow), and ancestry (NCA) in -// logarithmic time, and perform updates to the information in -// logarithmic time. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_ANALYSIS_ETFOREST_H -#define LLVM_ANALYSIS_ETFOREST_H - -#include <cassert> -#include <cstdlib> - -namespace llvm { -class ETNode; - -/// ETOccurrence - An occurrence for a node in the et tree -/// -/// The et occurrence tree is really storing the sequences you get from -/// doing a DFS over the ETNode's. It is stored as a modified splay -/// tree. -/// ET occurrences can occur at multiple places in the ordering depending -/// on how many ET nodes have it as their father. To handle -/// this, they are separate from the nodes. -/// -class ETOccurrence { -public: - ETOccurrence(ETNode *n): OccFor(n), Parent(NULL), Left(NULL), Right(NULL), - Depth(0), Min(0), MinOccurrence(this) {}; - - void setParent(ETOccurrence *n) { - assert(n != this && "Trying to set parent to ourselves"); - Parent = n; - } - - // Add D to our current depth - void setDepthAdd(int d) { - Min += d; - Depth += d; - } - - // Reset our depth to D - void setDepth(int d) { - Min += d - Depth; - Depth = d; - } - - // Set Left to N - void setLeft(ETOccurrence *n) { - assert(n != this && "Trying to set our left to ourselves"); - Left = n; - if (n) - n->setParent(this); - } - - // Set Right to N - void setRight(ETOccurrence *n) { - assert(n != this && "Trying to set our right to ourselves"); - Right = n; - if (n) - n->setParent(this); - } - - // Splay us to the root of the tree - void Splay(void); - - // Recompute the minimum occurrence for this occurrence. - void recomputeMin(void) { - ETOccurrence *themin = Left; - - // The min may be our Right, too. - if (!themin || (Right && themin->Min > Right->Min)) - themin = Right; - - if (themin && themin->Min < 0) { - Min = themin->Min + Depth; - MinOccurrence = themin->MinOccurrence; - } else { - Min = Depth; - MinOccurrence = this; - } - } - private: - friend class ETNode; - - // Node we represent - ETNode *OccFor; - - // Parent in the splay tree - ETOccurrence *Parent; - - // Left Son in the splay tree - ETOccurrence *Left; - - // Right Son in the splay tree - ETOccurrence *Right; - - // Depth of the node is the sum of the depth on the path to the - // root. - int Depth; - - // Subtree occurrence's minimum depth - int Min; - - // Subtree occurrence with minimum depth - ETOccurrence *MinOccurrence; -}; - - -class ETNode { -public: - ETNode(void *d) : data(d), DFSNumIn(-1), DFSNumOut(-1), - Father(NULL), Left(NULL), - Right(NULL), Son(NULL), ParentOcc(NULL) { - RightmostOcc = new ETOccurrence(this); - }; - - // This does *not* maintain the tree structure. - // If you want to remove a node from the forest structure, use - // removeFromForest() - ~ETNode() { - delete RightmostOcc; - delete ParentOcc; - } - - void removeFromForest() { - // Split us away from all our sons. - while (Son) - Son->Split(); - - // And then split us away from our father. - if (Father) - Father->Split(); - } - - // Split us away from our parents and children, so that we can be - // reparented. NB: setFather WILL NOT DO WHAT YOU WANT IF YOU DO NOT - // SPLIT US FIRST. - void Split(); - - // Set our parent node to the passed in node - void setFather(ETNode *); - - // Nearest Common Ancestor of two et nodes. - ETNode *NCA(ETNode *); - - // Return true if we are below the passed in node in the forest. - bool Below(ETNode *); - /* - Given a dominator tree, we can determine whether one thing - dominates another in constant time by using two DFS numbers: - - 1. The number for when we visit a node on the way down the tree - 2. The number for when we visit a node on the way back up the tree - - You can view these as bounds for the range of dfs numbers the - nodes in the subtree of the dominator tree rooted at that node - will contain. - - The dominator tree is always a simple acyclic tree, so there are - only three possible relations two nodes in the dominator tree have - to each other: - - 1. Node A is above Node B (and thus, Node A dominates node B) - - A - | - C - / \ - B D - - - In the above case, DFS_Number_In of A will be <= DFS_Number_In of - B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is - because we must hit A in the dominator tree *before* B on the walk - down, and we will hit A *after* B on the walk back up - - 2. Node A is below node B (and thus, node B dominates node B) - - B - | - A - / \ - C D - - In the above case, DFS_Number_In of A will be >= DFS_Number_In of - B, and DFS_Number_Out of A will be <= DFS_Number_Out of B. - - This is because we must hit A in the dominator tree *after* B on - the walk down, and we will hit A *before* B on the walk back up - - 3. Node A and B are siblings (and thus, neither dominates the other) - - C - | - D - / \ - A B - - In the above case, DFS_Number_In of A will *always* be <= - DFS_Number_In of B, and DFS_Number_Out of A will *always* be <= - DFS_Number_Out of B. This is because we will always finish the dfs - walk of one of the subtrees before the other, and thus, the dfs - numbers for one subtree can't intersect with the range of dfs - numbers for the other subtree. If you swap A and B's position in - the dominator tree, the comparison changes direction, but the point - is that both comparisons will always go the same way if there is no - dominance relationship. - - Thus, it is sufficient to write - - A_Dominates_B(node A, node B) { - return DFS_Number_In(A) <= DFS_Number_In(B) && - DFS_Number_Out(A) >= DFS_Number_Out(B); - } - - A_Dominated_by_B(node A, node B) { - return DFS_Number_In(A) >= DFS_Number_In(A) && - DFS_Number_Out(A) <= DFS_Number_Out(B); - } - */ - bool DominatedBy(ETNode *other) const { - return this->DFSNumIn >= other->DFSNumIn && - this->DFSNumOut <= other->DFSNumOut; - } - - // This method is slower, but doesn't require the DFS numbers to - // be up to date. - bool DominatedBySlow(ETNode *other) { - return this->Below(other); - } - - void assignDFSNumber (int); - - bool hasFather() const { - return Father != NULL; - } - - // Do not let people play around with fathers. - const ETNode *getFather() const { - return Father; - } - - template <typename T> - T *getData() const { - return static_cast<T*>(data); - } - - unsigned getDFSNumIn() const { - return DFSNumIn; - } - - unsigned getDFSNumOut() const { - return DFSNumOut; - } - - const ETNode *getSon() const { - return Son; - } - - const ETNode *getBrother() const { - return Left; - } - - private: - // Data represented by the node - void *data; - - // DFS Numbers - int DFSNumIn, DFSNumOut; - - // Father - ETNode *Father; - - // Brothers. Node, this ends up being a circularly linked list. - // Thus, if you want to get all the brothers, you need to stop when - // you hit node == this again. - ETNode *Left, *Right; - - // First Son - ETNode *Son; - - // Rightmost occurrence for this node - ETOccurrence *RightmostOcc; - - // Parent occurrence for this node - ETOccurrence *ParentOcc; -}; -} // end llvm namespace - -#endif |